Advances in nanostructures fabricated<i>via</i>spray penergy storage and conversion

Chemical Society Reviews 48, 3015-3072

DOI: 10.1039/c8cs00904j

Citation Report

#	Article	IF	CITATIONS
1	Novel LiV(PO ₄) _{0.9} F _{1.3} with ultrahigh rate capability and prolonged cycle life. Chemical Communications, 2019, 55, 11175-11178.	2.2	8
2	Advances in the synthesis and design of nanostructured materials by aerosol spray processes for efficient energy storage. Nanoscale, 2019, 11, 19012-19057.	2.8	30
3	One-pot synthesis of MnO/C N-doped hybrid materials for high performance lithium-ion batteries. Journal of Alloys and Compounds, 2019, 805, 692-700.	2.8	19
4	Recent Advances in Aerosolâ€Assisted Spray Processes for the Design and Fabrication of Nanostructured Metal Chalcogenides for Sodiumâ€Ion Batteries. Chemistry - an Asian Journal, 2019, 14, 3127-3140.	1.7	19
5	A prediction model for superconductor critical temperature using stepwise discriminant analysis based on feature extraction. Journal of Physics: Conference Series, 2019, 1298, 012020.	0.3	0
6	A gradient porous electrode with balanced transport properties and active surface areas for vanadium redox flow batteries. Journal of Power Sources, 2019, 440, 227159.	4.0	49
7	Three-dimensionally assembled manganese oxide ultrathin nanowires: Prospective electrode material for asymmetric supercapacitors. Energy, 2019, 188, 116066.	4.5	40
8	Facile One-Step Hydrothermal Synthesis of Na3V2(PO4)2F3@C/CNTs Tetragonal Micro-Particles as High Performance Cathode Material for Na-Ion Batteries. Frontiers in Chemistry, 2019, 7, 689.	1.8	20
9	Hierarchical Mesoporous/Macroporous Co-Doped NiO Nanosheet Arrays as Free-Standing Electrode Materials for Rechargeable Li–O ₂ Batteries. ACS Applied Materials & mp; Interfaces, 2019, 11, 44556-44565.	4.0	37
10	Concentrator bifacial crystalline silicon solar cells with Al-alloyed BSF and Ag-free multi-wire metallization. AIP Conference Proceedings, 2019, , .	0.3	1
11	High Sensitivity Detection of Copper Ions in Oysters Based on the Fluorescence Property of Cadmium Selenide Quantum Dots. Chemosensors, 2019, 7, 47.	1.8	9
12	Yolk–shell structured metal oxide@carbon nanoring anode boosting performance of lithium-ion batteries. New Journal of Chemistry, 2019, 43, 16148-16155.	1.4	10
13	Fabrication of Si–SiO2@Fe/NC composite from industrial waste AlSiFe powders as high stability anodes for lithium ion batteries. Electrochimica Acta, 2019, 324, 134860.	2.6	31
14	Electrochemical Performance of Hybrid Cationic Aqueous-Based Rechargeable Battery with Different Current Collectors and Electrolytes. International Journal of Photoenergy, 2019, 2019, 1-7.	1.4	1
15	The Electrochemical Performance and Reaction Mechanism of Coated Titanium Anodes for Manganese Electrowinning. Journal of the Electrochemical Society, 2019, 166, E502-E511.	1.3	24
16	Frogspawn inspired hollow Fe ₃ C@N–C as an efficient sulfur host for high-rate lithium–sulfur batteries. Nanoscale, 2019, 11, 21532-21541.	2.8	58
17	Transformation of Atomically Precise Nanoclusters by Ligand-Exchange. Chemistry of Materials, 2019, 31, 9939-9969.	3.2	130
18	In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chemical Engineering Journal, 2020, 382, 122959.	6.6	149

