Long-term neurocognitive benefits of FLASH radiothers oxygen species

Proceedings of the National Academy of Sciences of the Unite 116, 10943-10951

DOI: 10.1073/pnas.1901777116

Citation Report

#	Article	IF	CITATIONS
1	A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Physics in Medicine and Biology, 2019, 64, 185005.	3.0	117
2	Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiotherapy and Oncology, 2019, 139, 46-50.	0.6	144
3	Polo-like kinase 1 inhibitor BI6727 sensitizes 9L gliosarcoma cells to ionizing irradiation. Biomedical Physics and Engineering Express, 2019, 5, 067003.	1.2	1
4	Heat transfer characteristics in channel with square rib at different Mach numbers. Journal of Physics: Conference Series, 2019, 1303, 012050.	0.4	0
5	BIGART 2019 – adapting to the future. Acta Oncológica, 2019, 58, 1323-1327.	1.8	1
7	Response to letter regarding "An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responsesâ€: Radiotherapy and Oncology, 2019, 139, 64-65.	0.6	12
8	FLASH radiotherapy International Workshop. Radiotherapy and Oncology, 2019, 139, 1-3.	0.6	34
9	Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiotherapy and Oncology, 2019, 139, 34-39.	0.6	92
10	The Importance and Clinical Implications of FLASH Ultra-High Dose-Rate Studies for Proton and Heavy Ion Radiotherapy. Radiation Research, 2019, 193, 1.	1.5	43
11	Ultra high dose rate (35 Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome. Scientific Reports, 2019, 9, 17180.	3.3	66
12	FLASH radiotherapy: ultra-high dose rates to spare healthy tissue. International Journal of Radiation Biology, 2020, 96, 419-423.	1.8	42
13	The FLASH effect depends on oxygen concentration. British Journal of Radiology, 2020, 93, 20190702.	2.2	133
14	FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-induced Senescence. Clinical Cancer Research, 2020, 26, 1497-1506.	7.0	148
15	Bringing FLASH to the Clinic: Treatment Planning Considerations for Ultrahigh Dose-Rate Proton Beams. International Journal of Radiation Oncology Biology Physics, 2020, 106, 621-629.	0.8	87
16	Proton beam therapy: perspectives on the National Health Service England clinical service and research programme. British Journal of Radiology, 2020, 93, 20190873.	2.2	25
17	Heavy charged particle beam therapy and related new radiotherapy technologies: The clinical potential, physics and technical developments required to deliver benefit for patients with cancer. British Journal of Radiology, 2020, 93, 20200247.	2.2	16
18	Oxygen depletion in FLASH ultraâ€highâ€doseâ€rate radiotherapy: A molecular dynamics simulation. Medical Physics, 2020, 47, 6551-6561.	3.0	38
19	Proposal of a Chemical Mechanism for Mini-Beam and Micro-Beam Efficacy. Frontiers in Physics, 2020, 8, .	2.1	5

ARTICLE IF CITATIONS # The European Joint Research Project UHDpulse – Metrology for advanced radiotherapy using particle 20 0.7 71 beams with ultra-high pulse dose rates. Physica Medica, 2020, 80, 134-150. Can a comparison of clinical and deep space irradiation scenarios shed light on the radiation response of the brain?. British Journal of Radiology, 2020, 93, 20200245. 2.2 Stereotactic Radiosurgery and Stereotactic Body Radiotherapy in the Management of Oligometastatic 22 1.4 30 Disease. Clinical Oncology, 2020, 32, 713-727. History and current perspectives on the biological effects of high-dose spatial fractionation and high dose-rate approaches: GRID, Microbeam & amp; FLASH radiotherapy. British Journal of Radiology, 2020, 24 93,20200217 Sex-Specific Cognitive Deficits Following Space Radiation Exposure. Frontiers in Behavioral 24 2.0 29 Neuroscience, 2020, 14, 535885. In Regard to van Marlen etÂal. International Journal of Radiation Oncology Biology Physics, 2020, 107, 1012-1013. 0.8 FLASH-Radiotherapy: A Potential Innovation Driver in Radiation Therapy. Journal of the Korean Physical Society, 2020, 77, 357-362. 26 0.7 1 FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. International 4.1 Journal of Molecular Sciences, 2020, 21, 6492. Transforming an IORT Linac Into a FLASH Research Machine: Procedure and Dosimetric 28 2.1 25 Characterization. Frontiers in Physics, 2020, 8, . Extracellular Vesicle–Derived miR-124 Resolves Radiation-Induced Brain Injury. Cancer Research, 2020, 80, 4266-4277. Whole brain proton irradiation in adult Sprague Dawley rats produces dose dependent and 30 3.3 5 non-dependent cognitive, behavioral, and dopaminergic effects. Scientific Reports, 2020, 10, 21584. FLASH Radiotherapy With Electrons: Issues Related to the Production, Monitoring, and Dosimetric 2.1 Characterization of the Beam. Frontiers in Physics, 2020, 8, . Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of 32 3.3 119 ovarian cancer in mice. Scientific Reports, 2020, 10, 21600. Novel Radiation Therapy Paradigms and Immunomodulation: Heresies and Hope. Seminars in Radiation Oncology, 2020, 30, 194-200. 2.2 Stem-Cell Therapy as a Potential Strategy for Radiation-Induced Brain Injury. Stem Cell Reviews and 34 3.8 11 Reports, 2020, 16, 639-649. Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies. Medical Physics, 2020, 47, 4348-4355. A physicochemical model of reaction kinetics supports peroxyl radical recombination as the main 36 0.6 103 determinant of the FLASH effect. Radiotherapy and Oncology, 2020, 153, 303-310. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams. Scientific Reports, 2020, 10, 9089.

