Modular and Reconfigurable Wireless Eâ€Tattoos for Pe

Advanced Materials Technologies 4, 1900117 DOI: 10.1002/admt.201900117

Citation Report

#	Article	IF	CITATIONS
1	Skinâ€Inspired Electronics and Its Applications in Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900063.	3.3	15
2	Recent Progress in Wireless Sensors for Wearable Electronics. Sensors, 2019, 19, 4353.	2.1	99
3	Stretchable Polymer Composite with a 3D Segregated Structure of PEDOT:PSS for Multifunctional Touchless Sensing. ACS Applied Materials & Interfaces, 2019, 11, 45301-45309.	4.0	47
4	Copperâ€Leafâ€Based Process for Imperceptible Computational Electronics. Advanced Electronic Materials, 2020, 6, 1900787.	2.6	5
5	A New Frontier of Printed Electronics: Flexible Hybrid Electronics. Advanced Materials, 2020, 32, e1905279.	11.1	475
6	Screenâ€Printed Dry Electrodes: Basic Characterization and Benchmarking. Advanced Engineering Materials, 2020, 22, 2000714.	1.6	8
7	A Bioinspired, Durable, and Nondisposable Transparent Graphene Skin Electrode for Electrophysiological Signal Detection. , 2020, 2, 999-1007.		44
8	Wearable Sensors Incorporating Compensatory Reserve Measurement for Advancing Physiological Monitoring in Critically Injured Trauma Patients. Sensors, 2020, 20, 6413.	2.1	30
9	Citizenship as the exception to the rule: an addendum. AI and Society, 2021, 36, 911-930.	3.1	8
10	Unconventional Device and Material Approaches for Monolithic Biointegration of Implantable Sensors and Wearable Electronics. Advanced Materials Technologies, 2020, 5, .	3.0	37
11	A flexible ECG patch compatible with NFC RF communication. Npj Flexible Electronics, 2020, 4, .	5.1	62
12	Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27906-27915.	3.3	84
13	Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches. Nano Letters, 2020, 20, 4872-4881.	4.5	56
14	Special Session: Physically Flexible Devices for Health and Activity Monitoring: Challenges from Design to Test. , 2020, , .		3
15	Photo-Rechargeable Fabrics as Sustainable and Robust Power Sources for Wearable Bioelectronics. Matter, 2020, 2, 1260-1269.	5.0	204
16	Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & Interfaces, 2020, 12, 34337-34361.	4.0	72
17	Nonintrusive Monitoring of Mental Fatigue Status Using Epidermal Electronic Systems and Machine-Learning Algorithms. ACS Sensors, 2020, 5, 1305-1313.	4.0	36
18	Intrinsic elastic conductors with internal buckled electron pathway for flexible electromagnetic interference shielding and tumor ablation. Science China Materials, 2020, 63, 1318-1329.	3.5	13

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Electronic skins and machine learning for intelligent soft robots. Science Robotics, 2020, 5, .	9.9	339
20	Paintâ€On Epidermal Electronics for Onâ€Đemand Sensors and Circuits. Advanced Electronic Materials, 2021, 7, .	2.6	9
21	Materials, Devices, and Systems of Onâ€5kin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Advanced Science, 2021, 8, 2001938.	5.6	168
22	Recent Advances in Wearable Devices for Non-Invasive Sensing. Applied Sciences (Switzerland), 2021, 11, 1235.	1.3	23
23	A highly conductive self-assembled multilayer graphene nanosheet film for electronic tattoos in the applications of human electrophysiology and strain sensing. Nanoscale, 2021, 13, 10798-10806.	2.8	14
24	Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 2021, 10, e2002105.	3.9	36
25	Recent progress of skin-integrated electronics for intelligent sensing. Light Advanced Manufacturing, 2021, 2, 39.	2.2	18
26	Transformable Electrocardiograph Using Robust Liquid–Solid Heteroconnector. ACS Sensors, 2021, 6, 212-219.	4.0	17
27	NFC-Based Wearable Optoelectronics Working with Smartphone Application for Untact Healthcare. Sensors, 2021, 21, 878.	2.1	13
28	Networks and near-field communication: up-close but far away. , 2021, , 197-210.		0
29	From Fiber to Fabric: Progress Towards Photovoltaic Energy Textile. Advanced Fiber Materials, 2021, 3, 76-106.	7.9	36
30	Hand Gesture Recognition Using Single Patchable Six-Axis Inertial Measurement Unit via Recurrent Neural Networks. Sensors, 2021, 21, 1404.	2.1	22
31	Recent Progress in Flexible Tactile Sensors for Humanâ€Interactive Systems: From Sensors to Advanced Applications. Advanced Materials, 2021, 33, e2005902.	11.1	216
32	Wireless and battery-free platforms for collection of biosignals. Biosensors and Bioelectronics, 2021, 178, 113007.	5.3	40
33	A Fieldâ€Deployable, Wearable Leaf Sensor for Continuous Monitoring of Vaporâ€Pressure Deficit. Advanced Materials Technologies, 2021, 6, 2001246.	3.0	29
34	Wireless Qi-Powered, Multinodal and Multisensory Body Area Network for Mobile Health. IEEE Internet of Things Journal, 2021, 8, 7600-7609.	5.5	16
35	Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Science Advances, 2021, 7, .	4.7	55
36	Mechanics of encapsulated three-dimensional structures for simultaneous sensing of pressure and shear stress. Journal of the Mechanics and Physics of Solids, 2021, 151, 104400.	2.3	10