#	Article	IF	CITATIONS
19	Two-step alcohothermal synthesis and characterization of enhanced visible-light-active WO3-coated TiO2 heterostructure. Ceramics International, 2020, 46, 2102-2109.	2.3	13
20	Lithiophilic 3D Porous CuZn Current Collector for Stable Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 180-186.	8.8	159
21	Zn–Co Sulfide Microflowers Anchored on Threeâ€Dimensional Graphene: A Highâ€Capacitance and Longâ€Cycleâ€Life Electrode for Asymmetric Supercapacitors. Chemistry - A European Journal, 2020, 26, 650-658.	1.7	21
22	Impacts of morphology and N-doped carbon encapsulation on electrochemical properties of NiSe for lithium storage. Energy Storage Materials, 2020, 25, 210-216.	9.5	39
23	A redox interaction-engaged strategy for multicomponent nanomaterials. Chemical Society Reviews, 2020, 49, 736-764.	18.7	32
24	Novel diverse-structured h-WO3 nanoflake arrays as electrode materials for high performance supercapacitors. Electrochimica Acta, 2020, 334, 135641.	2.6	32
25	One-pot synthesis and gas sensitivity of SnO2 nanoparticles prepared using two Sn salts of SnCl4·5H2O and SnCl2·2H2O. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	11
26	Surface/Interface Structure Degradation of Niâ€Rich Layered Oxide Cathodes toward Lithiumâ€lon Batteries: Fundamental Mechanisms and Remedying Strategies. Advanced Materials Interfaces, 2020, 7, 1901749.	1.9	134
27	MoS2 wrapped MOFs-derived N-doped carbon nanorods as an effective sulfur host for high-performance lithium-sulfur batteries. Ceramics International, 2020, 46, 9614-9621.	2.3	34
28	A general method to produce mesoporous oxide spherical particles through an aerosol method from aqueous solutions. Journal of Sol-Gel Science and Technology, 2020, 94, 195-204.	1.1	6
29	Effect of calcining oxygen pressure gradient on properties of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries. Electrochimica Acta, 2020, 334, 135654.	2.6	82
30	Continuous 2000â€K droplet-to-particle synthesis. Materials Today, 2020, 35, 106-114.	8.3	43
31	A Water Stable, Nearâ€Zeroâ€Strain O3â€Layered Titaniumâ€Based Anode for Long Cycle Sodiumâ€Ion Battery. Advanced Functional Materials, 2020, 30, 1907023.	7.8	36
32	A Durable Na _{0.56} V ₂ O ₅ Nanobelt Cathode Material Assisted by Hybrid Cationic Electrolyte for Highâ€Performance Aqueous Zincâ€ion Batteries. ChemElectroChem, 2020, 7, 283-288.	1.7	66
33	Influence of the Synthesis Route on the Properties of Hybrid NiO–MnCo ₂ O ₄ –Ni ₆ MnO ₈ Anode Materials and their Electrochemical Performances. ChemSusChem, 2020, 13, 1890-1899.	3.6	6
34	Dendritic Nanostructured Waste Copper Wires for High-Energy Alkaline Battery. Nano-Micro Letters, 2020, 12, 1.	14.4	556
35	Freestanding, Hierarchical, and Porous Bilayered Na _{<i>x</i>} V ₂ O ₅ Â <i>n</i> H ₂ O/rGO/CNT Composites as High-Performance Cathode Materials for Nonaqueous K-Ion Batteries and Aqueous Zinc-Ion Batteries. ACS Applied Materials & Description of the ACS Applied Materials (12) and the ACS Applied Materials (13) and the ACS Applied Materials (14) and the ACS Applied Materials (15) and the ACS	4.0	82
36	Surface Modification of Li 1.144 Ni 0.136 Co 0.136 Mn 0.544 O 2 by Hybrid Protection Layer with Enhanced Rate Capability. Energy Technology, 2020, 8, 1901133.	1.8	2

3

#	Article	IF	CITATIONS
37	Unraveling the Relationship between Ti ⁴⁺ Doping and Li ⁺ Mobility Enhancement in Ti ⁴⁺ Doped Li ₃ V ₂ (PO ₄) ₃ . ACS Applied Energy Materials, 2020, 3, 715-722.	2.5	11
38	One-pot synthesis of uniform hollow nanospheres of Ce–Zr–O mixed oxides by spray pyrolysis. Microporous and Mesoporous Materials, 2020, 294, 109886.	2.2	8
39	Construction of highly ordered ZnO microrod@SnO2 nanowire heterojunction hybrid with a test-tube brush-like structure for high performance lithium-ion batteries: experimental and theoretical study. Electrochimica Acta, 2020, 330, 135312.	2.6	29
40	Investigation of ROS scavenging properties and in vitro cytotoxicity of oxygen-deficient La2O3-x nanostructure synthesized by spray pyrolysis method. Journal of Nanostructure in Chemistry, 2020, 10, 347-361.	5.3	19
41	Encapsulation of Se into Hierarchically Porous Carbon Microspheres with Optimized Pore Structure for Advanced Na–Se and K–Se Batteries. ACS Nano, 2020, 14, 13203-13216.	7.3	86
42	Highâ€Temperature Shock Enabled Nanomanufacturing for Energyâ€Related Applications. Advanced Energy Materials, 2020, 10, 2001331.	10.2	86
43	Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets. ACS Nano, 2020, 14, 9545-9561.	7.3	250
44	Hierarchical Design of Mn ₂ P Nanoparticles Embedded in N,P-Codoped Porous Carbon Nanosheets Enables Highly Durable Lithium Storage. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36247-36258.	4.0	36
45	High-Value Utilization of Lignin To Prepare Functional Carbons toward Advanced Lithium-lon Capacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 11522-11531.	3.2	32
46	Advanced aerosol technologies towards structure and morphologically controlled next-generation catalytic materials. Journal of Aerosol Science, 2020, 149, 105608.	1.8	30
47	Coordination effect of biocatalyst dithiothreitol and aramid fiber interlayer for lithium-sulfur batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 14233-14240.	1.1	5
48	A Renewable Sedimentary Slurry Battery: Preliminary Study in Zinc Electrodes. IScience, 2020, 23, 101821.	1.9	6
49	Fluorine-doped indium oxide (IFO) layers produced by ultrasonic spray pyrolysis as electron-selective contacts in IFO/SiO /p-Si heterojunction crystalline silicon solar cells with an open-circuit voltage of 640ÂmV. Solar Energy, 2020, 207, 825-831.	2.9	4
50	Phytic acid assisted formation of P-doped hard carbon anode with enhanced capacity and rate capability for lithium ion capacitors. Journal of Power Sources, 2020, 474, 228500.	4.0	45
51	Micro/nanostructured TiNb ₂ O ₇ -related electrode materials for high-performance electrochemical energy storage: recent advances and future prospects. Journal of Materials Chemistry A, 2020, 8, 18425-18463.	5.2	59
52	Ni–Sn intermetallics as an efficient buffering matrix of Si anodes in Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 18132-18142.	5. 2	19
53	Effect of Surfactants on the Electrochemical Performance of FeS2 Synthesized by Hydrothermal Method. International Journal of Electrochemical Science, 2020, , 10653-10663.	0.5	1
54	Investigation of precursors concentration in spray solution on the optoelectronic properties of CulnSe2 thin films deposited by spray pyrolysis method. Journal of Materials Science: Materials in Electronics, 2021, 32, 25748-25757.	1.1	4

