Recent trends in mechanical micropumps and their app

Mechatronics

60, 34-55

DOI: 10.1016/j.mechatronics.2019.04.009

Citation Report

#	Article	IF	CITATIONS
1	Microfluidic Passive Valve with Ultra-Low Threshold Pressure for High-Throughput Liquid Delivery. Micromachines, 2019, 10, 798.	2.9	7
2	Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. Micromachines, 2019, 10, 830.	2.9	130
3	Fully coupled modeling and design of a piezoelectric actuation based valveless micropump for drug delivery application. Microsystem Technologies, 2020, 26, 633-645.	2.0	23
4	Non-linear mechanics in resonant inertial micro sensors. International Journal of Non-Linear Mechanics, 2020, 120, 103386.	2.6	19
5	Analysis of Stiffness Effect on Valve Behavior of a Reciprocating Pump Operated by Piezoelectric Elements. Micromachines, 2020, 11, 894.	2.9	6
6	3D design and numerical simulation of a check-valve micropump for lab-on-a-chip applications. Journal of Micro-Bio Robotics, 2020, 16, 237-248.	2.1	4
7	Recent Advances in Micro-Electro-Mechanical Devices for Controlled Drug Release Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 827.	4.1	31
8	Modeling of a Passive-Valve Piezoelectric Micro-Pump: A Parametric Study. Micromachines, 2020, 11, 752.	2.9	8
9	On the performance analysis of gas-actuated peristaltic micropumps. Sensors and Actuators A: Physical, 2020, 315, 112242.	4.1	5
10	Metachronal actuation of microscopic magnetic artificial cilia generates strong microfluidic pumping. Lab on A Chip, 2020, 20, 3569-3581.	6.0	37
11	Flux-Biased, Energy-Efficient Electromagnetic Micropumps Utilizing Bistable Magnetic Latching and Energy-Storage Springs. IEEE/ASME Transactions on Mechatronics, 2021, 26, 2362-2372.	5.8	7
12	3D printing-assistant method for magneto-active pulse pump: Experiment, simulation, and deformation theory. Applied Physics Letters, 2020, 117, .	3.3	10
13	An Experimental Study of Microchannel and Micro-Pin-Fin Based On-Chip Cooling Systems with Silicon-to-Silicon Direct Bonding. Sensors, 2020, 20, 5533.	3.8	13
14	The FAST Pump, a low-cost, easy to fabricate, SLA-3D-printed peristaltic pump for multi-channel systems in any lab. HardwareX, 2020, 8, e00115.	2.2	22
15	Performance analysis of valveless micropump with disposable chamber actuated through Amplified Piezo Actuator (APA) for biomedical application. Mechatronics, 2020, 67, 102347.	3.3	30
16	Droplet and Particle Generation on Centrifugal Microfluidic Platforms: A Review. Micromachines, 2020, 11, 603.	2.9	20
17	Pumps operated by solid-state electromechanical smart material actuators - A review. Sensors and Actuators A: Physical, 2020, 307, 111915.	4.1	39
18	Electrodialysis Pump Based on Enhanced Water Dissociation of Bipolar Membrane. Analytical Chemistry, 2020, 92, 6263-6268.	6.5	3

