Chemical fractionation, bioavailability, and health risks matter at a site in the Indo-Gangetic Plain, India

Environmental Science and Pollution Research 26, 19749-19762

DOI: 10.1007/s11356-019-05144-8

Citation Report

#	Article	IF	CITATIONS
1	Acid-extractable heavy metals in PM2.5 over Xi'an, China: seasonal distribution and meteorological influence. Environmental Science and Pollution Research, 2019, 26, 34357-34367.	2.7	21
2	Seasonal and spatial variability of secondary inorganic aerosols in PM2.5 at Agra: Source apportionment through receptor models. Chemosphere, 2020, 242, 125132.	4.2	45
3	Characteristics and health risk assessments of heavy metals in PM2.5 in Taiyuan and Yuci college town, China. Air Quality, Atmosphere and Health, 2020, 13, 909-919.	1.5	13
4	First observation-based study on surface O3 trend in Indo-Gangetic Plain: Assessment of its impact on crop yield. Chemosphere, 2020, 255, 126972.	4.2	20
5	Fractionation analysis and health risk assessment of heavy metals in six traditional Chinese medicines. Environmental Science and Pollution Research, 2020, 27, 10308-10316.	2.7	10
6	Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere, 2021, 262, 127835.	4.2	71
7	The effect of air pollution on immunological, antioxidative and hematological parameters, and body condition of Eurasian tree sparrows. Ecotoxicology and Environmental Safety, 2021, 208, 111755.	2.9	19
8	Human-Associated Potential Risk of Metal-Bound Fine Particulate Matter. Springer Atmospheric Sciences, 2021, , 87-107.	0.4	O
9	Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. International Journal of Molecular Sciences, 2021, 22, 4787.	1.8	5
10	Spatial distribution and consequences of contaminants in harbour sediments – A case study from Richards Bay Harbour, South Africa. Marine Pollution Bulletin, 2021, 172, 112764.	2.3	7
11	Chemical signature and fractionation of trace elements in fine particles from anthropogenic and natural sources. Journal of Environmental Sciences, 2022, 114, 365-375.	3.2	1
12	Determination and assessment of elemental concentration in the atmospheric particulate matter: a comprehensive review. Environmental Monitoring and Assessment, 2022, 194, 243.	1.3	2
13	Chemical Fractionation in Environmental Studies of Potentially Toxic Particulate-Bound Elements in Urban Air: A Critical Review. Toxics, 2022, 10, 124.	1.6	15
14	Influence of thermal aging and long term-aging on Ni and V content in asphalt fractions and their determination in air particulate matter from asphalt mixing plants. Fuel, 2022, 324, 124289.	3.4	5
15	Can the Indian national ambient air quality standard protect against the hazardous constituents of PM2.5?. Chemosphere, 2022, 303, 135047.	4.2	4
16	Surveillance of long-term environmental elements and PM2.5 health risk assessment in Yangtze River Delta, China, from 2016 to 2020. Environmental Science and Pollution Research, 0, , .	2.7	3
18	Airborne heavy metals deposition and contamination to water resources., 2023,, 155-173.		1
19	Indirect Methods to Determine the Risk of Damage to the Health of Firefighters and Children Due to Exposure to Smoke Emission from Burning Wood/Coal in a Controlled Environment. International Journal of Environmental Research and Public Health, 2023, 20, 5607.	1.2	O

ARTICLE IF CITATIONS

The role of chemical fractionation in risk assessment of toxic metals: a review. Environmental Monitoring and Assessment, 2023, 195, . 1.3 1