#	Article	IF	CITATIONS
55	Yolk-Shell catalyst: From past to future. Applied Materials Today, 2020, 21, 100798.	2.3	8
56	Engineering One-Dimensional Bunched Ni–MoO ₂ @Co–CoO–NC Composite for Enhanced Lithium and Sodium Storage Performance. ACS Applied Energy Materials, 2020, 3, 9018-9027.	2.5	26
57	Flame-made Particles for Sensors, Catalysis, and Energy Storage Applications. Energy & Energy	2.5	48
58	ZnO thin films design: the role of precursor molarity in the spray pyrolysis process. Journal of Materials Science: Materials in Electronics, 2020, 31, 17269-17280.	1.1	10
59	Advances in Ultrasonic Spray Pyrolysis Processing of Noble Metal Nanoparticles—Review. Materials, 2020, 13, 3485.	1.3	41
60	Synthesis and Characterisation of Metal Oxide Nanostructures Using Choline/Linear Alkyl Carboxylate Deep Eutectic Solvents. Solids, 2020, 1, 31-46.	1.1	2
61	Solvothermal orthorhombic Sb2S3 nanobars: Effect of hydrothermal temperature in properties for solar cell application. Results in Physics, 2020, 19, 103603.	2.0	5
62	Titanium Dioxide in Chromogenic Devices: Synthesis, Toxicological Issues, and Fabrication Methods. Applied Sciences (Switzerland), 2020, 10, 8896.	1.3	1
63	Inverted Configuration of Cu(In,Ga)S ₂ /In ₂ S ₃ on 3D-ZnO/ZnSnO ₃ Bilayer System for Highly Efficient Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 15209-15222.	3.2	28
64	Porous niobia spheres with large surface area: alcothermal synthesis and controlling of their composition and phase transition behaviour. RSC Advances, 2020, 10, 14630-14636.	1.7	2
65	Bismuth-Ferrite-Based Electrochemical Supercapacitors. SpringerBriefs in Materials, 2020, , .	0.1	7
66	Stacked 2D nanoflake-structured thin films of chalcogenide SnSxSe(yâ^'x) grown by spray pyrolysis: structural, optical and electrical properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 10930-10938.	1.1	2
67	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
68	High-performance spherical LiVPO4F/C cathode enabled by facile spray pyrolysis. Science China Technological Sciences, 2020, 63, 2729-2734.	2.0	4
69	Preparation of submicron-sized Sm2Fe17N3 fine powder by ultrasonic spray pyrolysis-hydrogen reduction (USP-HR) and subsequent reduction–diffusion process. AIP Advances, 2020, 10, .	0.6	7
70	Aerosol-assisted preparation of N-doped hierarchical porous carbon spheres cathodes toward high-stable lithium-ion capacitors. Journal of Materials Science, 2020, 55, 13127-13140.	1.7	8
71	Graphene-Wrapped MnO/C Composites by MOFs-Derived as Cathode Material for Aqueous Zinc ion Batteries. Electrochimica Acta, 2020, 353, 136570.	2.6	168
72	Carbon-nitrogen quantum dots modification of Li4Ti5O12 anode material for lithium-ion batteries. lonics, 2020, 26, 3325-3331.	1.2	4