	Сітатіо	n Report	
#	Article	IF	Citations
38	X-ray induced acoustic computed tomography. Photoacoustics, 2020, 19, 100177.	7.8	33
39	A Quantitative Analysis of the Role of Oxygen Tension in FLASH Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 107, 539-547.	0.8	84
40	An ionizing radiation acoustic imaging (iRAI) technique for realâ€ŧime dosimetric measurements for FLASH radiotherapy. Medical Physics, 2020, 47, 5090-5101.	3.0	19
41	Neuroprotection of Radiosensitive Juvenile Mice by Ultra-High Dose Rate FLASH Irradiation. Cancers, 2020, 12, 1671.	3.7	74
42	Animal Models in Microbeam Radiation Therapy: A Scoping Review. Cancers, 2020, 12, 527.	3.7	24
43	Impact of Target Oxygenation on the Chemical Track Evolution of Ion and Electron Radiation. International Journal of Molecular Sciences, 2020, 21, 424.	4.1	44
44	Radiationâ€induced tissue damage and response. Journal of Pathology, 2020, 250, 647-655.	4.5	63
45	Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool's Gold?. Frontiers in Oncology, 2019, 9, 1563.	2.8	302
46	Design, Implementation, and inÂVivo Validation of a Novel Proton FLASH Radiation Therapy System. International Journal of Radiation Oncology Biology Physics, 2020, 106, 440-448.	0.8	274
47	FLASH and minibeams in radiation therapy: the effect of microstructures on time and space and their potential application to protontherapy. British Journal of Radiology, 2020, 93, 20190807.	2.2	50
48	Minimum dose rate estimation for pulsed FLASH radiotherapy: A dimensional analysis. Medical Physics, 2020, 47, 3243-3249.	3.0	25
49	Taking Care with FLASH Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 107, 239-242.	0.8	25
50	Understanding High-Dose, Ultra-High Dose Rate, and Spatially Fractionated Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 107, 766-778.	0.8	70
51	Mechanisms underlying FLASH radiotherapy, a novel way to enlarge the differential responses to ionizing radiation between normal and tumor tissues. Radiation Medicine and Protection, 2020, 1, 35-40.	0.8	45
52	Ultra-high-dose-rate FLASH and Conventional-Dose-Rate Irradiation Differentially Affect Human Acute Lymphoblastic Leukemia and Normal Hematopoiesis. International Journal of Radiation Oncology Biology Physics, 2021, 109, 819-829.	0.8	66
53	Hypofractionated FLASH-RT as an Effective Treatment against Glioblastoma that Reduces Neurocognitive Side Effects in Mice. Clinical Cancer Research, 2021, 27, 775-784.	7.0	144
55	Current delivery limitations of proton PBS for FLASH. Radiotherapy and Oncology, 2021, 155, 212-218.	0.6	35
56	Cell Killing and Chromosome Aberrations by Ionizing Radiations: Brother, Can You Paradigm?. International Journal of Radiation Oncology Biology Physics, 2021, 109, 73-75.	0.8	2

#	Article	IF	CITATIONS
57	Glia-Selective Deletion of Complement <i>C1q</i> Prevents Radiation-Induced Cognitive Deficits and Neuroinflammation. Cancer Research, 2021, 81, 1732-1744.	0.9	28
58	Effects of Ultra-high doserate FLASH Irradiation on the Tumor Microenvironment in Lewis Lung Carcinoma: Role of Myosin Light Chain. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1440-1453.	0.8	42
59	South East European International Institute for Sustainable Technologies (SEEIIST). Frontiers in Physics, 2021, 8, .	2.1	6
60	Development of Ultra-High Dose-Rate (FLASH) Particle Therapy. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 252-262.	3.7	17
61	ROAD: ROtational direct Aperture optimization with a Decoupled ring-collimator for FLASH radiotherapy. Physics in Medicine and Biology, 2021, 66, 035020.	3.0	8
62	Proton FLASH: passive scattering or pencil beam scanning?. Physics in Medicine and Biology, 2021, 66, 03NT01.	3.0	12
63	Translational Research in FLASH Radiotherapy—From Radiobiological Mechanisms to In Vivo Results. Biomedicines, 2021, 9, 181.	3.2	25
64	In Reply to PeñagarÃcano. International Journal of Radiation Oncology Biology Physics, 2021, 109, 641.	0.8	Ο
65	Determining the parameter space for effective oxygen depletion for FLASH radiation therapy. Physics in Medicine and Biology, 2021, 66, 055020.	3.0	24
66	FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice. Cancers, 2021, 13, 1012.	3.7	109
67	Ultra-High Dose Rate Transmission Beam Proton Therapy for Conventionally Fractionated Head and Neck Cancer: Treatment Planning and Dose Rate Distributions. Cancers, 2021, 13, 1859.	3.7	22
68	Stereotactic radiotherapy for early stage non-small cell lung cancer: current standards and ongoing research. Translational Lung Cancer Research, 2021, 10, 1930-1949.	2.8	10
69	Ultrahigh dose-rate (FLASH) x-ray irradiator for pre-clinical laboratory research. Physics in Medicine and Biology, 2021, 66, 095006.	3.0	16
70	Compact <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>S</mml:mi></mml:math> -band linear accelerator system for ultrafast, ultrahigh dose-rate radiotherapy. Physical Review Accelerators and Beams, 2021, 24, .	1.6	18
71	Commissioning of an ultraâ€high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols. Medical Physics, 2021, 48, 3134-3142.	3.0	51
72	Establishment and Initial Experience of Clinical FLASH Radiotherapy in Canine Cancer Patients. Frontiers in Oncology, 2021, 11, 658004.	2.8	45
73	FLASH Radiotherapy: History and Future. Frontiers in Oncology, 2021, 11, 644400.	2.8	63
74	Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage. Radiotherapy and Oncology, 2021, 158, 7-12.	0.6	26

#	Article	IF	CITATIONS
75	Synchrotron X-Ray Radiation-Induced Bystander Effect: An Impact of the Scattered Radiation, Distance From the Irradiated Site and p53 Cell Status. Frontiers in Oncology, 2021, 11, 685598.	2.8	10
76	First theoretical determination of relative biological effectiveness of very high energy electrons. Scientific Reports, 2021, 11, 11242.	3.3	6
77	Spatial and temporal dosimetry of individual electron FLASH beam pulses using radioluminescence imaging. Physics in Medicine and Biology, 2021, 66, 135009.	3.0	10
78	Deciphering Time-Dependent DNA Damage Complexity, Repair, and Oxygen Tension: A Mechanistic Model for FLASH-Dose-Rate Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 110, 574-586.	0.8	19
79	SDDRO-joint: simultaneous dose and dose rate optimization with the joint use of transmission beams and Bragg peaks for FLASH proton therapy. Physics in Medicine and Biology, 2021, 66, 125011.	3.0	19
80	Characterization of a highâ€resolution 2D transmission ion chamber for independent validation of proton pencil beam scanning of conventional and FLASH dose delivery. Medical Physics, 2021, 48, 3948-3957.	3.0	16
81	Microbeam Radiotherapy—A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-Tumour Response in Melanoma. International Journal of Molecular Sciences, 2021, 22, 7755.	4.1	18
82	FLASH Radiotherapy. Radioisotopes, 2021, 70, 279-289.	0.2	1
83	Electron FLASH Delivery at Treatment Room Isocenter for Efficient Reversible Conversion of a Clinical LINAC. International Journal of Radiation Oncology Biology Physics, 2021, 110, 872-882.	0.8	46
84	Cancer Cells Can Exhibit a Sparing FLASH Effect at Low Doses Under Normoxic In Vitro-Conditions. Frontiers in Oncology, 2021, 11, 686142.	2.8	22
85	Multicellular Spheroids as InÂVitro Models of Oxygen Depletion During FLASH Irradiation. International Journal of Radiation Oncology Biology Physics, 2021, 110, 833-844.	0.8	26
86	FLASH Proton Radiotherapy Spares Normal Epithelial and Mesenchymal Tissues While Preserving Sarcoma Response. Cancer Research, 2021, 81, 4808-4821.	0.9	77
87	A Brief Overview of the Preclinical and Clinical Radiobiology of Microbeam Radiotherapy. Clinical Oncology, 2021, 33, 705-712.	1.4	11
88	FLASH radiotherapy with carbon ion beams. Medical Physics, 2022, 49, 1974-1992.	3.0	43
89	Demonstration of the FLASH Effect Within the Spread-out Bragg Peak After Abdominal Irradiation of Mice. International Journal of Particle Therapy, 2022, 8, 68-75.	1.8	17
90	Model studies of the role of oxygen in the FLASH effect. Medical Physics, 2022, 49, 2068-2081.	3.0	37
91	Development of a DNA damage model that accommodates different cellular oxygen concentrations and radiation qualities. Medical Physics, 2021, 48, 5511-5521.	3.0	5
92	Characterization of an xâ€ray tubeâ€based ultrahigh doseâ€rate system for in vitro irradiations. Medical Physics, 2021, 48, 7399-7409.	3.0	9

