Diverse compounds from pleuromutilin lead to a thiore ferroptosis

Nature Chemistry 11, 521-532

DOI: 10.1038/s41557-019-0261-6

Citation Report

#	Article	IF	CITATIONS
1	Recent Progress in Ferroptosis Inducers for Cancer Therapy. Advanced Materials, 2019, 31, e1904197.	21.0	938
2	Chemical Diversification of Pleuromutilin. Synfacts, 2019, 15, 0938.	0.0	O
3	Diverse engineering. Nature Chemistry, 2019, 11, 499-500.	13.6	3
4	Copper-catalyzed cascade click/nucleophilic substitution reaction to access fully substituted triazolyl-organosulfurs. Organic and Biomolecular Chemistry, 2019, 17, 9933-9941.	2.8	13
5	Recent achievements and current trajectories of diversity-oriented synthesis. Current Opinion in Chemical Biology, 2020, 56, 1-9.	6.1	67
6	Preventing Morphine-Seeking Behavior through the Re-Engineering of Vincamine's Biological Activity. Journal of Medicinal Chemistry, 2020, 63, 5119-5138.	6.4	30
7	Implementation of permeation rules leads to a Fabl inhibitor with activity against Gram-negative pathogens. Nature Microbiology, 2020, 5, 67-75.	13.3	87
8	Oxidative Damage and Antioxidant Defense in Ferroptosis. Frontiers in Cell and Developmental Biology, 2020, 8, 586578.	3.7	265
9	Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers. Biomedicine and Pharmacotherapy, 2020, 130, 110710.	5.6	48
10	Abnormal Ferroptosis in Myelodysplastic Syndrome. Frontiers in Oncology, 2020, 10, 1656.	2.8	18
11	Re-engineering natural products to engage new biological targets. Natural Product Reports, 2020, 37, 1395-1403.	10.3	38
12	Novel insights into ferroptosis: Implications for age-related diseases. Theranostics, 2020, 10, 11976-11997.	10.0	59
13	The Metabolic Underpinnings of Ferroptosis. Cell Metabolism, 2020, 32, 920-937.	16.2	590
14	Reactivity-Based Probe of the Iron(II)-Dependent Interactome Identifies New Cellular Modulators of Ferroptosis. Journal of the American Chemical Society, 2020, 142, 19085-19093.	13.7	32
15	Ferroptosis: machinery and regulation. Autophagy, 2021, 17, 2054-2081.	9.1	765
16	Thioredoxin and Glutaredoxin Systems as Potential Targets for the Development of New Treatments in Friedreich's Ataxia. Antioxidants, 2020, 9, 1257.	5.1	29
17	Electron-Accepting Micelles Deplete Reduced Nicotinamide Adenine Dinucleotide Phosphate and Impair Two Antioxidant Cascades for Ferroptosis-Induced Tumor Eradication. ACS Nano, 2020, 14, 14715-14730.	14.6	118
18	Pseudo-natural products and natural product-inspired methods in chemical biology and drug discovery. Current Opinion in Chemical Biology, 2020, 56, 111-118.	6.1	45