#	ARTICLE	IF	CITATIONS
73	Low-cost synthesis of AuNPs through ultrasonic spray pyrolysis. Materials Research Express, 2020, 7, 055017.	0.8	11
74	Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries. Nanoscale Horizons, 2020, 5, 895-903.	4.1	42
75	Spray drying–assisted recycling of spent LiFePO4 for synthesizing hollow spherical LiFePO4/C. Ionics, 2020, 26, 4949-4960.	1.2	7
76	Droplet-oriented construction of porous metal oxide hollow microspheres and their assembly into superstructures. New Journal of Chemistry, 2020, 44, 12978-12984.	1.4	0
77	The MnO@N-doped carbon composite derived from electrospinning as cathode material for aqueous zinc ion battery. Journal of Electroanalytical Chemistry, 2020, 873, 114368.	1.9	75
78	Precursor Design Strategies for the Lowâ€Temperature Synthesis of Functional Oxides: It's All in the Chemistry. Chemistry - A European Journal, 2020, 26, 9070-9083.	1.7	3
79	Prussian blue analogue nanocubes with hollow interior and porous walls encapsulated within reduced graphene oxide nanosheets and their sodium-ion storage performances. Chemical Engineering Journal, 2020, 393, 124606.	6.6	31
80	Suppressed polarization by epitaxial growth of SrTiO ₃ on BaTiO ₃ nanoparticles for high discharged energy density and efficiency nanocomposites. Nanoscale, 2020, 12, 8230-8236.	2.8	31
81	Hierarchically Rambutanâ€Like Zn ₃ V ₃ O ₈ Hollow Spheres as Anodes for Lithiumâ€/Potassiumâ€Ion Batteries. Energy Technology, 2020, 8, 2000010.	1.8	14
82	Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries. Chemical Engineering Journal, 2020, 389, 124350.	6.6	42
83	Morphology oriented CuS nanostructures: superior K-ion storage using surface enhanced pseudocapacitive effects. Sustainable Energy and Fuels, 2020, 4, 3574-3587.	2.5	15
84	Ultrathin hybrid nanobelts of single-crystalline VO2 and Poly(3,4-ethylenedioxythiophene) as cathode materials for aqueous zinc ion batteries with large capacity and high-rate capability. Journal of Power Sources, 2020, 463, 228223.	4.0	65
85	Preparation of benzoxazine-based N-doped mesoporous carbon material and its electrochemical behaviour as supercapacitor. Journal of Electroanalytical Chemistry, 2020, 868, 114196.	1.9	16
86	Porous FeP/C composite nanofibers as high-performance anodes for Li-ion/Na-ion batteries. Materials Today Energy, 2020, 16, 100410.	2.5	23
87	Graphene-wrapped MnO2 achieved by ultrasonic-assisted synthesis applicable for hybrid high-energy supercapacitors. Vacuum, 2020, 176, 109315.	1.6	26
88	Lithium fluoride as an efficient additive for improved electrochemical performance of Li-S batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124737.	2.3	5
89	Structural, optical and thermoelectric properties of Al-doped ZnO thin films prepared by spray pyrolysis. Surfaces and Interfaces, 2020, 19, 100504.	1.5	44
90	Synthesis of a fine LiNi _{0.88} Co _{0.09} Al _{0.03} O ₂ cathode material for lithium-ion batteries <i>via</i> cyclic performance. RSC Advances, 2020, 10, 9917-9923.	1.7	10

#	Article	IF	CITATIONS
91	Designed formation of nitrogen-doped caramel sheathed bilateral hybrid oxides nanoarrays as ultra-stable anode for high-areal-capacity lithium-ion batteries. Journal of Alloys and Compounds, 2020, 834, 155069.	2.8	10
92	Physical and electrical properties' evaluation of SnS:Cu thin films. Surface Engineering, 2021, 37, 137-147.	1.1	6
93	Characterization of CeO2 microspheres fabricated by an ultrasonic spray pyrolysis method. Rare Metals, 2021, 40, 31-39.	3.6	13
94	Na-containing manganese-based cathode materials synthesized by sol-gel method for zinc-based rechargeable aqueous battery. Journal of Alloys and Compounds, 2021, 858, 157744.	2.8	12
95	Biowaste-sustained MoSe2 composite as an efficient anode for sodium/potassium storage applications. Journal of Alloys and Compounds, 2021, 850, 156770.	2.8	29
96	Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 34, 483-507.	9.5	130
97	An efficient ruthenium-based dual-electrocatalyst towards hydrogen evolution and oxygen reduction reactions. Materials Today Physics, 2021, 16, 100300.	2.9	14
98	Boosting capacitive storage of cathode for lithium-ion capacitors: Combining pore structure with P-doping. Electrochimica Acta, 2021, 368, 137646.	2.6	24
99	Micro-structured lepidocrocite-type H1.07Ti1.73O4 as anode for lithium-ion batteries with an ultrahigh rate and long-term cycling performance. Rare Metals, 2021, 40, 1391-1401.	3.6	12
100	Recent Progress in Functional Materials for Selective Detection and Removal of Mercury(II) Ions. Advanced Functional Materials, 2021, 31, .	7.8	109
101	Manufacturing and design of smart polymer composites. , 2021, , 27-84.		3
102	Nanomaterials in thin-film form for new-generation energy storage device applications. , 2021, , 561-583.		5
103	Ultrafast Synthesis for Functional Nanomaterials. Cell Reports Physical Science, 2021, 2, 100302.	2.8	34
104	Vapor-phase production of nanomaterials. Chemical Society Reviews, 2021, 50, 7132-7249.	18.7	32
105	Development of a Scanning Chemical Vapour Deposition Reactor for the realization of patterned and non-patterned depositions: a preliminary overview. Thin Solid Films, 2021, 717, 138446.	0.8	0
106	Robust hollow TiO ₂ spheres for lithium/sodium ion batteries with excellent cycling stability and rate capability. Inorganic Chemistry Frontiers, 2021, 8, 5024-5033.	3.0	24
107	A strategy and detailed explanations to the composites of Si/MWCNTs for lithium storage. Carbon, 2021, 171, 265-275.	5.4	19
108	Techniques and methods used for the fabrication of bionanocomposites. , 2021, , 17-43.		4