#	Article	IF	CITATIONS
93	May oxygen depletion explain the FLASH effect? A chemical track structure analysis. Radiotherapy and Oncology, 2021, 162, 68-75.	0.6	62
94	Modeling of cellular response after FLASH irradiation: a quantitative analysis based on the radiolytic oxygen depletion hypothesis. Physics in Medicine and Biology, 2021, 66, 185009.	3.0	13
95	FLASH radiotherapy with photon beams. Medical Physics, 2022, 49, 2055-2067.	3.0	28
96	Radiobiology of the FLASH effect. Medical Physics, 2022, 49, 1993-2013.	3.0	72
97	Review of Conventional and High Dose Rate Brain Radiation (FLASH): Neurobehavioural, Neurocognitive and Assessment Issues in Rodent Models. Clinical Oncology, 2021, 33, e482-e491.	1.4	6
98	The Role of Complement in Synaptic Pruning and Neurodegeneration. ImmunoTargets and Therapy, 2021, Volume 10, 373-386.	5.8	64
99	Can Rational Combination of Ultra-high Dose Rate FLASH Radiotherapy with Immunotherapy Provide a Novel Approach to Cancer Treatment?. Clinical Oncology, 2021, 33, 713-722.	1.4	29
100	Repurposing Proton Beam Therapy through Novel Insights into Tumour Radioresistance. Clinical Oncology, 2021, 33, e469-e481.	1.4	2
101	Transient hypoxia in water irradiated by swift carbon ions at ultra-high dose rates: implication for FLASH carbon-ion therapy. Canadian Journal of Chemistry, 2021, 99, 842-849.	1.1	4
102	Comment on: May oxygen depletion explain the FLASH effect? A chemical track structure analysis. Radiotherapy and Oncology, 2021, 163, 91-92.	0.6	4
103	Biological and Mechanical Synergies to Deal With Proton Therapy Pitfalls: Minibeams, FLASH, Arcs, and Gantryless Rooms. Frontiers in Oncology, 2020, 10, 613669.	2.8	19
104	Novel Therapies for Glioblastoma. Current Neurology and Neuroscience Reports, 2020, 20, 19.	4.2	50
105	Ultra-high dose rate effect on circulating immune cells: A potential mechanism for FLASH effect?. Radiotherapy and Oncology, 2020, 149, 55-62.	0.6	84
106	Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Physics in Medicine and Biology, 2020, 65, 23TR03.	3.0	135
108	Linear energy transfer dependence of transient yields in water irradiated by 150 keV – 500 MeV protons in the limit of low dose rates. Canadian Journal of Chemistry, 2020, 98, 427-433.	1.1	10
109	Ultra-High Dose-Rate, Pulsed (FLASH) Radiotherapy with Carbon Ions: Generation of Early, Transient, Highly Oxygenated Conditions in the Tumor Environment. Radiation Research, 2020, 194, 587-593.	1.5	35
110	Radiotherapy Using High-Intensity Pulsed Radiation Beams (FLASH): A Radiation-Chemical Perspective. Radiation Research, 2020, 194, 607-617.	1.5	57
111	Proton Irradiation Platforms for Preclinical Studies of High-Dose-Rate (FLASH) Effects at RARAF. Radiation Research, 2020, 194, 646-655.	1.5	11

#	Article	IF	CITATIONS
112	Ultra-High-Dose-Rate FLASH Irradiation Limits Reactive Gliosis in the Brain. Radiation Research, 2020, 194, 636-645.	1.5	43
113	FLASH Investigations Using Protons: Design of Delivery System, Preclinical Setup and Confirmation of FLASH Effect with Protons in Animal Systems. Radiation Research, 2020, 194, 656-664.	1.5	45
114	All Irradiations that are Ultra-High Dose Rate may not be FLASH: The Critical Importance of Beam Parameter Characterization and In Vivo Validation of the FLASH Effect. Radiation Research, 2020, 194, 571-572.	1.5	48
115	A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy. Radiation Research, 2020, 195, 149-162.	1.5	24
116	Optimization of Alanine Measurements for Fast and Accurate Dosimetry in FLASH Radiation Therapy. Radiation Research, 2020, 194, 573-579.	1.5	16
117	Calorimeter for Real-Time Dosimetry of Pulsed Ultra-High Dose Rate Electron Beams. Frontiers in Physics, 2020, 8, .	2.1	17
118	The current status of preclinical proton FLASH radiation and future directions. Medical Physics, 2022, 49, 2039-2054.	3.0	40
119	Implementation and validation of a beam urrent transformer on a medical pulsed electron beam LINAC for FLASHâ€RT beam monitoring. Journal of Applied Clinical Medical Physics, 2021, 22, 165-171.	1.9	28
120	Initial Steps Towards a Clinical FLASH Radiotherapy System: Pediatric Whole Brain Irradiation with 40 MeV Electrons at FLASH Dose Rates. Radiation Research, 2020, 194, 594-599.	1,5	11
121	Research Progress of Ultra-High Dose Rate Radiotherapy (FLASH-RT). World Journal of Cancer Research, 2020, 10, 41-46.	0.1	1
122	A Computational Model for Oxygen Depletion Hypothesis in FLASH Effect. Radiation Research, 2021, 197,	1,5	2
123	The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT. International Journal of Radiation Biology, 2022, 98, 439-451.	1.8	24
124	Treatment Planning System for Electron FLASH Radiotherapy: Open-source for Clinical Implementation. International Journal of Radiation Oncology Biology Physics, 2021, , .	0.8	7
126	Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation. Radiation Research, 2020, 194, 625-635.	1.5	7
127	First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays. Radiotherapy and Oncology, 2022, 166, 44-50.	0.6	40
128	Ultra-High Dose Rate (FLASH) Carbon Ion Irradiation:ÂDosimetry and First Cell Experiments. International Journal of Radiation Oncology Biology Physics, 2022, 112, 1012-1022.	0.8	39
129	Simultaneous dose and dose rate optimization (SDDRO) of the FLASH effect for pencilâ€beamâ€scanning proton therapy. Medical Physics, 2022, 49, 2014-2025.	3.0	22
130	Oxygen Depletion in Proton Spot Scanning: A Tool for Exploring the Conditions Needed for FLASH. Radiation, 2021, 1, 290-304.	1.4	2