#	Article	IF	Citations
19	Induction of programmed necrosis: A novel anti-cancer strategy for natural compounds. , 2020, 214, 107593.		37
20	Yohimbine as a Starting Point to Access Diverse Natural Product-Like Agents with Re-programmed Activities against Cancer-Relevant GPCR Targets. Bioorganic and Medicinal Chemistry, 2020, 28, 115546.	3.0	13
21	Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduction and Targeted Therapy, 2020, 5, 72.	17.1	91
22	The Application of Ferroptosis in Diseases. Pharmacological Research, 2020, 159, 104919.	7.1	236
23	Induction of programmed necrosis by phytochemicals in colorectal cancer., 2020, , 117-133.		0
24	Remarkable Potential of Zerumbone to Generate a Library with Six Natural Product-like Skeletons by Natural Material-Related Diversity-Oriented Synthesis. Journal of Organic Chemistry, 2020, 85, 8371-8386.	3.2	5
25	Inhibitory Effect and Mechanism of Action of Quercetin and Quercetin Diels-Alder anti-Dimer on Erastin-Induced Ferroptosis in Bone Marrow-Derived Mesenchymal Stem Cells. Antioxidants, 2020, 9, 205.	5.1	51
26	Re-Engineering of Yohimbine's Biological Activity through Ring Distortion: Identification and Structure–Activity Relationships of a New Class of Antiplasmodial Agents. ACS Infectious Diseases, 2020, 6, 159-167.	3.8	20
27	Investigating Nonapoptotic Cell Death Using Chemical Biology Approaches. Cell Chemical Biology, 2020, 27, 376-386.	5.2	17
28	Selenium: Tracing Another Essential Element of Ferroptotic Cell Death. Cell Chemical Biology, 2020, 27, 409-419.	5.2	66
29	Achieving Life through Death: Redox Biology of Lipid Peroxidation in Ferroptosis. Cell Chemical Biology, 2020, 27, 387-408.	5.2	144
30	Oxidants, Antioxidants and Thiol Redox Switches in the Control of Regulated Cell Death Pathways. Antioxidants, 2020, 9, 309.	5.1	68
31	Late-Stage Diversification of Natural Products. ACS Central Science, 2020, 6, 622-635.	11.3	203
32	Synthetic biology based construction of biological activity-related library of fungal decalin-containing diterpenoid pyrones. Nature Communications, 2020, 11, 1830.	12.8	64
33	Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Medicinal Research Reviews, 2021, 41, 342-394.	10.5	107
34	Ferroptosis: molecular mechanisms and health implications. Cell Research, 2021, 31, 107-125.	12.0	1,406
35	Chemical synthesis of quillaic acid, the aglycone of QS-21. Organic Chemistry Frontiers, 2021, 8, 748-753.	4.5	4
36	Natural Molecules Targeting Thioredoxin System and Their Therapeutic Potential. Antioxidants and Redox Signaling, 2021, 34, 1083-1107.	5.4	49

#	Article	IF	Citations
37	Small Molecule Regulators of Ferroptosis. Advances in Experimental Medicine and Biology, 2021, 1301, 81-121.	1.6	3
38	Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. Nanoscale, 2021, 13, 2266-2285.	5 . 6	88
39	Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers, 2021, 13, 304.	3.7	41
40	CtD strategy to construct stereochemically complex and structurally diverse compounds from griseofulvin. Chemical Communications, 2021, 57, 10755-10758.	4.1	4
41	Ferroptosis-Related Flavoproteins: Their Function and Stability. International Journal of Molecular Sciences, 2021, 22, 430.	4.1	11
42	Dysregulation of ferroptosis may involve in the development of nonâ€smallâ€cell lung cancer in Xuanwei area. Journal of Cellular and Molecular Medicine, 2021, 25, 2872-2884.	3.6	22
43	Tannic Acid as a Natural Ferroptosis Inhibitor: Mechanisms and Beneficial Role of 3'â€ <i>O</i> àâ€Galloylation. ChemistrySelect, 2021, 6, 1562-1569.	1.5	3
44	Ferroptosis: mechanisms and links with diseases. Signal Transduction and Targeted Therapy, 2021, 6, 49.	17.1	508
45	Chemoproteomic-enabled phenotypic screening. Cell Chemical Biology, 2021, 28, 371-393.	5.2	20
46	Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. ELife, 2021, 10, .	6.0	58
47	Synthetic Biology Based Construction of Fungal Diterpenoid Pyrone Library. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 322-332.	0.1	0
48	Ferroptosis: Biochemistry and Biology in Cancers. Frontiers in Oncology, 2021, 11, 579286.	2.8	39
49	Cprpâ€"An Unusual, Repetitive Protein Which Impacts Pleuromutilin Biosynthesis in the Basidiomycete Clitopilus passeckerianus. Frontiers in Fungal Biology, 2021, 2, .	2.0	1
50	Comprehensive Structure–Activity Profiling of Micheliolide and its Targeted Proteome in Leukemia Cells via Probe-Guided Late-Stage C–H Functionalization. ACS Central Science, 2021, 7, 841-857.	11.3	18
51	Evolutionary and functional analyses demonstrate conserved ferroptosis protection by Arabidopsis GPXs in mammalian cells. FASEB Journal, 2021, 35, e21550.	0.5	5
52	Carbene-Catalyzed Atroposelective Annulation and Desymmetrization of Urazoles. Organic Letters, 2021, 23, 3991-3996.	4.6	50
53	Limonin as a Starting Point for the Construction of Compounds with High Scaffold Diversity. Angewandte Chemie, 2021, 133, 16255-16264.	2.0	4
54	Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle. Acta Pharmaceutica Sinica B, 2022, 12, 107-134.	12.0	70