#	Article	IF	CITATIONS
109	Current Status on the Manufacturing of Nanomaterials for Proton Exchange Membrane Energy Systems by Vapor-Based Processes. Energy & Systems by Vapor-Based Processes. Energy & Systems by Vapor-Based Processes.	2.5	10
110	Preparation and Electrochemical Performance of V2O5 @N-CNT/S Composite Cathode Materials. Frontiers in Energy Research, 2021, 8, .	1.2	6
111	Effect of chelating agents on the electrochemical performance of Lisub>3V ₂ (PO ₄) ₃ /C composite. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 724-731.	1.0	1
112	Facile Fabrication of CeO ₂ -Al ₂ O ₃ Hollow Sphere with Atomically Dispersed Fe via Spray Pyrolysis. Inorganic Chemistry, 2021, 60, 5183-5189.	1.9	4
113	Improvement of electrochemical performance by fluorinated multiwall carbon nanotubes interlayer in lithium–sulfur battery. Journal of Materials Science: Materials in Electronics, 2021, 32, 8265-8274.	1.1	3
114	Towards a low cost fully integrated IGZO TFT NO2 detection and quantification: A solution-processed approach. Sensors and Actuators B: Chemical, 2021, 331, 129450.	4.0	12
115	Highlyâ€Dispersed Submicrometer Singleâ€Crystal Nickelâ€Rich Layered Cathode: Spray Synthesis and Accelerated Lithiumâ€Ion Transport. Small, 2021, 17, e2006869.	5. 2	68
116	Microstructureâ€Dependent K ⁺ Storage in Porous Hard Carbon. Small, 2021, 17, e2100397.	5.2	42
117	Role of Al on the electrochemical performances of quaternary nickel-rich cathode LiNiO.8CoO.1MnO.1â~Al O2 (0Ââ‰ÂxÂâ‰Â0.06) for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 888, 115200.	1.9	15
118	Ball-milling fabrication of PPy/Ni2P/GO composites for high-performance supercapacitor electrodes. Journal of Solid State Electrochemistry, 2021, 25, 1975-1985.	1.2	16
119	Promotional effects of Cu O on the activity of Cu/ZnO catalyst toward efficient CO oxidation. Applied Surface Science, 2021, 548, 149241.	3.1	20
120	Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. Journal of Cleaner Production, 2021, 297, 126645.	4.6	202
121	Nanostructured covalent organic frameworks with elevated crystallization for (electro)photocatalysis and energy storage devices. Journal of Materials Science, 2021, 56, 13875-13924.	1.7	8
122	First spray pyrolysis thin film fabrication of environment-friendly Cu2BaSnS4 (CBTS) nanomaterials. Chemical Physics Letters, 2021, 770, 138406.	1.2	6
123	Directionally Tailoring Macroporous Honeycomb-Like Structured Carbon Nanofibers toward High-Capacitive Potassium Storage. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30693-30702.	4.0	25
124	Reduced graphene oxide encapsulated MnO microspheres as an anode for high-rate lithium ion capacitors. New Carbon Materials, 2021, 36, 573-584.	2.9	12
125	Highâ€Performance Flow Alkaliâ€Al/Acid Hybrid Fuel Cell for Highâ€Rate H ₂ Generation. Advanced Functional Materials, 2021, 31, 2103248.	7.8	7
126	Self-sacrificial-reaction guided formation of hierarchical electronic/ionic conductive shell enabling high-performance nano-silicon anode. Chemical Engineering Journal, 2021, 415, 128998.	6.6	31

#	Article	IF	CITATIONS
127	Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breathâ€Based Biomarker Diagnosis. Advanced Healthcare Materials, 2021, 10, e2100970.	3.9	41
128	Luminescence improvement of (Ti,Si)O2:Eu3+/Li+ spherical particles for anti-counterfeiting application. Materials Chemistry and Physics, 2021, 267, 124612.	2.0	4
129	Research Progress of Singleâ€Crystal Nickelâ€Rich Cathode Materials for Lithium Ion Batteries. Small Methods, 2021, 5, e2100234.	4.6	71
130	Evaluation of spray pyrolysed In:ZnO nanostructures for CO gas sensing at low concentration. Journal of Materials Science: Materials in Electronics, 2021, 32, 22599-22616.	1.1	10
131	Green Synthesis of Nanomaterials. Nanomaterials, 2021, 11, 2130.	1.9	88
132	Highly Conductive Tellurium and Telluride in Energy Storage. ChemElectroChem, 2021, 8, 4412-4426.	1.7	20
133	Recent progress in nanostructured electrodes for solid oxide fuel cells deposited by spray pyrolysis. Journal of Power Sources, 2021, 507, 230277.	4.0	37
134	Instant formation of excellent oxygen evolution catalyst film via controlled spray pyrolysis for electrocatalytic and photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 66, 657-665.	7.1	4
135	Nanostructured KxNa1-xNbO3 hollow spheres as potential materials for the photocatalytic treatment of polluted water. Applied Catalysis B: Environmental, 2021, 298, 120502.	10.8	16
136	Grain size regulation for balancing cycle performance and rate capability of LiNi0.9Co0.055Mn0.045O2 single crystal nickel-rich cathode materials. Journal of Energy Chemistry, 2022, 65, 681-687.	7.1	35
137	Nanomaterials for electrochemical energy storage. Frontiers of Nanoscience, 2021, 18, 421-484.	0.3	2
138	Advanced development of metal oxide nanomaterials for H ₂ gas sensing applications. Materials Advances, 2021, 2, 1530-1569.	2.6	28
140	Vacancy-engineered MoO ₃ and Na ⁺ -preinserted MnO ₂ <i>in situ</i> grown N-doped graphene nanotubes as electrode materials for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2021, 9, 20794-20806.	5.2	15
141	Influence of deposition parameters on surface morphology and application of CulnS2 thin films in solar cell and photocatalysis. International Journal of Hydrogen Energy, 2020, 45, 16169-16182.	3.8	12
142	Highly oriented and fully dense CGO films prepared by spray-pyrolysis and different precursor salts. Journal of the European Ceramic Society, 2020, 40, 3080-3088.	2.8	12
143	ITO/SiO /n-Si heterojunction solar cell with bifacial 16.6%/14.6% front/rear efficiency produced by ultrasonic spray pyrolysis: Effect of conditions of SiO growth by wet-chemical oxidation. Solar Energy, 2020, 204, 395-405.	2.9	14
144	Effect of rapid thermal annealing on sprayed Cu ₂ SnS ₃ thin films for solar-cell application. Japanese Journal of Applied Physics, 2020, 59, 105503.	0.8	2
145	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	23.0	151

