A Deep Learning Mammography-based Model for Impre

Radiology 292, 60-66 DOI: 10.1148/radiol.2019182716

Citation Report

#	Article	IF	CITATIONS
1	Can Al Help Make Screening Mammography "Lean�. Radiology, 2019, 293, 47-48.	3.6	8
2	Optimization of Electronic Medical Records for Data Mining Using a Common Data Model. Topics in Companion Animal Medicine, 2019, 37, 100364.	0.4	4
3	Micro-parenchymal patterns for breast cancer risk assessment. Biomedical Physics and Engineering Express, 2019, 5, 065008.	0.6	5
4	Clinical evaluation of a fully-automated parenchymal analysis software for breast cancer risk assessment: A pilot study in a Finnish sample. European Journal of Radiology, 2019, 121, 108710.	1.2	10
5	Breast cancer screening in average-risk women: towards personalized screening. British Journal of Radiology, 2019, 92, 20190660.	1.0	11
6	Artificial intelligence and breast screening: French Radiology Community position paper. Diagnostic and Interventional Imaging, 2019, 100, 553-566.	1.8	25
7	Assessing Cancer Risk from Mammograms: Deep Learning Is Superior to Conventional Risk Models. Radiology, 2019, 292, 67-68.	3.6	7
8	Explainable Deep Learning Applied to Understanding Opioid Use Disorder and Its Risk Factors. , 2019, , .		5
9	Deep Learning: Current State. IEEE Latin America Transactions, 2019, 17, 1925-1945.	1.2	13
10	Deep Learning for a Fast and Accurate Prediction of Complex Carbonate Rock Permeability From 3D Micro-CT Images. , 2019, , .		6
11	Calibration: the Achilles heel of predictive analytics. BMC Medicine, 2019, 17, 230.	2.3	745
12	Algorithms on regulatory lockdown in medicine. Science, 2019, 366, 1202-1204.	6.0	64
13	Artificial intelligence in healthcare: An essential guide for health leaders. Healthcare Management Forum, 2020, 33, 10-18.	0.6	169
14	The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast, 2020, 49, 25-32.	0.9	125
15	Overview of radiomics in breast cancer diagnosis and prognostication. Breast, 2020, 49, 74-80.	0.9	161
16	Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Diseases, 2020, 26, 152-158.	1.5	127
17	Harnessing the Power of Deep Learning to Assess Breast Cancer Risk. Radiology, 2020, 294, 273-274.	3.6	7
18	Comparison of a Deep Learning Risk Score and Standard Mammographic Density Score for Breast Cancer Risk Prediction. Radiology, 2020, 294, 265-272.	3.6	98