#	Article	IF	Citations
55	The role of regulated necrosis in endocrine diseases. Nature Reviews Endocrinology, 2021, 17, 497-510.	9.6	35
56	Limonin as a Starting Point for the Construction of Compounds with High Scaffold Diversity. Angewandte Chemie - International Edition, 2021, 60, 16119-16128.	13.8	17
57	Mechanisms of Modulation of Ferroptosis and Its Role in Central Nervous System Diseases. Frontiers in Pharmacology, 2021, 12, 657033.	3.5	37
58	Regulation of ferroptosis by bioactive phytochemicals: Implications for medical nutritional therapy. Pharmacological Research, 2021, 168, 105580.	7.1	41
59	Ring Distortion of Vincamine Leads to the Identification of Re-Engineered Antiplasmodial Agents. ACS Omega, 2021, 6, 20455-20470.	3.5	4
60	Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury. Nature Communications, 2021, 12, 4402.	12.8	116
61	Design, synthesis, in vitro and in vivo evaluation against MRSA and molecular docking studies of novel pleuromutilin derivatives bearing 1, 3, 4-oxadiazole linker. Bioorganic Chemistry, 2021, 112, 104956.	4.1	15
62	Macrodiolide Diversification Reveals Broad Immunosuppressive Activity That Impairs the cGAS‧TING Pathway. Angewandte Chemie, 2021, 133, 18882-18889.	2.0	0
64	Long-Term Dynamic Imaging of Cellular Processes Using an AIE Lipid Order Probe in the Dual-Color Mode. Analytical Chemistry, 2021, 93, 10272-10281.	6.5	21
65	Emerging mechanisms and targeted therapy of ferroptosis in cancer. Molecular Therapy, 2021, 29, 2185-2208.	8.2	134
66	Enantioselective synthesis of pyrro[3,4-c]quinoline pseudo-natural products. Tetrahedron Letters, 2021, 76, 153228.	1.4	6
67	Macrodiolide Diversification Reveals Broad Immunosuppressive Activity That Impairs the cGASâ€STING Pathway. Angewandte Chemie - International Edition, 2021, 60, 18734-18741.	13.8	5
68	Ferroptosis-Inhibitory Difference between Chebulagic Acid and Chebulinic Acid Indicates Beneficial Role of HHDP. Molecules, 2021, 26, 4300.	3.8	6
69	Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy. Frontiers in Molecular Biosciences, 2021, 8, 706650.	3.5	32
70	Combination of Pseudoâ€Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudoâ€Sesquiterpenoid Alkaloids. Angewandte Chemie, 2021, 133, 21554-21565.	2.0	8
71	Combination of Pseudoâ€Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudoâ€Sesquiterpenoid Alkaloids. Angewandte Chemie - International Edition, 2021, 60, 21384-21395.	13.8	25
72	Regulated lytic cell death in breast cancer. Cell Biology International, 2022, 46, 12-33.	3.0	9
73	Contemporary Techniques for Target Deconvolution and Mode of Action Elucidation. RSC Drug Discovery Series, 2020, , 83-103.	0.3	2