#	Article	IF	CITATIONS
146	Sintered Ni metal as a matrix of robust self-supporting electrode for ultra-stable hydrogen evolution. Chemical Engineering Journal, 2022, 430, 133040.	6.6	14
147	Polycrystalline Erbium Phthalocyanine Thin Films Deposited on Silicon and Porous Silicon by Ultrasonic Spray Pyrolysis: Optical, Morphological, and Electrical Characterizations. Journal of Electronic Materials, 2021, 50, 6951-6963.	1.0	2
149	Vacancy-mediated Interfacial Charge Transfer in Au-ZnO by Fe promoter for low-temperature CO oxidation Journal of Environmental Chemical Engineering, 2022, 10, 106651.	3.3	1
150	A comprehensive review of LiMnPO4 based cathode materials for lithium-ion batteries: current strategies to improve its performance. Journal of Energy Storage, 2021, 44, 103307.	3.9	27
151	Bismuth Ferrites: Synthesis Methods and Experimental Techniques. SpringerBriefs in Materials, 2020, , 47-67.	0.1	2
152	Electrical characterization and solar light sensitivity of SnS2/n-Si junction. Journal of the Institute of Science and Technology, 0, , 214-224.	0.3	0
153	Mitigating the voltage fading and air sensitivity of O3-type NaNi0.4Mn0.4Cu0.1Ti0.1O2 cathode material via La doping. Chemical Engineering Journal, 2022, 431, 133456.	6.6	10
154	Crafting a Next-Generation Device Using Iron Oxide Thin Film: A Review. Crystal Growth and Design, 2021, 21, 7326-7352.	1.4	11
155	Study of gold nanoparticles' preparation through ultrasonic spray pyrolysis and lyophilisation for possible use as markers in LFIA tests. Nanotechnology Reviews, 2021, 10, 1978-1992.	2.6	15
156	Effect of calcination temperature and Ti substitution on optical properties of (Fe,Cr) ₂ O ₃ cool black pigment prepared by spray pyrolysis. RSC Advances, 2021, 12, 72-77.	1.7	4
157	Ultrasmall metal (Fe, Co, Ni) nanoparticles strengthen silicon oxide embedded nitrogen-doped carbon superstructures for long-cycle-life Li-ion-battery anodes. Chemical Engineering Journal, 2022, 432, 134413.	6.6	23
158	A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment. Journal of Materials Chemistry A, 2022, 10, 2152-2195.	5.2	31
160	Spray pyrolysis synthesis and UV-driven photocatalytic activity of mesoporous Al2O3@TiO2 microspheres. Environmental Science and Pollution Research, 2022, 29, 42991-43003.	2.7	13
161	Progress in Spray Coated Perovskite Films for Solar Cell Applications. Solar Rrl, 2022, 6, 2101035.	3.1	21
162	Spray pyrolysis synthesis of mesoporous \hat{l}^3 -AlOOH and \hat{l}^3 -Al ₂ O ₃ microspheres and their properties for Cr (VI) adsorption. International Journal of Environmental Analytical Chemistry, 2024, 104, 584-604.	1.8	6
163	Novel nanostructured electrocatalysts for fuel cell technology: Design, solution chemistry-based preparation approaches and application. Nano Structures Nano Objects, 2022, 29, 100831.	1.9	2
164	Visible light-driven H2O2 synthesis by a Cu3BiS3 photocathode via a photoelectrochemical indirect two-electron oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 307, 121152.	10.8	25
165	A review on advancements, challenges, and prospective of copper and non-copper based thin-film solar cells using facile spray pyrolysis technique. Solar Energy, 2022, 234, 81-102.	2.9	45