# 37	ARTICLE Soft Electronics for Human-Centered Robotics. , 2021, , .	IF	Citations 0
38	Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 359-391.	3.3	81
39	A Highly Sensitive Graphene Aerogel Pressure Sensor Inspired by Fluffy Spider Leg. Advanced Materials Interfaces, 2021, 8, 2100511.	1.9	18
40	Magnetically Driven Nonâ€Contact Transfer Printing Based on a Biâ€Stable Elastomeric Stamp. Advanced Materials Technologies, 2021, 6, 2100335.	3.0	21
41	An Antiâ€Fatigue Design Strategy for 3D Ribbonâ€Shaped Flexible Electronics. Advanced Materials, 2021, 33, e2102684.	11.1	27
42	Flexible Wireless Passive LC Pressure Sensor with Design Methodology and Cost-Effective Preparation. Micromachines, 2021, 12, 976.	1.4	7
43	Thermo-Mechanically Trained Shape Memory Alloy for Temperature Recording With Visual Readout. , 2021, 5, 1-4.		9
44	Scaling Effects in the Mechanical System of the Flexible Epidermal Electronics and the Human Skin. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	15
45	A wireless optoelectronic skin patch for light delivery and thermal monitoring. IScience, 2021, 24, 103284.	1.9	5
46	Electronic tattoos: the most multifunctional but imperceptible wearables. , 2019, , .		3
47	Towards wearable piezoelectric energy harvesting. , 2020, , .		12
48	Hybrid power sources for wearable IoT devices. Denki Kagaku, 2020, 88, 331-336.	0.0	0
49	Wearable Sweat Biosensors Refresh Personalized Health/Medical Diagnostics. Research, 2021, 2021, 9757126.	2.8	29
50	Theoretical Modeling of Conformal Criterion for Flexible Electronics Attached Onto Complex Surface. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	4
51	Soft artificial electroreceptors for noncontact spatial perception. Science Advances, 2021, 7, eabg9203.	4.7	16
52	Lowâ€Cost, Largeâ€Area, Multifunctional Stretchable Eâ€Tattoos Inspired by Dough Figurines for Wearable Humanâ€Machine Interfaces. Advanced Materials Technologies, 2022, 7, 2100907.	3.0	12
53	Electronic Tattoo with Transferable Printed Electrodes and Interconnects for Wireless Electrophysiology Monitoring. Advanced Materials Technologies, 2022, 7, .	3.0	14
54	A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. Advanced Science, 2022, 9, e2104347.	5.6	29

CITATION REPORT

ARTICLE IF CITATIONS # Kirigami-Enabled Wearable Health and Crowd Monitoring System. Arabian Journal for Science and 55 1.7 1 Engineering, 2022, 47, 3583. Development and Characterization of a Self-Tightening Tourniquet System. Sensors, 2022, 22, 1122. 2.1 Multilayer flexible electronics: Manufacturing approaches and applications. Materials Today Physics, 57 2.9 23 2022, 23, 100647. Strategies for body-conformable electronics. Matter, 2022, 5, 1104-1136. 5.0 Fluid Microchannel Encapsulation to Improve the Stretchability of Flexible Electronics. Advanced 59 3.0 10 Materials Technologies, 2022, 7, . Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human–Machine Interfaces. Advanced Materials, 2023, 35, . 11.1 Battery-free, tuning circuit–inspired wireless sensor systems for detection of multiple biomarkers in 61 4.7 14 bodily fluids. Science Advances, 2022, 8, . Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. Sensors, 2.1 2022, 22, 5670. Wearable Piezoelectric Energy Harvesting From Human Gait: Modeling and Experimental Validation. IEEE Sensors Journal, 2022, 22, 16617-16627. 63 2.4 6 In-Situ Admittance Sensing of Sweat Rate and Chloride Level in Sweat Using Wearable Skin-Interfaced 64 0.4 Microfluidic Patch. SSRN Electronic Journal, O, , . Ultraâ€Thin Flexible Encapsulating Materials for Soft Bioâ€Integrated Electronics. Advanced Science, 37 65 5.6 2022, 9, . A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, 24 Perspective, and Prospective. Molecules, 2022, 27, 5709. Recent Advances in Multifunctional Wearable Sensors and Systems: Design, Fabrication, and 67 2.3 9 Applications. Biosensors, 2022, 12, 1057. In-situ admittance sensing of sweat rate and chloride level in sweat using wearable skin-interfaced microfluidic patch. Sensors and Actuators B: Chemical, 2023, 379, 133213. Full-Cut Manufacture of Skin-Interfaced Microfluidic Patch with Copper Electrode for In Situ 69 2.30 Admittance Sensing of Sweat Rate. Biosensors, 2023, 13, 67. Skin-interfaced electronics: A promising and intelligent paradigm for personalized healthcare. Biomaterials, 2023, 296, 122075. Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295. 238 71 7.3 Micro-fabrication Based Epidermal E-tattoo with Conformability and Sensitivity as Human-Machine Interface. Journal of Physics: Conference Series, 2023, 2463, 012019.

CITATION REPORT

#	Article	IF	CITATIONS
73	A Chestâ€Conformable, Wireless Electroâ€Mechanical Eâ€Tattoo for Measuring Multiple Cardiac Time Intervals. Advanced Electronic Materials, 2023, 9, .	2.6	8
82	A Preliminary Usability Study of Integrated Electronic Tattoo Surface Electromyography (sEMG) Sensors. , 2023, , .		0

CITATION REPORT