#	ARTICLE	IF	Citations
75	Pleuromutilin Inhibits Proliferation and Migration of A2780 and Caov-3 Ovarian Carcinoma Cells and Growth of Mouse A2780 Tumor Xenografts by Down-Regulation of pFAK2. Medical Science Monitor, 2020, 26, e920407.	1.1	2
76	Targeting NRF2 to suppress ferroptosis in brain injury. Histology and Histopathology, 2021, 36, 383-397.	0.7	6
77	Privileged Biorenewable Secologaninâ€Based Diversityâ€Oriented Synthesis for Pseudoâ€Natural Alkaloids: Uncovering Novel Neuroprotective and Antimalarial Frameworks. ChemSusChem, 2021, 14, 5320-5327.	6.8	3
78	Emerging Roles of Energy Metabolism in Ferroptosis Regulation of Tumor Cells. Advanced Science, 2021, 8, e2100997.	11.2	105
79	Concise syntheses and anti-inflammatory effects of isocorniculatolide B and corniculatolide B and C. Bioorganic Chemistry, 2021, 116, 105398.	4.1	2
80	Efficient Synthesis of Marine Alkaloid Ageladine A and its Structural Modification for Exploring New Biological Activity. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 51-59.	0.1	2
81	Radiotherapy-Induced Digestive Injury: Diagnosis, Treatment and Mechanisms. Frontiers in Oncology, 2021, 11, 757973.	2.8	17
82	The mechanisms and therapeutic targets of ferroptosis in cancer. Expert Opinion on Therapeutic Targets, 2021, 25, 965-986.	3.4	18
83	Pharmacological Targeting of Ferroptosis in Cancer Treatment. Current Cancer Drug Targets, 2022, 22, 108-125.	1.6	7
84	Emerging Mechanisms and Disease Implications of Ferroptosis: Potential Applications of Natural Products. Frontiers in Cell and Developmental Biology, 2021, 9, 774957.	3.7	28
85	The multifaceted role of ferroptosis in liver disease. Cell Death and Differentiation, 2022, 29, 467-480.	11.2	214
86	A Ferroptosis-Related Gene Prognostic Index to Predict Temozolomide Sensitivity and Immune Checkpoint Inhibitor Response for Glioma. Frontiers in Cell and Developmental Biology, 2021, 9, 812422.	3.7	5
87	Nanodrug delivery systems for ferroptosis-based cancer therapy. Journal of Controlled Release, 2022, 344, 289-301.	9.9	25
88	Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity. Life Science Alliance, 2022, 5, e202101157.	2.8	26
89	Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Molecular Cell, 2022, 82, 728-740.	9.7	92
90	High expression of the ferroptosisâ€associated MGST1 gene in relation to poor outcome and maladjusted immune cell infiltration in uterine corpus endometrial carcinoma. Journal of Clinical Laboratory Analysis, 2022, 36, e24317.	2.1	11
91	Recent Advances in Divergent Synthetic Strategies for Indole-Based Natural Product Libraries. Molecules, 2022, 27, 2171.	3.8	5
92	Inhibiting Erastinâ€Induced Ferroptotic Cell Death by Purineâ€Based Chelators. ChemBioChem, 2022, 23, .	2.6	1

#	Article	IF	CITATIONS
93	Potential Role of APEX1 During Ferroptosis. Frontiers in Oncology, 2022, 12, 798304.	2.8	5
94	Ferroptosis in hematological malignancies and its potential network with abnormal tumor metabolism. Biomedicine and Pharmacotherapy, 2022, 148, 112747.	5.6	23
95	Plasticity of Extrachromosomal and Intrachromosomal < i>BRAF < /i>Amplifications in Overcoming Targeted Therapy Dosage Challenges. Cancer Discovery, 2022, 12, 1046-1069.	9.4	27
98	Ferroptosis and cancer immunotherapy. Current Molecular Medicine, 2022, 22, .	1.3	4
99	Targeting cellular energy metabolism- mediated ferroptosis by small molecule compounds for colorectal cancer therapy. Journal of Drug Targeting, 2022, 30, 819-832.	4.4	3
100	Polyamine-based thiols in pathogens. , 2022, , 555-584.		0
101	Thioredoxin Signaling Pathways in Cancer. Antioxidants and Redox Signaling, 0, , .	5.4	6
102	Relevance of Ferroptosis to Cardiotoxicity Caused by Anthracyclines: Mechanisms to Target Treatments. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	9
103	Target-Agnostic P-Glycoprotein Assessment Yields Strategies to Evade Efflux, Leading to a BRAF Inhibitor with Intracranial Efficacy. Journal of the American Chemical Society, 2022, 144, 12367-12380.	13.7	6
104	Tricyclic Aza-Andrographolide Derivatives from Late-Stage Hydroamination and Their Anti-human Coronavirus (Anti-HCoV) Activity. ACS Omega, 2022, 7, 24824-24837.	3.5	1
105	Ferroptosis: A Specific Vulnerability of RAS-Driven Cancers?. Frontiers in Oncology, 0, 12, .	2.8	7
106	Diabetic Ferroptosis and Pancreatic Cancer: Foe or Friend?. Antioxidants and Redox Signaling, 2022, 37, 1206-1221.	5.4	2
107	Quantitative reactive cysteinome profiling reveals a functional link between ferroptosis and proteasome-mediated degradation. Cell Death and Differentiation, 2023, 30, 125-136.	11.2	6
108	Discovery of a novel Pleuromutilin derivative as anti-IPF lead compound via high-throughput assay. European Journal of Medicinal Chemistry, 2022, 241, 114643.	5.5	6
109	Recent ring distortion reactions for diversifying complex natural products. Natural Product Reports, 2022, 39, 1970-1992.	10.3	9
110	Recent advances in small-molecule fluorescent probes for studying ferroptosis. Chemical Society Reviews, 2022, 51, 7752-7778.	38.1	47
111	Ferroptosis: Shedding Light on Mechanisms and Therapeutic Opportunities in Liver Diseases. Cells, 2022, 11, 3301.	4.1	9
112	Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy. Cell Metabolism, 2023, 35, 84-100.e8.	16.2	90