#	ARTICLE	IF	CITATIONS
166	Accelerated Synthesis of Li(Ni _{0.8}Co _{0.1}Mn) Tj ETQq0 0 0 rgBT /Ov Pyrolysis and Additives. SSRN Electronic Journal, 0 , , .	verlock 10 0.4	OTf 50 747 To O
167	Iron-chalcogenide-based electrode materials for electrochemical energy storage. Journal of Materials Chemistry A, 2022, 10, 7517-7556.	5.2	20
168	Studies on Structural, Infrared and Optical Properties of Cobalt Ferrite Thin Film Grown by Spray Pyrolysis Technique. Advanced Materials Research, 0, 1169, 43-48.	0.3	0
169	Dynamic salt capsulated synthesis of carbon materials in air. Matter, 2022, 5, 1603-1615.	5.0	5
170	Combinatorial Synthesis and Screening of a Ternary NiFeCoO _{<i>x</i>} Library for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 4017-4024.	2.5	5
171	Cytotoxic and molecular assessment with copper and iron nanocomposite, act as a soft eradicator against cancer cells. Journal of King Saud University - Science, 2022, 34, 101908.	1.6	3
172	Accelerated synthesis of Li(Ni0.8Co0.1Mn0.1)O2 cathode materials using flame-assisted spray pyrolysis and additives. Journal of Power Sources, 2022, 528, 231244.	4.0	8
173	Defected MoS ₂ Modified by Vanadium-Substituted Keggin-Type Polyoxometalates as Electrocatalysts for Triiodide Reduction in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2022, 61, 422-430.	1.9	3
174	Study of the Influence of Ga and In Doping on Organic Residuals in Solution-Processed IGZO Thin Films Deposited at Low-Temperature. Transactions on Electrical and Electronic Materials, 2022, 23, 489-498.	1.0	1
175	Direct ink writing of 2D material-based supercapacitors. 2D Materials, 2022, 9, 012001.	2.0	23
176	Structural properties of TiO ₂ -SnO ₂ thin films prepared by new pyrolysis solid-phase method. Journal of Physics: Conference Series, 2021, 2086, 012042.	0.3	0
177	Synthesis of Ni/Y2O3 Nanocomposite through USP and Lyophilisation for Possible Use as Coating. Materials, 2022, 15, 2856.	1.3	3
178	Optimization with Taguchi Approach to Prepare Pure TiO2 Thin Films for Future Gas Sensor Application. Journal of Electronic Materials, 2022, 51, 3671-3683.	1.0	13
179	Synthesis and characterization of porous-crystalline C/Fe3O4 microspheres by spray pyrolysis with steam oxidation as anode materials for Li-ion batteries. Advanced Powder Technology, 2022, 33, 103606.	2.0	8
180	Prospects of spray pyrolysis technique for gas sensor applications – A comprehensive review. Journal of Analytical and Applied Pyrolysis, 2022, 164, 105527.	2.6	27
181	Enhanced hydrogenation conversion efficiency of porous nickel particles with homogeneously distributed unimodal nanopores. Scripta Materialia, 2022, 216, 114761.	2.6	0
182	Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sensors and Actuators A: Physical, 2022, 341, 113578.	2.0	107
183	Dual metal ions and water molecular pre-intercalated Î'-MnO2 spherical microflowers for aqueous zinc ion batteries. Journal of Colloid and Interface Science, 2022, 623, 456-466.	5.0	36

#	Article	IF	CITATIONS
184	Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials, 2022, 32, .	7.8	25
185	Face-lifting the surface of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ cathode via Y(PO ₃) ₃ to form an in situ triple composite Li-ion conductor coating layer with the enhanced electrochemical performance. Nanotechnology, 2022, 33, 375701.	1.3	3
186	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	23.0	35
187	Nickel selenide nanorod arrays as an electrode material for lithium-ion batteries and supercapacitors. Journal of Energy Storage, 2022, 53, 105215.	3.9	9
188	A homogeneous copper bismuth sulfide photocathode prepared by spray pyrolysis deposition for efficient photoelectrochemical hydrogen generation. Materials Letters, 2022, 325, 132801.	1.3	0
189	Spray pyrolysis: Approaches for nanostructured metal oxide films in energy storage application. Journal of Energy Storage, 2022, 54, 105387.	3.9	11
190	The intercalation cathode materials of heterostructure MnS/MnO with dual ions defect embedded in N-doped carbon fibers for aqueous zinc ion batteries. Energy Storage Materials, 2022, 52, 180-188.	9.5	61
191	Tailored architectures of mesoporous carbon nanostructures: From synthesis to applications. Nano Today, 2022, 46, 101607.	6.2	16
192	Recent Advances in the Fabrication and Functionalization of Nanostructured Carbon Spheres for Energy Storage Applications. KONA Powder and Particle Journal, 2023, 40, 197-218.	0.9	15
193	Effect of transparent substrate on properties of CulnSe2 thin films prepared by chemical spray pyrolysis. Scientific Reports, 2022, 12, .	1.6	3
194	Mesoporous sieve structured ITO-based thin films for enhanced formaldehyde detection. Journal of Materials Science: Materials in Electronics, 2022, 33, 23447-23467.	1.1	5
195	Preparation and characterization of NiFe ₂ O ₄ thin films for supercapacitor applications. Phase Transitions, 2022, 95, 786-802.	0.6	3
196	Investigations on RuO2–In2O3 nanostructured porous composite thin films for benzene detection. Microporous and Mesoporous Materials, 2022, 345, 112247.	2.2	5
197	Threeâ€dimensional nanoporous activated carbon electrode derived from acacia wood for highâ€performance supercapacitor. Frontiers in Chemistry, 0, 10, .	1.8	6
198	Recent Progress in Surface Coatings for Sodium-Ion Battery Electrode Materials. Electrochemical Energy Reviews, 2022, 5, .	13.1	28
199	Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coordination Chemistry Reviews, 2023, 474, 214864.	9.5	90
200	Improved rate performance of nanoscale cross-linked polyacrylonitrile-surface-modified LiNi $<$ sub $>0.8sub>Co_{0.1}Mn<sub>0.1sub>O₂ lithium-ion cathode material with ion and electron transmission channels. Nanoscale, 2022, 14, 17331-17344.$	2.8	9
201	Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	29