#	ARTICLE	IF	CITATIONS
19	Development and assessment of large stroke piezo-hydraulic actuator for micro positioning applications. Precision Engineering, 2021, 67, 324-338.	3.4	22
20	A review of recent studies on piezoelectric pumps and their applications. Mechanical Systems and Signal Processing, 2021, 151, 107393.	8.0	73
21	Piezoelectric micropumps: state of the art review. Microsystem Technologies, 2021, 27, 4127-4155.	2.0	37
22	A novel valve-less piezoelectric micropump generating recirculating flow. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1473-1490.	3.1	1
23	Wireless Magnetic Actuation with a Bistable Parity-Time-Symmetric Circuit. Physical Review Applied, 2021, 15, .	3.8	7
24	Development of a piezoelectric pump with ball valve structure. Journal of Intelligent Material Systems and Structures, 2021, 32, 2289-2299.	2.5	3
25	A basic model of unconventional gas microscale flow based on the lattice Boltzmann method. Petroleum Exploration and Development, 2021, 48, 179-189.	7.0	8
26	Ultrasonic oscillatory two-phase flow in microchannels. Physics of Fluids, 2021, 33, .	4.0	7
27	Fabrication and embedded sensors characterization of a micromachined water-propellant vaporizing liquid microthruster. Applied Thermal Engineering, 2021, 188, 116625.	6.0	7
28	Metachronal \hat{l} /4-Cilia for On-Chip Integrated Pumps and Climbing Robots. ACS Applied Materials & Interfaces, 2021, 13, 20845-20857.	8.0	34
29	Microfluidics for Drug Development: From Synthesis to Evaluation. Chemical Reviews, 2021, 121, 7468-7529.	47.7	95
30	Heater Integrated Lab-on-a-Chip Device for Rapid HLA Alleles Amplification towards Prevention of Drug Hypersensitivity. Sensors, 2021, 21, 3413.	3.8	5
31	Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal. Nanomedicine, 2021, 16, 1329-1342.	3.3	15
32	An eco-friendly, biocompatible and reliable piezoelectric nanocomposite actuator for the new generation of microelectronic devices. European Physical Journal Plus, 2021, 136, 1.	2.6	5
33	Neuromodulation using electroosmosis. Journal of Neural Engineering, 2021, 18, 046072.	3. 5	3
34	Design and investigation on a piezoelectric screw pump with high flowrate. Smart Materials and Structures, 0, , .	3 . 5	6
35	Piezoelectric titanium based microfluidic pump and valves for implantable medical applications. Sensors and Actuators A: Physical, 2021, 323, 112649.	4.1	22
36	Magnetoactive Soft Drivers with Radial-Chain Iron Microparticles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34935-34941.	8.0	9

#	ARTICLE	IF	CITATIONS
37	Performance comparison of piezo actuated valveless micropump with central excitation and annular excitation for biomedical applications. Smart Materials and Structures, 2021, 30, 105019.	3.5	8
38	A self-powered pump based on gas-dissolved-in-liquid phenomenon to generate both negative and positive driving pressures. Sensors and Actuators B: Chemical, 2021, 342, 130048.	7.8	1
39	The characters exploration of a piezoelectric pump with fishtail-shaped bluffbody. Journal of Intelligent Material Systems and Structures, 2022, 33, 972-984.	2.5	7
40	Microdosing for drug delivery application—A review. Sensors and Actuators A: Physical, 2021, 330, 112820.	4.1	30
41	Highly-customizable 3D-printed peristaltic pump kit. HardwareX, 2021, 10, e00202.	2.2	16
42	Experimental demonstration of closing and opening motions of an elastic valve using induced charge electro-osmosis in a flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127334.	4.7	4
43	Development of a High Differential Pressure Piezoelectric Active Proportional Regulation Valve Using a Bending Transducer. IEEE Transactions on Industrial Electronics, 2021, 68, 12513-12523.	7.9	13
44	Development of a High-Pressure Self-Priming Valve-Based Piezoelectric Pump Using Bending Transducers. IEEE Transactions on Industrial Electronics, 2022, 69, 2759-2768.	7.9	17
45	Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Materials and Structures, 2021, 30, 013002.	3.5	147
46	Performance Comparison of Novel Single and Bi-Diaphragm PZT Based Valveless Micropumps. Journal of Applied Fluid Mechanics, 2020, 13, 401-412.	0.2	13
47	Tunable flow asymmetry and flow rectification with bio-inspired soft leaflets. Physical Review Fluids, 2020, 5, .	2.5	4
48	Non-Invasive Manipulation of Two-Phase Liquid–Liquid Slug Flow Parameters Using Magnetofluidics. Micromachines, 2021, 12, 1449.	2.9	1
49	Design of a piezoelectric pump with arch cantilever beam vibrator., 2021,,.		0
50	Microfluidic Cell Transport with Piezoelectric Micro Diaphragm Pumps. Micromachines, 2021, 12, 1459.	2.9	8
51	Design, fabrication, and characterization of an SLA 3D printed nanocomposite electromagnetic microactuator. Microelectronic Engineering, 2022, 254, 111695.	2.4	24
52	Microelectromechanical Systems (MEMS) for Biomedical Applications. Micromachines, 2022, 13, 164.	2.9	44
53	Analysis of annularly excited bossed diaphragm for performance enhancement of mechanical micropump. Sensors and Actuators A: Physical, 2022, 335, 113381.	4.1	1
54	Research on a large opening and high flow rate piezoelectric pump with straight arm wheeled check valve. Review of Scientific Instruments, 2022, 93, 035002.	1.3	1