#	Article	IF	CITATIONS
113	Ferroptosis-related small-molecule compounds in cancer therapy: Strategies and applications. European Journal of Medicinal Chemistry, 2022, 244, 114861.	5.5	17
114	Targeting lipid metabolism for ferroptotic cancer therapy. Apoptosis: an International Journal on Programmed Cell Death, 2023, 28, 81-107.	4.9	8
115	Non-classical ferroptosis inhibition by a small molecule targeting PHB2. Nature Communications, 2022, 13 , .	12.8	14
116	Ferroptosis: From regulation of lipid peroxidation to the treatment of diseases. Cell Biology and Toxicology, 2023, 39, 827-851.	5.3	20
117	Discovery of Novel Polycyclic Phloroglucinols via an Improved One-Pot Method. ACS Omega, 2022, 7, 47174-47182.	3.5	0
118	SLC12A5 promotes hepatocellular carcinoma growth and ferroptosis resistance by inducing ER stress and cystine transport changes. Cancer Medicine, 2023, 12, 8526-8541.	2.8	3
119	Ferroptosisâ€modulating small molecules for targeting drugâ€resistant cancer: Challenges and opportunities in manipulating redox signaling. Medicinal Research Reviews, 2023, 43, 614-682.	10.5	20
120	Targeting critical pathways in ferroptosis and enhancing antitumor therapy of Platinum drugs for colorectal cancer. Science Progress, 2023, 106, 003685042211471.	1.9	2
121	Macrolide, lincosamide, glycopeptide, and other antibacterial antibiotics., 2023, , 157-213.		1
122	Ferroptosis: Environmental causes, biological redox signaling responses, cancer and other health consequences. Coordination Chemistry Reviews, 2023, 480, 215024.	18.8	8
124	Development of axially chiral urazole scaffolds for antiplant virus applications against <i>potato virus Y</i> . Pest Management Science, 2023, 79, 2527-2538.	3.4	2
125	Role of ferroptosis in pregnancy related diseases and its therapeutic potential. Frontiers in Cell and Developmental Biology, $0,11,1$	3.7	3
126	Nature-Inspired Bioactive Compounds: A Promising Approach for Ferroptosis-Linked Human Diseases?. Molecules, 2023, 28, 2636.	3.8	7
127	Ferroptosis in acute leukemia. Chinese Medical Journal, 2023, 136, 886-898.	2.3	1
128	A Classic Photochemical Approach Inducing an Unexpected Rearrangement: Exploring the Photoreactivity of Pentacyclic Triterpenic Acids. Journal of Natural Products, 0, , .	3.0	0
129	Thioredoxin facilitates hepatocellular carcinoma stemness and metastasis by increasing <scp>BACH1</scp> stability to activate the <scp>AKT</scp> / <scp>mTOR</scp> pathway. FASEB Journal, 2023, 37, .	0.5	0
130	Preparation of Stereoâ€Divergent Compounds from the Natural Product Drupacine Based on Complexityâ€toâ€Diversity Strategy. Chemistry and Biodiversity, 2023, 20, .	2.1	0
131	Targeting Ferroptosis in Cancer by Natural Products: An Updated Review. The American Journal of Chinese Medicine, 2023, 51, 547-574.	3.8	2