ATION REDO

#	Article	IF	CITATIONS
19	Humans and machines: Moving towards a more symbiotic approach to learning clinical reasoning. Medical Teacher, 2020, 42, 246-251.	1.0	7
20	Screening Guidelines Update for Average-Risk and High-Risk Women. American Journal of Roentgenology, 2020, 214, 316-323.	1.0	39
21	Harnessing big â€~omics' data and AI for drug discovery in hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 238-251.	8.2	90
22	Update on Breast Density, Risk Estimation, and Supplemental Screening. American Journal of Roentgenology, 2020, 214, 296-305.	1.0	37
23	Radiologic Technologist and Radiologist Knowledge Gaps about Breast Density Revealed by an Online Continuing Education Course. Journal of Breast Imaging, 2020, 2, 315-329.	0.5	2
24	Found in Translation: Unpacking the Artificial Intelligence Revolution That Has Already Arrived. Journal of the American College of Radiology, 2020, 17, 1307-1308.	0.9	0
25	Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. Npj Digital Medicine, 2020, 3, 136.	5.7	266
26	A descriptive framework for the field of deep learning applications in medical images. Knowledge-Based Systems, 2020, 210, 106445.	4.0	23
27	Prediagnostic Image Data, Artificial Intelligence, and Pancreatic Cancer. Pancreas, 2020, 49, 882-886.	0.5	17
28	Baseline Screening MRI Uptake and Findings in Women with ≥ 20% Lifetime Risk of Breast Cancer. Annal of Surgical Oncology, 2020, 27, 3595-3602.	s 0.7	4
29	Dynamic Changes of Convolutional Neural Network-based Mammographic Breast Cancer Risk Score Among Women Undergoing Chemoprevention Treatment. Clinical Breast Cancer, 2021, 21, e312-e318.	1.1	7
30	Artificial Intelligence-Based Polyp Detection in Colonoscopy: Where Have We Been, Where Do We Stand, and Where Are We Headed?. Visceral Medicine, 2020, 36, 428-438.	0.5	9
31	Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. Seminars in Cancer Biology, 2022, 84, 310-328.	4.3	34
32	Automated Breast Cancer Detection in Digital Mammograms of Various Densities via Deep Learning. Journal of Personalized Medicine, 2020, 10, 211.	1.1	58
33	Breast cancer risk assessment and early diagnosis using Principal Component Analysis and support vector machine techniques. Informatics in Medicine Unlocked, 2020, 21, 100459.	1.9	4
34	Development of a Deep Learning Model to Identify Lymph Node Metastasis on Magnetic Resonance Imaging in Patients With Cervical Cancer. JAMA Network Open, 2020, 3, e2011625.	2.8	51
35	A Comparison of Regions of Interest in Parenchymal Analysis for Breast Cancer Risk Assessment. , 2020, 2020, 1136-1139.		2
36	Machine Learning in Oncology: Methods, Applications, and Challenges. JCO Clinical Cancer Informatics, 2020, 4, 885-894.	1.0	42

#	Article	IF	CITATIONS
38	CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV. Npj Digital Medicine, 2020, 3, 115.	5.7	69
39	From Patient Engagement to Precision Oncology: Leveraging Informatics to Advance Cancer Care. Yearbook of Medical Informatics, 2020, 29, 235-242.	0.8	8
40	A New Benchmark and Method for the Evaluation of Chest Wall Detection in Digital Mammography. , 2020, 2020, 1132-1135.		2
41	Novel Approaches to Screening for Breast Cancer. Radiology, 2020, 297, 266-285.	3.6	77
42	Identification of Women at High Risk of Breast Cancer Who Need Supplemental Screening. Radiology, 2020, 297, 327-333.	3.6	40
43	Breast Cancer–Detection System Using PCA, Multilayer Perceptron, Transfer Learning, and Support Vector Machine. IEEE Access, 2020, 8, 204309-204324.	2.6	41
44	Precision medicine in the era of artificial intelligence: implications in chronic disease management. Journal of Translational Medicine, 2020, 18, 472.	1.8	99
45	Artificial Intelligence: A Primer for Breast Imaging Radiologists. Journal of Breast Imaging, 2020, 2, 304-314.	0.5	26
46	Current Clinical Applications of Artificial Intelligence in Radiology and Their Best Supporting Evidence. Journal of the American College of Radiology, 2020, 17, 1371-1381.	0.9	37
47	Assessing breast cancer risk within the general screening population: developing a breast cancer risk model to identify higher risk women at mammographic screening. European Radiology, 2020, 30, 5417-5426.	2.3	10
48	Evaluation of LIBRA Software for Fully Automated Mammographic Density Assessment in Breast Cancer Risk Prediction. Radiology, 2020, 296, 24-31.	3.6	21
49	Impact of adding breast density to breast cancer risk models: A systematic review. European Journal of Radiology, 2020, 127, 109019.	1.2	33
50	Invited Commentary: Breast Cancer Risk Assessment and Screening Strategies—What's New?. Radiographics, 2020, 40, 937-940.	1.4	4
51	Precision education with statistical learning and deep learning: a case study in Taiwan. International Journal of Educational Technology in Higher Education, 2020, 17, .	4.5	45
52	Current Landscape of Breast Cancer Imaging and Potential Quantitative Imaging Markers of Response in ER-Positive Breast Cancers Treated with Neoadjuvant Therapy. Cancers, 2020, 12, 1511.	1.7	9
53	Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nature Reviews Clinical Oncology, 2020, 17, 687-705.	12.5	178
54	Large Datasets for Disparities Research in Breast Cancer. Current Breast Cancer Reports, 2020, 12, 140-148.	0.5	0
55	Imaging for Response Assessment in Cancer Clinical Trials. Seminars in Nuclear Medicine, 2020, 50, 488-504.	2.5	22