#	Article	IF	CITATIONS
55	Recent trends in structures and applications of valveless piezoelectric pump—a review. Journal of Micromechanics and Microengineering, 2022, 32, 053002.	2.6	6
56	Design and flow simulation of a micro steam jet pump. Modern Physics Letters B, 0, , .	1.9	2
57	A piezoelectric micro gas compressor with parallel-serial hybrid chambers. Journal of Intelligent Material Systems and Structures, 0, , 1045389X2110639.	2.5	1
58	Natural convection pump having local nonequilibrium states with heaters for microfluidic circuits. Japanese Journal of Applied Physics, 2022, 61, 064001.	1.5	6
59	Analytical model describing the nonlinear behavior of an elastomeric pump membrane in a microfluidic network. Microfluidics and Nanofluidics, 2022, 26, 1.	2.2	1
60	Development of a novel valve-based piezoelectric ultrasonic pump using a Langevin vibrator. Smart Materials and Structures, 2022, 31, 065026.	3.5	2
61	A miniature piezoelectric pump with high performance. AIP Advances, 2022, 12, .	1.3	3
62	A whole-thermoplastic microfluidic chip with integrated on-chip micropump, bioreactor and oxygenator for cell culture applications. Analytica Chimica Acta, 2022, 1221, 340093.	5.4	10
63	Design of a Piezoelectric Pump Driven by Inertial Force of Vibrator Supported by a Slotted Beam. Machines, 2022, 10, 460.	2.2	1
64	Numerical simulation and experimental verification of a valveless piezoelectric pump based on heteromorphic symmetric bluff body. Review of Scientific Instruments, 2022, 93, .	1.3	1
65	Design of a Dual-Stage Driving Circuit for Piezoelectric-Actuated Micropump With Bimorph Transducer. IEEE Sensors Journal, 2022, 22, 16027-16035.	4.7	0
66	Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly. Micromachines, 2022, 13, 1068.	2.9	13
67	Experimental study on the performance of a mini-scale Y-type mixer with two liquid metal-enabled pumps. Physics of Fluids, 2022, 34, .	4.0	7
68	Analysis and Optimization of Multistage Tesla Valves by Computational Fluid Dynamics and a Multiâ€Objective Genetic Algorithm. Chemical Engineering and Technology, 2022, 45, 2245-2253.	1.5	6
69	Numerical investigation of flexible Purcell-like integrated microfluidic pumps. Journal of Applied Physics, 2022, 132, 164701.	2.5	2
70	Enhancing the flow efficiency of micropumping devices using a PDMS biomimetic diversion system. Mechanics of Advanced Materials and Structures, 2024, 31, 948-958.	2.6	0
71	Experimental investigation on digital offset switching strategy for precise dosing using digital multiple micropump infusion system. Microfluidics and Nanofluidics, 2022, 26, .	2.2	4
72	Application of Microfluidics in Drug Development from Traditional Medicine. Biosensors, 2022, 12, 870.	4.7	9