#	Article	IF	CITATIONS
131	Design and validation of a synchrotron proton beam line for FLASH radiotherapy preclinical research experiments. Medical Physics, 2022, 49, 497-509.	3.0	16
132	Preservation of neurocognitive function in the treatment of brain metastases. Neuro-Oncology Advances, 2021, 3, v96-v107.	0.7	6
133	Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation. International Journal of Radiation Biology, 2022, 98, 506-516.	1.8	40
134	In vivo validation and tissue sparing factor for acute damage of pencil beam scanning proton FLASH. Radiotherapy and Oncology, 2022, 167, 109-115.	0.6	52
135	Brain Toxicity. Medical Radiology, 2021, , 1.	0.1	0
136	Real-time dosimetry of ultrahigh dose-rate x-ray beams using scintillation detectors. , 2021, , .		1
137	Development of dosimetric procedures for experimental ultra-high dose rate irradiation at a clinical linear accelerator. Journal of Physics: Conference Series, 2022, 2167, 012003.	0.4	2
138	Approaches to modeling chemical reaction pathways in radiobiology. International Journal of Radiation Biology, 2022, 98, 1399-1413.	1.8	13
139	Breaking barriers: Neurodegenerative repercussions of radiotherapy induced damage on the blood-brain and blood-tumor barrier. Free Radical Biology and Medicine, 2022, 178, 189-201.	2.9	15
140	Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry. Medical Physics, 2022, 49, 1902-1910.	3.0	29
141	Technical note: Validation of an ultrahigh dose rate pulsed electron beam monitoring system using a current transformer for FLASH preclinical studies. Medical Physics, 2022, 49, 1831-1838.	3.0	19
142	Ultraâ€high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm. Medical Physics, 2022, 49, 2082-2095.	3.0	66
143	Three discipline collaborative radiation therapy (3DCRT) special debate: FLASH radiotherapy needs ongoing basic and animal research before implementing it to a large clinical scale. Journal of Applied Clinical Medical Physics, 2022, 23, e13547.	1.9	2
144	On the Transient Radiolytic Oxygen Depletion in the Ultra-High (FLASH) Dose-Rate Radiolysis of Water in a Cell-Like Environment: Effect of e–aq and •OH Competing Scavengers. Radiation Research, 2022, 197,	1.5	6
145	Quantifying the DNA-damaging Effects of FLASH Irradiation With Plasmid DNA. International Journal of Radiation Oncology Biology Physics, 2022, 113, 437-447.	0.8	12
146	<i>In vitro</i> assays for investigating the FLASH effect. Expert Reviews in Molecular Medicine, 2022, 24, e10.	3.9	13
147	Cranial irradiation impairs intrinsic excitability and synaptic plasticity of hippocampal CA1 pyramidal neurons with implications for cognitive function. Neural Regeneration Research, 2022, 17, 2253.	3.0	5
148	Neuroprotective Effects of Ultra-High Dose Rate FLASH Bragg Peak Proton Irradiation. International Journal of Radiation Oncology Biology Physics, 2022, 113, 614-623.	0.8	13

		CITATION R	EPORT	
#	Article		IF	CITATIONS
149	The Therapeutic Potential of FLASH-RT for Pancreatic Cancer. Cancers, 2022, 14, 1167		3.7	8
150	FLASH irradiation induces lower levels of DNA damage ex vivo, an effect modulated by dose, and dose rate. British Journal of Radiology, 2022, 95, 20211150.	oxygen tension,	2.2	19
151	A Comprehensive Analysis of the Relationship Between Dose Rate and Biological Effect and Clinical Studies, From Brachytherapy to Flattening Filter Free Radiation Therapy an Irradiation. International Journal of Radiation Oncology Biology Physics, 2022, 113, 98	Id FLASH	0.8	5
152	Technical note: Proton beam dosimetry at ultraâ€high dose rates (FLASH): Evaluation o (EBT3, EBTâ€XD) and OrthoChromic (OCâ€1) film performances. Medical Physics, 202		3.0	18
153	Response of diamond detectors in ultra-high dose-per-pulse electron beams for dosime radiotherapy. Physics in Medicine and Biology, 2022, 67, 075002.	etry at FLASH	3.0	17
154	Mitochondrial Damage Response and Fate of Normal Cells Exposed to FLASH Irradiatio Radiation Research, 2022, 197, .	n with Protons.	1.5	13
155	3D computational model of oxygen depletion kinetics in brain vasculature during FLAS implications for in vivo oximetry experiments. Medical Physics, 2022, 49, 3914-3925.	H RT and its	3.0	5
156	Characterization of the PTB ultra-high pulse dose rate reference electron beam. Physics and Biology, 2022, 67, 085013.	s in Medicine	3.0	6
157	FLASH ultra-high dose rates in radiotherapy: preclinical and radiobiological evidence. In Journal of Radiation Biology, 2022, 98, 127-135.	ternational	1.8	14
158	FLASH radiotherapy: Research process from basic experimentation to clinical application Radiation Oncology, 2021, 5, 259-266.	on. Precision	1.1	5
159	Treatment of Radiation-Induced Brain Necrosis. Oxidative Medicine and Cellular Longer 1-15.	vity, 2021, 2021,	4.0	18
160	Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brair Exposed to Ultra-High-Dose-Rate FLASH Irradiation. Radiation Research, 2020, 194, 62	of Mice 5-635.	1.5	34
161	Ultraâ€high dose rate dosimetry: Challenges and opportunities for FLASH radiation the Physics, 2022, 49, 4912-4932.	erapy. Medical	3.0	51
162	Image guidance for FLASH radiotherapy. Medical Physics, 2022, 49, 4109-4122.		3.0	10
163	Determination of the ion collection efficiency of the Razor Nano Chamber for ultraâ \in h electron beams. Medical Physics, 2022, 49, 4731-4742.	igh doseâ€rate	3.0	8
164	Development of a portable hypoxia chamber for ultra-high dose rate laser-driven proto applications. Radiation Oncology, 2022, 17, 77.	n radiobiology	2.7	5
170	Radioprotective effect of Xâ€ray abdominal FLASH irradiation: Adaptation to oxidative inflammatory response may be benefiting factors. Medical Physics, 2022, 49, 4812-48.	damage and 22.	3.0	18
171	The effect of non-ionizing excitations on the diffusion of ion species and inter-track co FLASH ultra-high dose rate radiotherapy. Physics in Medicine and Biology, 2022, 67, 10		3.0	11

