Human Neonatal Fc Receptor Is the Cellular Uncoating

Cell 177, 1553-1565.e16 DOI: 10.1016/j.cell.2019.04.035

Citation Report

~	_		
CITA	N D	FDC	DT

#	Article	IF	CITATION
1	Multifunctionality of structural proteins in the enterovirus life cycle. Future Microbiology, 2019, 14, 1147-1157.	1.0	5
2	Coxsackievirus B Persistence Modifies the Proteome and the Secretome of Pancreatic Ductal Cells. IScience, 2019, 19, 340-357.	1.9	20
3	The Neonatal Fc Receptor (FcRn): A Misnomer?. Frontiers in Immunology, 2019, 10, 1540.	2.2	271
4	Mechanisms of Pathogen Invasion into the Central Nervous System. Neuron, 2019, 103, 771-783.	3.8	72
5	Enteroviruses: A Gut-Wrenching Game of Entry, Detection, and Evasion. Viruses, 2019, 11, 460.	1.5	67
6	The enigma of circular RNA. Nature Reviews Immunology, 2019, 19, 351-351.	10.6	15
7	Concerning the discovery of mechanism for enterovirus B infection published in <i>Cell</i> . Pediatric Investigation, 2019, 3, 194-195.	0.6	0
8	Advances in high-throughput methods for the identification of virus receptors. Medical Microbiology and Immunology, 2020, 209, 309-323.	2.6	14
9	Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nature Communications, 2020, 11, 38.	5.8	28
10	Molecular basis of Coxsackievirus A10 entry using the two-in-one attachment and uncoating receptor KRM1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18711-18718.	3.3	18
11	Serotype specific epitopes identified by neutralizing antibodies underpin immunogenic differences in Enterovirus B. Nature Communications, 2020, 11, 4419.	5.8	13
12	Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nature Communications, 2020, 11, 4421.	5.8	18
13	Neonatal Fc receptor in human immunity: Function and role in therapeutic intervention. Journal of Allergy and Clinical Immunology, 2020, 146, 467-478.	1.5	66
14	Therapeutic targets for enterovirus infections. Expert Opinion on Therapeutic Targets, 2020, 24, 745-757.	1.5	11
15	Early Entry Events in Echovirus 30 Infection. Journal of Virology, 2020, 94, .	1.5	7
16	Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses, 2021, 13, 166.	1.5	8
17	Development of Three-Dimensional Human Intestinal Organoids as a Physiologically Relevant Model for Characterizing the Viral Replication Kinetics and Antiviral Susceptibility of Enteroviruses. Biomedicines, 2021, 9, 88.	1.4	15
18	Entry and Disposition of Zika Virus Immune Complexes in a Tissue Culture Model of the Maternal-Fetal Interface. Vaccines, 2021, 9, 145.	2.1	6

	Cı	CITATION REPORT	
#	Article	IF	Citations
19	Porcine Circovirus Type 3 Enters Into PK15 Cells Through Clathrin- and Dynamin-2-Mediated Endocytosis in a Rab5/Rab7 and pH-Dependent Fashion. Frontiers in Microbiology, 2021, 12, 636307.	1.5	6
20	Cryo-EM structures reveal the molecular basis of receptor-initiated coxsackievirus uncoating. Cell Host and Microbe, 2021, 29, 448-462.e5.	5.1	19
21	Structural basis for neutralization of an anicteric hepatitis associated echovirus by a potent neutralizing antibody. Cell Discovery, 2021, 7, 35.	3.1	2
22	新生儿Fcå⊷体基础ç"ç©¶å'Œä,՜床应用进展. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journa 537-544.	l of Zhejiang Universit	cy Medical S
23	Human FcRn expression and Type I Interferon signaling control Echovirus 11 pathogenesis in mice. PL Pathogens, 2021, 17, e1009252.	oS 2.1	12
24	Viral Receptors. , 2021, , 388-401.		0
25	Surfaceome CRISPR screen identifies OLFML3 as a rhinovirus-inducible IFN antagonist. Genome Biolog 2021, 22, 297.	gy, 3.8	7
27	Structural basis for neutralization of enterovirus. Current Opinion in Virology, 2021, 51, 199-206.	2.6	7
29	Persistent coxsackievirus B1 infection triggers extensive changes in the transcriptome of human pancreatic ductal cells. IScience, 2022, 25, 103653.	1.9	3
30	Molecular basis of differential receptor usage for naturally occurring CD55-binding and -nonbinding coxsackievirus B3 strains. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
31	Acyl-Coenzyme A Synthetase Long-Chain Family Member 4 Is Involved in Viral Replication Organelle Formation and Facilitates Virus Replication via Ferroptosis. MBio, 2022, 13, e0271721.	1.8	43
33	Cryo-EM Structure of a Possum Enterovirus. Viruses, 2022, 14, 318.	1.5	0
35	Genome-wide CRISPR/Cas9 screen identifies host factors important for porcine reproductive and respiratory syndrome virus replication. Virus Research, 2022, 314, 198738.	1.1	1
36	A genome-wide CRISPR/Cas9 gene knockout screen identifies immunoglobulin superfamily DCC subcl member 4 as a key host factor that promotes influenza virus endocytosis. PLoS Pathogens, 2021, 17, e1010141.		23
37	Gene editing and its applications in biomedicine. Science China Life Sciences, 2022, 65, 660-700.	2.3	20
38	Atomic Structures of Coxsackievirus B5 Provide Key Information on Viral Evolution and Survival. Journal of Virology, 2022, , e0010522.	1.5	5
39	Enterovirus Replication and Dissemination Are Differentially Controlled by Type I and III Interferons in the Gastrointestinal Tract. MBio, 2022, 13, .	1.8	4
40	An <i>In Vivo</i> Model of Echovirus-Induced Meningitis Defines the Differential Roles of Type I and Type III Interferon Signaling in Central Nervous System Infection. Journal of Virology, 0, , .	1.5	2