#	ARTICLE	IF	Citations
73	Large Eddy Simulation of the cavitating flow around a Clark-Y mini cascade with an insight on the cavitation-vortex interaction. Ocean Engineering, 2022, 266, 112852.	4.3	7
74	Numerical study on the pulsating energy evolution in the cavitating flow around a mini Cascade. Physics of Fluids, 2022, 34, .	4.0	4
75	An analysis of bi-directional Stokes micropump comprising a periodic array of moving belts. Physics of Fluids, 2022, 34, 122005.	4.0	2
76	Numerical Investigation of Cavitation Flow Characteristics in a Hydrodynamic Levitated Micropump With Eccentric Rotation. International Journal of Applied Mechanics, 0, , .	2.2	1
77	Performance Enhancement Using Porous Slabs in a Jet Impingement Microchannel Heat Sink. Heat Transfer Engineering, 2023, 44, 1903-1925.	1.9	1
78	Microfluidic Actuated and Controlled Systems and Application for Lab-on-Chip in Space Life Science. Space: Science & Technology, 2023, 3, .	2.5	4
79	Bio-inspired magnetic-driven folded diaphragm for biomimetic robot. Nature Communications, 2023, 14,	12.8	7
80	Energy-efficient self-locking micropump system using single bi-stable electromagnetic actuator. Sensors and Actuators A: Physical, 2023, 351, 114173.	4.1	1
81	Peristaltic micropump using polyvinyl chloride gels with micropatterned surface. Scientific Reports, 2022, 12, .	3.3	3
82	A Novel Integrated Transdermal Drug Delivery System with Micropump and Microneedle Made from Polymers. Micromachines, 2023, 14, 71.	2.9	1
83	Design and simulation of a piezoelectric micropump for drug delivery systems. Microsystem Technologies, 2023, 29, 253-264.	2.0	2
84	Analysis of fluid-structure interaction in a directional permeability membrane in pressure-driven flow. Engineering Research Express, 2023, 5, 015020.	1.6	0
85	A THEORETICAL APPROXIMATION FOR LAMINAR FLOW BETWEEN ECCENTRIC CYLINDERS. EskiÅŸehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 2023, 11, 1-12.	0.0	0
86	Modular microfluidics for life sciences. Journal of Nanobiotechnology, 2023, 21, .	9.1	16
87	Closed-loop control systems for pumps used in portable analytical systems. Journal of Chromatography A, 2023, 1695, 463931.	3.7	1
88	A review of recent studies on valve-less piezoelectric pumps. Review of Scientific Instruments, 2023, 94, 031502.	1.3	3
89	A Laser-Micromachined PCB Electrolytic Micropump Using an Oil-Based Electrolyte Separation Barrier. Biochip Journal, 2023, 17, 244-262.	4.9	3
90	Research on the performance of a valveless piezoelectric pump with a herringbone bluffbody. Review of Scientific Instruments, 2023, 94, 045006.	1.3	2

#	Article	IF	Citations
91	Microfluidic devices and their applicability to cell studies. , 2023, , 27-118.		O
92	The trajectory monitoring method of hydrodynamic suspension bearing based on laser-ranging technology. Measurement Science and Technology, 0, , .	2.6	1
93	Experimental study on performance evaluation of passive valved piezoelectric micropumps with series, parallel and hybrid series-parallel configuration. Advances in Materials and Processing Technologies, 0, , 1-23.	1.4	0
94	Fluid-structure interaction and experimental studies of passive check valve based piezoelectric micropump for biomedical applications. Advances in Materials and Processing Technologies, 0, , 1-27.	1.4	1
95	Advances in Micropumps for Microfluidic Systems. Advances in Mechatronics and Mechanical Engineering, 2023, , 51-74.	1.0	2
96	A novel hydrodynamic suspension micropump using centrifugal pressurization and the wedge effect. Science China Technological Sciences, 2023, 66, 2047-2058.	4.0	3
97	Recent studies on the application of piezoelectric pump in different fields. Microsystem Technologies, 2023, 29, 663-682.	2.0	3
98	Recent Advances in Magnetic Polymer Composites for BioMEMS: A Review. Materials, 2023, 16, 3802.	2.9	11
99	Miniaturized neural implants for localized and controllable drug delivery in the brain. Journal of Materials Chemistry B, 2023, 11, 6249-6264.	5.8	0
100	A novel electromagnetic micropump with PDMS membrane supported by a stainless-steel microstructure. Journal of Micromechanics and Microengineering, 2023, 33, 075005.	2.6	2
102	Microactuators technologies for biomedical applications. Microsystem Technologies, 2023, 29, 953-984.	2.0	3
103	Analytic modeling and comprehensive transverse deflection analysis of elastically restrained piezoelectric actuators with silicone layer. Mechanics of Advanced Materials and Structures, 0, , 1-19.	2.6	0
104	Advanced ionic actuators with high-performance and high-reproducibility based on free-standing bacterial cellulose-reinforced poly(diallyldimethylammonium chloride) membranes and PEDOT/PSS electrodes. Cellulose, 2023, 30, 7825-7837.	4.9	1
105	Smart Sensors and Microtechnologies in the Precision Medicine Approach against Lung Cancer. Pharmaceuticals, 2023, 16, 1042.	3.8	1
106	Electronic drug delivery systems. , 2023, , 703-732.		0
108	Using parallel plates capacitor as a volumetric flow rate sensor and direction detection for microfluidic/nanofluidic and extra smaller applications. Sensors International, 2023, 4, 100247.	8.4	1
109	Performance study of a valveless piezoelectric pump with built-in semi-arc bluffbody antique tower channel. Review of Scientific Instruments, 2023, 94, .	1.3	0
110	Millifluidic valves and pumps made of tape and plastic. Lab on A Chip, 2023, 23, 4579-4591.	6.0	1