		CITATION REPORT		
#	Article		IF	Citations
172	First Human Cell Experiments With FLASH Carbon Ions. Anticancer Research, 2022, 42, 2469	-2477.	1.1	10
173	Brain metastasis: Recent treatment modalities and future‑perspectives (Review). Oncology 2022, 23, 191.	Letters,	1.8	5
174	Cross-translational models of late-onset cognitive sequelae and their treatment in pediatric b tumor survivors. Neuron, 2022, 110, 2215-2241.	rain	8.1	8
175	A 2D strip ionization chamber array with high spatiotemporal resolution for proton pencil be scanning FLASH radiotherapy. Medical Physics, 2022, 49, 5464-5475.	am	3.0	16
176	Design of static and dynamic ridge filters for FLASH–IMPT: A simulation study. Medical Phy 49, 5387-5399.	sics, 2022,	3.0	10
177	Beam pulse structure and dose rate as determinants for the flash effect observed in zebrafish Radiotherapy and Oncology, 2022, 173, 49-54.	i embryo.	0.6	26
179	Shining a FLASHlight on Ultrahigh Dose-Rate Radiation and Possible Late Toxicity. Clinical Ca Research, 0, , OF1-OF3.	ncer	7.0	4
180	Normal Tissue Sparing by FLASH as a Function of Single-Fraction Dose: A Quantitative Analys International Journal of Radiation Oncology Biology Physics, 2022, 114, 1032-1044.	is.	0.8	29
181	Microglia as Therapeutic Target for Radiation-Induced Brain Injury. International Journal of Molecular Sciences, 2022, 23, 8286.		4.1	14
182	Comparing radiolytic production of H2O2 and development of Zebrafish embryos after ultra dose rate exposure with electron and transmission proton beams. Radiotherapy and Oncolog 175, 197-202.		0.6	18
183	Electron ultraâ€high dose rate FLASH irradiation study using a clinical linac: Linac modificatic dosimetry, and radiobiological outcome. Medical Physics, 2022, 49, 6728-6738.	ın,	3.0	4
184	Use of singleâ€energy proton pencil beam scanning Bragg peak for intensityâ€modulated pr FLASH treatment planning in liverâ€hypofractionated radiation therapy. Medical Physics, 202 6560-6574.	oton therapy 2, 49,	3.0	14
185	Application of glass with different impurities as an electron beam dosimeter. Radiation Effect Defects in Solids, 0, , 1-13.	is and	1.2	0
186	Real-time optical oximetry during FLASH radiotherapy using a phosphorescent nanoprobe. Radiotherapy and Oncology, 2022, 176, 239-243.		0.6	3
187	Trade-off in healthy tissue sparing of FLASH and fractionation in stereotactic proton therapy lesions with transmission beams. Radiotherapy and Oncology, 2022, 175, 231-237.	of lung	0.6	5
188	The FlashDC project: Development of a beam monitor for FLASH radiotherapy. Nuclear Instru Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associa Equipment, 2022, 1041, 167334.		1.6	2
189	Optimization of FLASH proton beams using a trackâ€repeating algorithm. Medical Physics, 0	,,.	3.0	1
190	Treatment planning considerations for the development of FLASH proton therapy. Radiother Oncology, 2022, 175, 222-230.	apy and	0.6	10

#	Article	IF	CITATIONS
191	The probeâ€format graphite calorimeter, Aerrow, for absolute dosimetry in ultrahigh pulse dose rate electron beams. Medical Physics, 2022, 49, 6635-6645.	3.0	4
192	Combining FLASH and spatially fractionated radiation therapy: The best of both worlds. Radiotherapy and Oncology, 2022, 175, 169-177.	0.6	7
193	Radical recombination and antioxidants: a hypothesis on the FLASH effect mechanism. International Journal of Radiation Biology, 2023, 99, 620-628.	1.8	4
194	Microbeam Radiation Therapy Controls Local Growth of Radioresistant Melanoma and Treats Out-of-Field Locoregional Metastasis. International Journal of Radiation Oncology Biology Physics, 2022, 114, 478-493.	0.8	3
195	Evaluation of a conventionally shielded proton treatment room for FLASH radiotherapy. Medical Physics, 2022, 49, 6765-6773.	3.0	2
196	A new solution for UHDP and UHDR (Flash) measurements: Theory and conceptual design of ALLS chamber. Physica Medica, 2022, 102, 9-18.	0.7	17
197	Design and validation of a dosimetric comparison scheme tailored for ultra-high dose-rate electron beams to support multicenter FLASH preclinical studies. Radiotherapy and Oncology, 2022, 175, 203-209.	0.6	10
198	FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases (FAST-01): Protocol for the First Prospective Feasibility Study. JMIR Research Protocols, 0, 12, e41812.	1.0	20
199	Absorbed-dose-to-water measurement using alanine in ultra-high-pulse-dose-rate electron beams. Physics in Medicine and Biology, 0, , .	3.0	6
200	Mechanisms of FLASH effect. Frontiers in Oncology, 0, 12, .	2.8	10
200 201	Mechanisms of FLASH effect. Frontiers in Oncology, 0, 12, . Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT. Heliyon, 2022, 8, e10682.	2.8 3.2	10
	Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT.		
201	Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT. Heliyon, 2022, 8, e10682.	3.2	1
201 202	Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT. Heliyon, 2022, 8, e10682. Radiobiological Aspects of FLASH Radiotherapy. Biomolecules, 2022, 12, 1376. Cognitive and behavioral effects of whole brain conventional or high dose rate (FLASH) proton	3.2 4.0	1
201 202 203	 Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT. Heliyon, 2022, 8, e10682. Radiobiological Aspects of FLASH Radiotherapy. Biomolecules, 2022, 12, 1376. Cognitive and behavioral effects of whole brain conventional or high dose rate (FLASH) proton irradiation in a neonatal Sprague Dawley rat model. PLoS ONE, 2022, 17, e0274007. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. Journal of Applied 	3.2 4.0 2.5	1 13 11
201 202 203 204	 Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT. Heliyon, 2022, 8, e10682. Radiobiological Aspects of FLASH Radiotherapy. Biomolecules, 2022, 12, 1376. Cognitive and behavioral effects of whole brain conventional or high dose rate (FLASH) proton irradiation in a neonatal Sprague Dawley rat model. PLoS ONE, 2022, 17, e0274007. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. Journal of Applied Clinical Medical Physics, 2022, 23, . Experimental characterization and Monte Carlo simulation of scintillator detectors in online 	 3.2 4.0 2.5 1.9 	1 13 11 24
201 202 203 204 205	Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT. Heliyon, 2022, 8, e10682. Radiobiological Aspects of FLASH Radiotherapy. Biomolecules, 2022, 12, 1376. Cognitive and behavioral effects of whole brain conventional or high dose rate (FLASH) proton irradiation in a neonatal Sprague Dawley rat model. PLoS ONE, 2022, 17, e0274007. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. Journal of Applied Clinical Medical Physics, 2022, 23, . Experimental characterization and Monte Carlo simulation of scintillator detectors in online electron FLASH radiotherapy dosimetry. Journal of Instrumentation, 2022, 17, P09005.	 3.2 4.0 2.5 1.9 1.2 	1 13 11 24 1