	CITATION	CITATION REPORT	
#	Article	IF	Citations
41	Human FcRn Is a Two-in-One Attachment-Uncoating Receptor for Echovirus 18. MBio, 0, , .	1.8	3
42	CRISPR-surfaceome: An online tool for designing highly efficient sgRNAs targeting cell surface proteins. Computational and Structural Biotechnology Journal, 2022, 20, 3833-3838.	1.9	0
43	Structural basis for the synergistic neutralization of coxsackievirus B1 by a triple-antibody cocktail. Cell Host and Microbe, 2022, 30, 1279-1294.e6.	5.1	3
45	Echovirus 11 infection induces pyroptotic cell death by facilitating NLRP3 inflammasome activation. PLoS Pathogens, 2022, 18, e1010787.	2.1	8
46	Oncolytic Viruses in the Therapy of Lymphoproliferative Diseases. Molecular Biology, 2022, 56, 684-695.	0.4	1
48	Enteroviruses: The role of receptors in viral pathogenesis. Advances in Virus Research, 2022, , 89-110.	0.9	6
50	2'-Fucosyllactose Inhibits Coxsackievirus Class A Type 9 Infection by Blocking Virus Attachment and Internalisation. International Journal of Molecular Sciences, 2022, 23, 13727.	1.8	2
51	Modeling senecavirus a replication in immortalized porcine alveolar macrophages triggers a robust interferon-mediated immune response that conversely constrains viral replication. Virology, 2023, 578, 141-153.	1.1	1
52	Zika Virus Infection and Antibody Neutralization in FcRn Expressing Placenta and Engineered Cell Lines. Vaccines, 2022, 10, 2059.	2.1	5
53	Switching of Receptor Binding Poses between Closely Related Enteroviruses. Viruses, 2022, 14, 2625.	1.5	1
54	Observed Kinetics of Enterovirus Inactivation by Free Chlorine Are Host Cell-Dependent. Environmental Science & Technology, 2023, 57, 18483-18490.	4.6	5
55	Identification of β2 microglobulin, the product of B2M gene, as a Host Factor for Vaccinia Virus Infection by Genome-Wide CRISPR genetic screens. PLoS Pathogens, 2022, 18, e1010800.	2.1	2
56	Identification of specific and shared epitopes at the extreme N-terminal VP1 of Coxsackievirus A4, A2 and A5 by monoclonal antibodies. Virus Research, 2023, 328, 199074.	1.1	1
57	The therapeutic age of the neonatal Fc receptor. Nature Reviews Immunology, 2023, 23, 415-432.	10.6	28
58	Morphogenesis of Hepatitis E Virus. Advances in Experimental Medicine and Biology, 2023, , 159-169.	0.8	0
66	Enterovirus entry and uncoating. , 2024, , 2085-2102.		0
69	The Characteristics of EV-A71-CV-A16 Infection and Interaction with a Host. , 2024, , 95-116.		0