#	Article	IF	CITATIONS
56	Deep Learning Pre-training Strategy for Mammogram Image Classification: an Evaluation Study. Journal of Digital Imaging, 2020, 33, 1257-1265.	1.6	13
57	Highly sensitive and selective detection of cancer cell with an all-optical scheme. Laser Physics, 2020, 30, 085601.	0.6	0
58	Going Beyond Conventional Mammographic Density to Discover Novel Mammogram-Based Predictors of Breast Cancer Risk. Journal of Clinical Medicine, 2020, 9, 627.	1.0	23
59	Mammography Screening Guideline Controversies: Opportunities to Improve Patient Engagement in Screening. Journal of the American College of Radiology, 2020, 17, 633-636.	0.9	2
60	Cancer Prevention Using Machine Learning, Nudge Theory and Social Impact Bond. International Journal of Environmental Research and Public Health, 2020, 17, 790.	1.2	20
61	Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics. Artificial Intelligence in Medicine, 2020, 105, 101854.	3.8	38
62	Machine Learning in oncology: A clinical appraisal. Cancer Letters, 2020, 481, 55-62.	3.2	99
63	Writing a Great Review for Radiology. Radiology, 2020, 295, 496-498.	3.6	8
64	Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Seminars in Cancer Biology, 2021, 72, 214-225.	4.3	121
65	Deep Learning for Medical Decision Support Systems. Studies in Computational Intelligence, 2021, , .	0.7	13
66	Deep computational pathology in breast cancer. Seminars in Cancer Biology, 2021, 72, 226-237.	4.3	30
67	Novel mammogramâ€based measures improve breast cancer risk prediction beyond an established mammographic density measure. International Journal of Cancer, 2021, 148, 2193-2202.	2.3	18
68	Potential of using mammography screening appointments to identify high-risk women: cross sectional survey results from the national health interview survey. Breast Cancer Research and Treatment, 2021, 186, 229-235.	1.1	2
71	Deep Learning-Based Artificial Intelligence for Mammography. Korean Journal of Radiology, 2021, 22, 1225.	1.5	37
72	Al applications in diagnostic technologies and services. , 2021, , 125-198.		2
73	A Review of Applications of Machine Learning in Mammography and Future Challenges. Oncology, 2021, 99, 483-490.	0.9	22
74	Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nature Medicine, 2021, 27, 244-249.	15.2	187
75	Analysis of Histopathological Images Using Machine Learning Techniques. Communications in Computer and Information Science, 2021, , 225-233.	0.4	0