#	Article	IF	CITATIONS
209	A review of the impact of FLASH radiotherapy on the central nervous system and glioma. Radiation Medicine and Protection, 2022, 3, 208-212.	0.8	0
210	A matter of space: how the spatial heterogeneity in energy deposition determines the biological outcome of radiation exposure. Radiation and Environmental Biophysics, 2022, 61, 545-559.	1.4	13
211	A mechanistic consideration of oxygen enhancement ratio, oxygen transport and their relevancies for normal tissue sparing under FLASH irradiation. , 2022, 1, .		1
212	The Microbeam Insert at the White Beam Beamline P61A at the Synchrotron PETRA III/DESY: A New Tool for High Dose Rate Irradiation Research. Cancers, 2022, 14, 5137.	3.7	0
213	Radiation-Induced Rescue Effect: Insights from Microbeam Experiments. Biology, 2022, 11, 1548.	2.8	2
214	Towards clinical translation of FLASH radiotherapy. Nature Reviews Clinical Oncology, 2022, 19, 791-803.	27.6	69
215	Potential Molecular Mechanisms behind the Ultra-High Dose Rate "FLASH―Effect. International Journal of Molecular Sciences, 2022, 23, 12109.	4.1	7
216	Radical Production with Pulsed Beams: Understanding the Transition to FLASH. International Journal of Molecular Sciences, 2022, 23, 13484.	4.1	7
217	Practice-oriented solutions integrating intraoperative electron irradiation and personalized proton therapy for recurrent or unresectable cancers: Proof of concept and potential for dual FLASH effect. Frontiers in Oncology, 0, 12, .	2.8	1
218	A new calculation method for the free electron fraction of an ionization chamber in the ultra-high-dose-per-pulse regimen. Physica Medica, 2022, 103, 175-180.	0.7	8
219	Comparison of intratumor and local immune response between MV X-ray FLASH and conventional radiotherapies. Clinical and Translational Radiation Oncology, 2023, 38, 138-146.	1.7	4
220	Elucidating the neurological mechanism of the FLASH effect in juvenile mice exposed to hypofractionated radiotherapy. Neuro-Oncology, 2023, 25, 927-939.	1.2	9
221	Charge collection efficiency, underlying recombination mechanisms, and the role of electrode distance of vented ionization chambers under ultra-high dose-per-pulse conditions. Physica Medica, 2022, 104, 10-17.	0.7	8
222	Reduction of recombination effects in large plane parallel beam monitors for FLASH radiotherapy with scanned ion beams. Physica Medica, 2022, 104, 136-144.	0.7	3
223	FLASH irradiation does not induce lipid peroxidation in lipids micelles and liposomes. Radiation Physics and Chemistry, 2023, 205, 110733.	2.8	13
225	A phenomenological model of proton FLASH oxygen depletion effects depending on tissue vasculature and oxygen supply. Frontiers in Oncology, 0, 12, .	2.8	2
226	Good Timing Matters: The Spatially Fractionated High Dose Rate Boost Should Come First. Cancers, 2022, 14, 5964.	3.7	2
227	Proton FLASH Radiation Therapy and Immune Infiltration: Evaluation in an Orthotopic Glioma Rat Model. International Journal of Radiation Oncology Biology Physics, 2023, 116, 655-665.	0.8	11

#	ARTICLE cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	IF	CITATIONS
228	altimg="si900.svg"> <mml:mtext>FLASH</mml:mtext> <mml:mi mathvariant="bold-script">l<mml:mi mathvariant="bold-script">a</mml:mi><mml:mi mathvariant="bold-script">b<mml:mtext>@PITZ</mml:mtext>: New R&D platform with unique capabilities for electron FLASH and VHEE radiation therapy and radiation</mml:mi </mml:mi 	0.7	10
229	biology under preparation at PITZ. Physica Medica, 2022, 104, 174-187. Cellular irradiations with laser-driven carbon ions at ultra-high dose rates. Physics in Medicine and Biology, 2023, 68, 025015.	3.0	2
230	Reinventing Radiobiology in the Light of FLASH Radiotherapy. Annual Review of Cancer Biology, 2023, 7, 1-21.	4.5	23
231	lon recombination correction factors and detector comparison in a very-high dose rate proton scanning beam. Physica Medica, 2023, 106, 102518.	0.7	1
232	Design of an X-ray irradiator based on a standard imaging X-ray tube with FLASH dose-rate capabilities for preclinical research. Radiation Physics and Chemistry, 2023, 206, 110760.	2.8	1
233	Radiation-induced immune response in novel radiotherapy approaches FLASH and spatially fractionated radiotherapies. International Review of Cell and Molecular Biology, 2023, , 37-68.	3.2	3
234	Treatment planning consideration for very high-energy electron FLASH radiotherapy. Physica Medica, 2023, 107, 102539.	0.7	4
235	Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy. International Journal of Particle Therapy, 2023, 9, 279-289.	1.8	2
236	Modeling of the FLASH effect for ion beam radiation therapy. Physica Medica, 2023, 108, 102553.	0.7	1
237	Modeling of scavenging systems in water radiolysis with Geant4-DNA. Physica Medica, 2023, 108, 102549.	0.7	8
238	Feasibility study of hybrid inverse planning with transmission beams and singleâ€energy spreadâ€out Bragg peaks for proton FLASH radiotherapy. Medical Physics, 2023, 50, 3687-3700.	3.0	3
239	Modeling the impact of tissue oxygen profiles and oxygen depletion parameter uncertainties on biological response and therapeutic benefit of FLASH. Medical Physics, 2024, 51, 670-681.	3.0	1
240	Fractionated FLASH radiation in xenografted lung tumors induced FLASH effect at a split dose of 2 Gy. International Journal of Radiation Biology, 2023, 99, 1542-1549.	1.8	1
241	A rigorous behavioral testing platform for the assessment of radiation-induced neurological outcomes. Methods in Cell Biology, 2023, , 177-197.	1.1	2
242	Uncovering the Protective Neurologic Mechanisms of Hypofractionated FLASH Radiotherapy. Cancer Research Communications, 2023, 3, 725-737.	1.7	2
243	Comet Assay Profiling of FLASH-Induced Damage: Mechanistic Insights into the Effects of FLASH Irradiation. International Journal of Molecular Sciences, 2023, 24, 7195.	4.1	2
244	Absence of Tissue-Sparing Effects in Partial Proton FLASH Irradiation in Murine Intestine. Cancers, 2023, 15, 2269.	3.7	3
245	The PTB water calorimeter for determining the absolute absorbed dose to water in ultra-high pulse dose rate electron beams. Physics in Medicine and Biology, 0, , .	3.0	2