#	Article	IF	CITATIONS
111	Resonant-Type Piezoelectric Pump Driven by Piezoelectric Stacks and a Rhombic Micro Displacement Amplifier. Micromachines, 2023, 14, 1764.	2.9	0
112	Recent developments toward microfluidic point-of-care diagnostic sensors for viral infections. TrAC - Trends in Analytical Chemistry, 2023, 169, 117361.	11.4	1
113	Micropumps: Mechanisms, fabrication, and biomedical applications. Sensors and Actuators A: Physical, 2023, 363, 114732.	4.1	0
114	A compact modularized power-supply system for stable flow generation in microfluidic devices. Microfluidics and Nanofluidics, 2023, 27, .	2.2	0
115	A microfluidic evaporator with a photothermal porous layer for continuous sample concentration. Chemical Engineering Science, 2024, 283, 119383.	3.8	0
117	Fractional order neural sliding mode control based on the FO-Hammerstein model of piezoelectric actuator. ISA Transactions, 2023, , .	5.7	1
118	Development of a network-based ultra-precision fluidic micro-pump system. , 2023, , .		0
119	An axisymmetric model of the controlled fluid flow damper. Computational Continuum Mechanics, 2023, 16, 331-344.	0.5	0
120	Capillary and Electrodynamic Forces-Driven Separation Detection of Metal Ions Using a Disposable Microfluidic Sensor with a Composite Electrode. Analytical Chemistry, 2023, 95, 16701-16709.	6.5	0
121	Design, Simulation and Multi-Objective Optimization of a Micro-Scale Gearbox for a Novel Rotary Peristaltic Pump. Micromachines, 2023, 14, 2099.	2.9	0
122	Modeling and Simulation of Check/Flap Valve Used in Micropump Applications. , 2024, , 929-934.		0
123	Deformation twinning and feature size mediated strain hardening behavior in a medium-entropy alloy at the mesoscopic scale. Materials Characterization, 2024, 207, 113564.	4.4	0
124	Hybrid Impedimetric Biosensors for Express Protein Markers Detection. Micromachines, 2024, 15, 181.	2.9	0
125	Microchannel Gas Flow in the Multi-Flow Regime Based on the Lattice Boltzmann Method. Entropy, 2024, 26, 84.	2.2	0
126	Bond Graph Modeling and Simulation of Hybrid Piezo-Flexural-Hydraulic Actuator., 0,,.		0
127	A Miniaturized Wireless Micropump Enabled by Confined Acoustic Streaming. Research, 2024, 7, .	5.7	0
128	Increasing operational stability of journal bearing in hydraulic suspension micro-pump by herringbone grooved structure. Science China Technological Sciences, 2024, 67, 853-862.	4.0	0
129	Liquid phase detection in the miniature scale. Microfluidic and capillary scale measurement and separation systems. A tutorial review. Analytica Chimica Acta, 2024, 1305, 342507.	5.4	0

ARTICLE IF CITATIONS

130 A thermally actuated biocompatible flexible micropump for surface adaptable mounting. Microfluidics and Nanofluidics, 2024, 28, . 0