#	Article	IF	CITATIONS
76	Deep learning in breast radiology: current progress and future directions. European Radiology, 2021, 31, 4872-4885.	2.3	35
77	Exploring the current status of the development and practical application of AI-CAD in the field of breast cancer screening. Nihon Nyugan Kenshin Gakkaishi (Journal of Japan Association of Breast) Tj ETQq1 1 0.7	78403.104 rgl	3T¢Overlock
78	ASO Author Reflections: Will Breast Cancer Screening Become Personalized?. Annals of Surgical Oncology, 2021, 28, 4318-4319.	0.7	2
79	Designing deep learning studies in cancer diagnostics. Nature Reviews Cancer, 2021, 21, 199-211.	12.8	175
80	Entropy Role on Patch-Based Binary Classification for Skin Melanoma. Communications in Computer and Information Science, 2021, , 324-333.	0.4	1
81	Personalized Screening for Breast Cancer: Rationale, Present Practices, and Future Directions. Annals of Surgical Oncology, 2021, 28, 4306-4317.	0.7	30
82	Do as Al say: susceptibility in deployment of clinical decision-aids. Npj Digital Medicine, 2021, 4, 31.	5.7	162
83	Assessing Risk of Breast Cancer: A Review of Risk Prediction Models. Journal of Breast Imaging, 2021, 3, 144-155.	0.5	47
84	Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients. European Journal of Cancer, 2021, 144, 224-231.	1.3	12
85	Construction of Fuzzy ERP Data Analysis System based on Deep Learning. , 2021, , .		1
86	An introduction to machine learning for clinicians: How can machine learning augment knowledge in geriatric oncology?. Journal of Geriatric Oncology, 2021, 12, 1159-1163.	0.5	7
87	Driving Mobile Robots using a Deep LSTM Architecture: An Experimental Approach. IEEE Latin America Transactions, 2021, 19, 481-489.	1.2	1
88	Artificial Intelligence and Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 251-279.	0.5	71
89	Artificial Intelligence–Aided Precision Medicine for COVID-19: Strategic Areas of Research and Development. Journal of Medical Internet Research, 2021, 23, e22453.	2.1	21
90	A Pilot Study in Surveying Clinical Judgments to Evaluate Radiology Report Generation. , 2021, , .		2
91	Automated system for diagnosing endometrial cancer by adopting deep-learning technology in hysteroscopy. PLoS ONE, 2021, 16, e0248526.	1.1	30
92	An Immune Model to Predict Prognosis of Breast Cancer Patients Receiving Neoadjuvant Chemotherapy Based on Support Vector Machine. Frontiers in Oncology, 2021, 11, 651809.	1.3	3
93	Less Is More—Ways to Move Forward for Improved Breast Cancer Risk Stratification. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 587-589.	1.1	5

#	ARTICLE	IF	CITATIONS
94	Impact of image compression on deep learning-based mammogram classification. Scientific Reports, 2021, 11, 7924.	1.6	6
95	Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. Npj Digital Medicine, 2021, 4, 65.	5.7	294
96	Improving the Generalizability of Infantile Cataracts Detection via Deep Learning-Based Lens Partition Strategy and Multicenter Datasets. Frontiers in Medicine, 2021, 8, 664023.	1.2	6
97	Novel Deep Neural Network Model For Brain Tumor and Breast Cancer Classification to promote E-Health. , 2021, , .		1
98	Current State of Breast Cancer Diagnosis, Treatment, and Theranostics. Pharmaceutics, 2021, 13, 723.	2.0	63
99	MGBN: Convolutional neural networks for automated benign and malignant breast masses classification. Multimedia Tools and Applications, 2021, 80, 26731-26750.	2.6	11
100	Cancer screening in China: The current status, challenges, and suggestions. Cancer Letters, 2021, 506, 120-127.	3.2	60
101	Health Care Equity in the Use of Advanced Analytics and Artificial Intelligence Technologies in Primary Care. Journal of General Internal Medicine, 2021, 36, 3188-3193.	1.3	19
104	The concordance in lesion detection and characteristics between the Anatomical Intelligence and conventional breast ultrasound Scan method. BMC Medical Imaging, 2021, 21, 102.	1.4	2
105	Melanoma in the blink of an eye: Pathologists' rapid detection, classification, and localization of skin abnormalities. Visual Cognition, 2021, 29, 386-400.	0.9	2
106	The application of artificial intelligence to chest medical image analysis. Intelligent Medicine, 2021, 1, 104-117.	1.6	8
107	Açıklanabilir Evrişimsel Sinir Ağları ile Beyin Tümörü Tespiti. El-Cezeri Journal of Science and Engineering, 0, , .	0.1	3
108	Evaluation of deep learningâ€based artificial intelligence techniques for breast cancer detection on mammograms: Results from a retrospective study using a BreastScreen Victoria dataset. Journal of Medical Imaging and Radiation Oncology, 2021, 65, 529-537.	0.9	20
109	Cognitive Computing-Based CDSS in Medical Practice. Health Data Science, 2021, 2021, .	1.1	4
110	Artificial Intelligence Coreflooding Simulator for Special Core Data Analysis. SPE Reservoir Evaluation and Engineering, 2021, 24, 780-808.	1.1	3
111	Artificial Intelligence in Medical Imaging of the Breast. Frontiers in Oncology, 2021, 11, 600557.	1.3	34
112	Triage of 2D Mammographic Images Using Multi-view Multi-task Convolutional Neural Networks. ACM Transactions on Computing for Healthcare, 2021, 2, 1-24.	3.3	1
113	Effective Surveillance of High-Risk Women. Clinical Breast Cancer, 2021, , .	1.1	1