#	Article	IF	CITATIONS
246	Mechanisms of the â€~FLASH' effect: Radiation chemistry should not be ignored in developing models. Radiotherapy and Oncology, 2023, 184, 109673.	0.6	1
248	The first PET glimpse of a proton FLASH beam. Physics in Medicine and Biology, 2023, 68, 125001.	3.0	7
249	The general-purpose Geant4 Monte Carlo toolkit and its Geant4-DNA extension to investigate mechanisms underlying the FLASH effect in radiotherapy: Current status and challenges. Physica Medica, 2023, 110, 102601.	0.7	2
250	FLASH radiotherapy. , 2023, , 329-342.		о
252	Effect of Conventional and Ultrahigh Dose Rate FLASH Irradiations on Preclinical Tumor Models: A Systematic Analysis. International Journal of Radiation Oncology Biology Physics, 2023, 117, 1007-1017.	0.8	3
253	A method to implement inter-track interactions in Monte Carlo simulations with TOPAS-nBio and their influence on simulated radical yields following water radiolysis. Physics in Medicine and Biology, 2023, 68, 135017.	3.0	2
254	Measurement of the time structure of FLASH beams using prompt gamma rays and secondary neutrons as surrogates. Physics in Medicine and Biology, 0, , .	3.0	3
255	Pulsed-beam transmission electron microscopy and radiation damage. Micron, 2023, 172, 103501.	2.2	1
256	Flash Radiotherapy: Innovative Cancer Treatment. Encyclopedia, 2023, 3, 808-823.	4.5	4
257	Multiple Stroboscopic Detection of Long-Lived Nuclear Magnetization for Glutathione Oxidation Kinetics. Journal of Physical Chemistry Letters, 2023, 14, 4247-4251.	4.6	0
258	A stochastic reaction–diffusion modeling investigation of FLASH ultra-high dose rate response in different tissues. Frontiers in Physics, 0, 11, .	2.1	1
259	Development of a Real-Time Pixel Array-Type Detector for Ultrahigh Dose-Rate Beams. Sensors, 2023, 23, 4596.	3.8	О
260	The current status of FLASH particle therapy: a systematic review. Physical and Engineering Sciences in Medicine, 2023, 46, 529-560.	2.4	5
261	An integrated Monte Carlo track-structure simulation framework for modeling inter and intra-track effects on homogenous chemistry. Physics in Medicine and Biology, 2023, 68, 125008.	3.0	2
262	An insight into hypothesized biological mechanisms contributing to the Flash effect. Frontiers in Physics, 0, 11, .	2.1	2
263	Increased flexibility and efficiency of a double-scattering FLASH proton beamline configuration for in vivo SOBP radiotherapy treatments. Physics in Medicine and Biology, 2023, 68, 15NT01.	3.0	Ο
264	The sparing effect of FLASH-RT on synaptic plasticity is maintained in mice with standard fractionation. Radiotherapy and Oncology, 2023, 186, 109767.	0.6	3
266	Definition of dose rate for FLASH pencilâ€beam scanning proton therapy: A comparative study. Medical Physics, 0, , .	3.0	Ο

#	Article	IF	CITATIONS
267	Construction and dosimetric characterization of a motorized scanningâ€slit system for electron FLASH experiments. Medical Physics, 2024, 51, 1396-1404.	3.0	0
268	Dosimetric characterization of a rotating anode xâ€ray tube for FLASH radiotherapy research. Medical Physics, 2024, 51, 1474-1483.	3.0	2
269	Mean dose rate in ultra-high dose rate electron irradiation is a significant predictor for O ₂ consumption and H ₂ O ₂ yield. Physics in Medicine and Biology, 2023, 68, 165014.	3.0	2
270	RadioTransNet, Radiotherapy Translational and Preclinical Research Network: Results from the dedicated French cancer institute (INCa) call for projects. Cancer Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2023, , .	1.4	0
271	A diamond detector based dosimetric system for instantaneous dose rate measurements in FLASH electron beams. Physics in Medicine and Biology, 2023, 68, 175011.	3.0	4
272	Enabling ultra-high dose rate electron beams at a clinical linear accelerator for isocentric treatments. Radiotherapy and Oncology, 2023, 187, 109822.	0.6	4
273	Effects of UHDR and Conventional Irradiation on Behavioral and Cognitive Performance and the Percentage of Ly6G+ CD45+ Cells in the Hippocampus. International Journal of Molecular Sciences, 2023, 24, 12497.	4.1	0
274	Intertrack interaction at ultra-high dose rates and its role in the FLASH effect. Frontiers in Physics, 0, 11, .	2.1	1
275	Review of optical reporters of radiation effects in vivo: tools to quantify improvements in radiation delivery technique. Journal of Biomedical Optics, 2023, 28, .	2.6	0
276	The dose-related plateau effect of surviving fraction in normal tissue during the ultra-high-dose-rate radiotherapy. Physics in Medicine and Biology, 2023, 68, 185004.	3.0	1
277	2. The Biological Effects of Electron and Current Research Trend. Japanese Journal of Radiological Technology, 2023, 79, 857-862.	0.1	0
278	Implications of "flash―radiotherapy for biodosimetry. Radiation Protection Dosimetry, 2023, 199, 1450-1459.	0.8	0
279	AlEgen-based nanotherapeutic strategy for enhanced FLASH irradiation to prevent tumour recurrence and avoid severe side effects. Chemical Engineering Journal, 2023, 473, 145179.	12.7	3
280	Personalized Carbon Monoxide‣oaded Biomimetic Singleâ€Atom Nanozyme for Ferroptosisâ€Enhanced FLASHÂRadioimmunotherapy. Advanced Functional Materials, 2023, 33, .	14.9	4
281	Procedural technique development in radiation oncology. , 2023, , 77-80.		0
283	Advanced and emerging radiation therapy approaches for intrahepatic cholangiocarcinoma. Hepatoma Research, 0, , .	1.5	0
284	Analysis of Cell Response to Ultrahigh Dose-Rate Proton Irradiation. Bulletin of the Russian Academy of Sciences: Physics, 2023, 87, 1221-1225.	0.6	0
286	Design of a rapid-cycling synchrotron for flash proton therapy. Nuclear Science and Techniques/Hewuli, 2023, 34, .	3.4	0