#	Article	IF	CITATIONS
132	Diversity-oriented synthesis of diterpenoid alkaloids yields a potent anti-inflammatory agent. Phytomedicine, 2023, 117, 154907.	5.3	0
133	Ferroptosis-mediated immune responses in cancer. Frontiers in Immunology, 0, 14, .	4.8	7
134	Exploring Diversity through Dimerization in Natural Products by a Rational Tandem Mass-Based Molecular Network Strategy. Organic Letters, 2023, 25, 4016-4021.	4.6	1
135	Complexityâ€toâ€Diversity and Pseudoâ€Natural Product Strategies as Powerful Platforms for Deciphering Nextâ€Generation Therapeutics. ChemMedChem, 2023, 18, .	3.2	3
136	Design, Synthesis, and Biological Activity of Thioguanine-Modified Pleuromutilin Derivatives. ACS Medicinal Chemistry Letters, 2023, 14, 737-745.	2.8	1
137	vPIF-1 is an insulin-like antiferroptotic viral peptide. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	4
138	C–H modification of natural products: a minimalist enabling tactic for drug discovery, API processing and bioconjugation. Chemical Communications, 0, , .	4.1	0
139	Ferroptosis Nanomedicine: Clinical Challenges and Opportunities for Modulating Tumor Metabolic and Immunological Landscape. ACS Nano, 2023, 17, 15328-15353.	14.6	10
140	Site selective gold(<scp>i</scp>)-catalysed benzylic Câ€"H amination <i>via</i> an intermolecular hydride transfer to triazolinediones. Chemical Science, 2023, 14, 9787-9794.	7.4	2
141	Artificial Intelligence and Discovery of Microbial Natural Products. , 2023, , 37-78.		0
142	A Bischler-Napieralski and homo-Mannich sequence enables diversified syntheses of sarpagine alkaloids and analogues. Nature Communications, 2023, 14, .	12.8	0
143	Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets. Science Advances, 2023, 9, .	10.3	1
144	Strategic application of CuAAC click chemistry in the modification of natural products for anticancer activity. European Journal of Medicinal Chemistry Reports, 2023, 9, 100113.	1.4	2
145	A Multifunctional Covalent Organic Framework Nanozyme for Promoting Ferroptotic Radiotherapy against Esophageal Cancer. ACS Nano, 2023, 17, 20445-20461.	14.6	6
147	The role of ferroptosis in virus infections. Frontiers in Microbiology, 0, 14, .	3.5	0
148	Expanding Diterpene Complexity and Diversity via Photoinduced Ring Distortions. ChemPlusChem, 0, , .	2.8	0
149	Discovery of KRB-456, a KRAS G12D switch-I/II allosteric pocket binder that inhibits the growth of pancreatic cancer patient-derived tumors. Cancer Research Communications, 0, , .	1.7	1
150	Compensative Resistance to Erastin-Induced Ferroptosis in GPX4 Knock-Out Mutants in HCT116 Cell Lines. Pharmaceuticals, 2023, 16, 1710.	3.8	0

#	Article	IF	CITATIONS
151	Resveratrol, a novel inhibitor of FABP5, inhibits cervical cancer metastasis by suppressing fatty acid transport into nucleus and downstream pathways. British Journal of Pharmacology, 0, , .	5.4	O
152	Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment. Journal of Experimental and Clinical Cancer Research, 2024, 43, .	8.6	0
153	Sickle Cell Disease Update: New Treatments and Challenging Nutritional Interventions. Nutrients, 2024, 16, 258.	4.1	0
154	Hub genes, a diagnostic model, and immune infiltration based on ferroptosis-linked genes in schizophrenia. IBRO Neuroscience Reports, 2024, 16, 317-328.	1.6	0
155	The small molecule raptinal can simultaneously induce apoptosis and inhibit PANX1 activity. Cell Death and Disease, 2024, 15 , .	6.3	0
156	Sulfasalazine promotes ferroptosis through AKT-ERK1/2 and P53-SLC7A11 in rheumatoid arthritis. Inflammopharmacology, 2024, 32, 1277-1294.	3.9	0
157	Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0
158	Emerging mechanisms of ferroptosis and its implications in lung cancer. Chinese Medical Journal, 2024, 137, 818-829.	2.3	0
159	High Intensity Focused Ultrasoundâ€Driven Nanomotor for Effective Ferroptosisâ€lmmunotherapy of TNBC. Advanced Science, 2024, 11, .	11,2	0