#	Article	IF	CITATIONS
114	Primary Care Providers Underutilize Breast Screening MRI for High-Risk Women. Current Problems in Diagnostic Radiology, 2021, 50, 489-494.	0.6	4
115	A survey on data mining techniques used in medicine. Journal of Diabetes and Metabolic Disorders, 2021, 20, 2055-2071.	0.8	11
116	Detecting Spurious Correlations With Sanity Tests for Artificial Intelligence Guided Radiology Systems. Frontiers in Digital Health, 2021, 3, 671015.	1.5	4
117	Artificial intelligence for the next generation of precision oncology. Npj Precision Oncology, 2021, 5, 79.	2.3	13
118	Bridging the Gap Between 2D and 3D Contexts in CT Volume for Liver and Tumor Segmentation. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3450-3459.	3.9	18
119	Deep Learning Predicts Interval and Screening-detected Cancer from Screening Mammograms: A Case-Case-Control Study in 6369 Women. Radiology, 2021, 301, 550-558.	3.6	15
120	Artificial intelligence in cancer research, diagnosis and therapy. Nature Reviews Cancer, 2021, 21, 747-752.	12.8	87
121	Breast Cancer Risk Prediction Using Deep Learning. Radiology, 2021, 301, 559-560.	3.6	6
122	Al-enhanced breast imaging: Where are we and where are we heading?. European Journal of Radiology, 2021, 142, 109882.	1.2	35
123	Breast Cancer Screening Recommendations Inclusive of All Women at Average Risk: Update from the ACR and Society of Breast Imaging. Journal of the American College of Radiology, 2021, 18, 1280-1288.	0.9	99
124	Artificial Intelligence Algorithm Improves Radiologist Performance in Skeletal Age Assessment: A Prospective Multicenter Randomized Controlled Trial. Radiology, 2021, 301, 692-699.	3.6	43
125	Challenges and opportunities for artificial intelligence in oncological imaging. Clinical Radiology, 2021, 76, 728-736.	0.5	20
126	Looking for Abnormalities in Mammograms With Self- and Weakly Supervised Reconstruction. IEEE Transactions on Medical Imaging, 2021, 40, 2711-2722.	5.4	16
127	Artificial intelligence for the real world of breast screening. European Journal of Radiology, 2021, 144, 109661.	1.2	10
128	Use of artificial intelligence to predict mean time to delivery following cervical ripening with dinoprostone vaginal insert. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2021, 266, 1-6.	0.5	0
129	Machine and deep learning for estimating the permeability of complex carbonate rock from X-ray micro-computed tomography. Energy Reports, 2021, 7, 1460-1472.	2.5	44
130	Applications of Artificial Intelligence in Mammography from a Development and Validation Perspective. Journal of the Korean Society of Radiology, 2021, 82, 12.	0.1	1
131	Is It the Era for Personalized Screening?. Radiologic Clinics of North America, 2021, 59, 129-138.	0.9	8