#	Article	IF	CITATIONS
202	Photocatalytic Activity of ZnO/Ag Nanoparticles Fabricated by a Spray Pyrolysis Method with Different O2:N2 Carrier Gas Ratios and Ag Contents. Catalysts, 2022, 12, 1374.	1.6	7
203	Effects of the preheating temperature on flame-assisted spray pyrolysis of nickel-rich cathode materials. Proceedings of the Combustion Institute, 2022, , .	2.4	0
204	Recent progress in copper-based inorganic nanostructure photocatalysts: properties, synthesis and photocatalysis applications. Materials Today Sustainability, 2023, 21, 100276.	1.9	8
205	Brief Introduction of HTS. Nanostructure Science and Technology, 2023, , 1-11.	0.1	O
206	Design of XS ₂ (XÂ=ÂW or Mo)â€Decorated VS ₂ Hybrid Nanoâ€Architectures with Abundant Active Edge Sites for Highâ€Rate Asymmetric Supercapacitors and Hydrogen Evolution Reactions. Small, 2023, 19, .	5.2	11
207	Application of HTS in Material Preparation and New Devices. Nanostructure Science and Technology, 2023, , 145-192.	0.1	O
208	Development of conducting cellulose paper for electrochemical sensing of procalcitonin. Mikrochimica Acta, 2023, 190, .	2.5	6
209	Design of experiments optimization of fluorine-doped tin oxide films prepared by spray pyrolysis for photovoltaic applications. Ceramics International, 2023, 49, 13019-13030.	2.3	4
210	Photocatalytic NO <i></i> Oxidation of BiOCl Nanostructure-Based Films Grown Using Aerosol-Assisted Chemical Vapor Deposition. ACS Applied Nano Materials, 2023, 6, 738-749.	2.4	2
211	Reduced graphene oxide coated modified SnO2 forms excellent potassium storage properties. Ceramics International, 2023, 49, 15741-15750.	2.3	5
212	Theoretical validation of experimental properties of TiO ₂ prepared through organometallic precursors. Applied Organometallic Chemistry, 2023, 37, .	1.7	4
213	Preparation of porous carbon spheres and their application as anode materials for lithium-ion batteries: A review. Materials Today Nano, 2023, 22, 100321.	2.3	7
214	Photoelectrocatalytic oxygen evolution reaction on visible-light irradiated W-doped alkali niobate-based perovskite. Applied Catalysis A: General, 2023, 659, 119171.	2.2	0
215	Highly selective and sensitive detection of carcinogenic benzene using a raisin bread-structured film comprising catalytic Pd-Co3O4 and gas-sensing SnO2 hollow spheres. Sensors and Actuators B: Chemical, 2023, 386, 133750.	4.0	3
216	Research Progress on Enhancing the Performance of High Nickel Single Crystal Cathode Materials for Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2023, 62, 2410-2427.	1.8	9
217	An comprehensive review on the spray pyrolysis technique: Historical context, operational factors, classifications, and product applications. Journal of Analytical and Applied Pyrolysis, 2023, 170, 105915.	2.6	17
218	A Fresh One-Step Spray Pyrolysis Approach to Prepare Nickel-Rich Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & D., .	4.0	0
219	Recent trends in graphene assisted vanadium based nanocomposites for supercapacitor applications. Journal of Energy Storage, 2023, 63, 107006.	3.9	3

#	Article	IF	CITATIONS
220	A practical guide to pulsed laser deposition. Chemical Society Reviews, 2023, 52, 2294-2321.	18.7	20
221	Synthesis of hollow spherical WO3 powder by spray solution combustion and its photocatalytic properties. Ceramics International, 2023, 49, 21175-21184.	2.3	3
222	Synthesis of porous C/Fe3O4 microspheres by spray pyrolysis with NaNO3 additive for lithium-ion battery applications. Journal of Solid State Electrochemistry, 2023, 27, 2127-2137.	1.2	2
223	Anchoring Pt Particles onto Mesoporousized ZnO Holey Cubes for Triethylamine Detection with Multifaceted Superiorities. Small, 2023, 19 , .	5.2	3
229	Potential of MXenes as a novel material for spintronic devices: a review. Physical Chemistry Chemical Physics, 2023, 25, 18584-18608.	1.3	9
231	Spray Pyrolysis: Thin Film Coating. , 2023, , 347-386.		1
243	Nanocomposite electrodes as a new opportunity to transform the performance of solid oxide cells. Journal of Materials Chemistry A, 2023, 11 , 25803-25824.	5.2	3
247	An efficient Ni ₃ S ₂ –Ni electrode constructed by a one-step powder metallurgy approach for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2023, 8, 29-35.	2.5	1
248	The Conduction Mechanism in Micron-Thick ZnO Layers Grown on Si Substrates by Spray Pyrolysis. , 2023, , .		1
258	Challenges in the synthesis of ceramic nanoparticles and its applications in the energy sector. , 2024, , $117 ext{-}152 ext{.}$		O
259	Dynamic of microemulsion nanoparticle precipitation: Sensitivity analysis of particle nucleation and growth order. AIP Conference Proceedings, 2024, , .	0.3	0