#	Article	IF	CITATIONS
287	Optically stimulated luminescence system as an alternative for radiochromic film for 2D reference dosimetry in UHDR electron beams. Physica Medica, 2023, 114, 103147.	0.7	0
288	How flash-RT can change the way we treat cancer. AIP Conference Proceedings, 2023, , .	0.4	0
289	Development of a Single-Neurosphere Culture to Assess Radiation Toxicity and Pre-Clinical Cancer Combination Therapy Safety. Cancers, 2023, 15, 4916.	3.7	0
290	Lung Organotypic Slices Enable Rapid Quantification of Acute Radiotherapy Induced Toxicity. Cells, 2023, 12, 2435.	4.1	1
291	Flash Therapy for Cancer: A Potentially New Radiotherapy Methodology. Cureus, 2023, , .	0.5	0
292	Dosimetric and biologic intercomparison between electron and proton FLASH beams. Radiotherapy and Oncology, 2024, 190, 109953.	0.6	1
293	The clinical prospect of FLASH radiotherapy. Radiation Medicine and Protection, 2023, , .	0.8	0
294	Human enteroids as a tool to study conventional and ultra-high dose rate radiation. Integrative Biology (United Kingdom), 2023, 15, .	1.3	0
295	Key changes in the future clinical application of ultra-high dose rate radiotherapy. Frontiers in Oncology, 0, 13, .	2.8	0
296	The first probe of a FLASH proton beam by PET. Physics in Medicine and Biology, 2023, 68, 235004.	3.0	2
297	Architecture, flexibility and performance of a special electron linac dedicated to Flash radiotherapy research: electronFlash with a triode gun of the centro pisano flash radiotherapy (CPFR). Frontiers in Physics, 0, 11, .	2.1	2
298	The dresden platform is a research hub for ultra-high dose rate radiobiology. Scientific Reports, 2023, 13, .	3.3	0
299	FLASH Radiotherapy: A FLASHing Idea to Preserve Neurocognitive Function. Brain Tumor Research and Treatment, 2023, 11, 223.	1.0	0
300	Across the stages: a multiscale extension of the generalized stochastic microdosimetric model (MS-GSM2) to include the ultra-high dose rate. Frontiers in Physics, 0, 11, .	2.1	1
301	Single-fraction Radiation Treatment Dose Response in a Genetically Engineered Mouse Model of Medulloblastoma. Radiation Research, 2023, , .	1.5	0
302	A Novel Platform for Evaluating Dose Rate Effects on Oxidative Damage to Peptides: Toward a High-Throughput Method to Characterize the Mechanisms Underlying the FLASH Effect. Radiation Research, 2023, , .	1.5	Ο
303	Tumor hypoxia and radiotherapy: A major driver of resistance even for novel radiotherapy modalities. Seminars in Cancer Biology, 2024, 98, 19-30.	9.6	0
304	Radiation-Chemical Perspective of the Radiobiology of Pulsed (High Dose-Rate) Radiation (FLASH): A Postscript. Radiation Research, 2023, , .	1.5	Ο

#	Article	IF	CITATIONS
305	Modeling for predicting survival fraction of cells after ultra-high dose rate irradiation. Physics in Medicine and Biology, 0, , .	3.0	0
306	Radiobiology experiments with a laser driven x-ray source: Exploring the UHDR regime. EPJ Web of Conferences, 2023, 290, 08001.	0.3	0
307	Oxygen supplementation in anesthesia can block FLASH effect and anti-tumor immunity in conventional proton therapy. Communications Medicine, 2023, 3, .	4.2	0
308	FLASH radiotherapy sparing effect on the circulating lymphocytes in pencil beam scanning proton therapy: impact of hypofractionation and dose rate. Physics in Medicine and Biology, 2024, 69, 025006.	3.0	1
309	Technical note: Commissioning of a linear accelerator producing ultraâ€high dose rate electrons. Medical Physics, 2024, 51, 1415-1420.	3.0	0
310	Dosimetric characterization of a novel UHDR megavoltage X-ray source for FLASH radiobiological experiments. Scientific Reports, 2024, 14, .	3.3	0
311	More May Not be Better: Enhanced Spacecraft Shielding May Exacerbate Cognitive Decrements by Increasing Pion Exposures during Deep Space Exploration. Radiation Research, 2024, 201, .	1.5	0
312	Possible mechanisms and simulation modeling of FLASH radiotherapy. Radiological Physics and Technology, 2024, 17, 11-23.	1.9	0
313	Streamlined pinâ€ridgeâ€filter design for singleâ€energy proton FLASH planning. Medical Physics, 2024, 51, 2955-2966.	3.0	0
314	Comparable survival in rats with intracranial glioblastoma irradiated with single-fraction conventional radiotherapy or FLASH radiotherapy. Frontiers in Oncology, 0, 13, .	2.8	0
315	A readout system for highly sensitive diamond detectors for FLASH dosimetry. Physics and Imaging in Radiation Oncology, 2024, 29, 100538.	2.9	0
318	Neurotoxicity-sparing radiotherapy for brain metastases in breast cancer: a narrative review. Frontiers in Oncology, 0, 13, .	2.8	0
319	FLASH radiotherapy: A new milestone in the field of cancer radiotherapy. Cancer Letters, 2024, 587, 216651.	7.2	0
320	FLASH Proton Radiation Therapy Mitigates Inflammatory and Fibrotic Pathways and Preserves Cardiac Function in a Preclinical Mouse Model of Radiation-Induced Heart Disease. International Journal of Radiation Oncology Biology Physics, 2024, , .	0.8	0
321	Pencil Beam Scanning Proton Bragg Peak Conformal FLASH in Prostate Cancer Stereotactic Body Radiotherapy. Cancers, 2024, 16, 798.	3.7	0
322	FLASH Radiotherapy: Expectations, Challenges, and Current Knowledge. International Journal of Molecular Sciences, 2024, 25, 2546.	4.1	0
323	Preliminary study on the correlation between accelerated current and dose in water for an electron-based LINAC. Frontiers in Physics, 0, 12, .	2.1	0
324	Dose and dose rate dependence of the tissue sparing effect at ultra-high dose rate studied for proton and electron beams using the zebrafish embryo model. Radiotherapy and Oncology, 2024, 194, 110197.	0.6	0

#	Article	IF	CITATIONS
325	FLASH Radiotherapy: What Can FLASH's Ultra High Dose Rate Offer to the Treatment of Patients With Sarcoma?. Seminars in Radiation Oncology, 2024, 34, 218-228.	2.2	0
326	FLASH radiotherapy for the treatment of symptomatic bone metastases in the thorax (FAST-02): protocol for a prospective study of a novel radiotherapy approach. Radiation Oncology, 2024, 19, .	2.7	0