		CITATION R	EPORT	
#	Article		IF	CITATIONS
132	Epidemiology of Triple-Negative Breast Cancer. Cancer Journal (Sudbury, Mass), 2021,	27, 8-16.	1.0	126
133	Classification of Pediatric Posterior Fossa Tumors Using Convolutional Neural Network Data. IEEE Access, 2021, 9, 91966-91973.	and Tabular	2.6	6
134	Machine learning-integrated omics for the risk and safety assessment of nanomaterials Science, 2021, 9, 1598-1608.	. Biomaterials	2.6	44
135	Toward robust mammography-based models for breast cancer risk. Science Translation 2021, 13, .	al Medicine,	5.8	100
136	The Case of Missed Cancers: Applying AI as a Radiologist's Safety Net. Lecture Not Science, 2020, , 220-229.	es in Computer	1.0	5
137	Multi-task Learning for Detection and Classification of Cancer in Screening Mammogra Notes in Computer Science, 2020, , 241-250.	phy. Lecture	1.0	12
138	How Al is improving cancer diagnostics. Nature, 2020, 579, S14-S16.		13.7	28
139	Multimodal fusion with deep neural networks for leveraging CT imaging and electronic record: a case-study in pulmonary embolism detection. Scientific Reports, 2020, 10, 22	health 147.	1.6	83
141	Rethinking Cooperative Rationalization: Introspective Extraction and Complement Con	rtrol. , 2019, , .		45
142	Machine learning in oncology: a review. Ecancermedicalscience, 2020, 14, 1065.		0.6	10
143	An Examination of Serum Acylcarnitine and Amino Acid Profiles at Different Time Point Diet Therapy and Their Association of Ketogenic Diet Effectiveness. Nutrients, 2021, 13		1.7	6
144	WDCCNet: Weighted Double-Classifier Constraint Neural Network for Mammographic Classification. IEEE Transactions on Medical Imaging, 2022, 41, 559-570.	Image	5.4	6
145	Assessing the Economic Value of Clinical Artificial Intelligence: Challenges and Opportuin Health, 2022, 25, 331-339.	ınities. Value	0.1	18
146	Basic Artificial Intelligence Techniques. Radiologic Clinics of North America, 2021, 59, 9	941-954.	0.9	3
147	Development of a Deep Learning Algorithm for Segmentation of Kidney Tumor Imaging	ş. , O, , .		0
148	A Metric Framework for Quantifying Data Concentration. Lecture Notes in Computer S 181-190.	cience, 2019, ,	1.0	2
150	A Hybrid Medical Diagnosis Approach with Swarm Intelligence Supported Autoencoder Recurrent Neural Network System. Studies in Computational Intelligence, 2021, , 107-	Based 127.	0.7	1
151	A Brief View on Medical Diagnosis Applications with Deep Learning. Studies in Comput Intelligence, 2021, , 29-52.	ational	0.7	1

~			_		
Сп	AT	ION	i Re	EPO	RT

#	ARTICLE	IF	CITATIONS
152	Comparison between HOG and Haar descriptors in the detection of abnormal tissue in mammograms. , 2020, , .		0
153	Artificial intelligence as a tool to aid in the differentiation of equine ophthalmic diseases with an emphasis on equine uveitis. Equine Veterinary Journal, 2022, 54, 847-855.	0.9	5
155	Calibrating variant-scoring methods for clinical decision making. Bioinformatics, 2021, 36, 5709-5711.	1.8	10
156	Decoupling Inherent Risk and Early Cancer Signs in Image-Based Breast Cancer Risk Models. Lecture Notes in Computer Science, 2020, , 230-240.	1.0	7
157	Enhanced Credit Prediction Using Artificial Data. Lecture Notes in Computer Science, 2020, , 44-53.	1.0	0
159	Physics Driven Al Coreflooding Simulator for SCAL Data Analysis. , 2020, , .		1
160	Understanding and Expanding College Students' Perceptions of Computing's Social Impact. , 2021, , .		3
161	End-to-End Learning of Fused Image and Non-Image Features for Improved Breast Cancer Classification from MRI. , 2021, , .		15
162	Screening Mammography Recovery After COVID-19 Pandemic Facility Closures: Associations of Facility Access and Racial and Ethnic Screening Disparities. American Journal of Roentgenology, 2022, 218, 988-996.	1.0	13
163	Overcoming Barriers in Ductal Carcinoma In Situ Management: From Overtreatment to Optimal Treatment. Journal of Clinical Oncology, 2022, 40, 225-230.	0.8	12
164	Quantitative Imaging of Breast Cancer: Screening, Staging, and Monitoring. , 2021, , 1-24.		0
165	Multi-Task Fusion for Improving Mammography Screening Data Classification. IEEE Transactions on Medical Imaging, 2022, 41, 937-950.	5.4	6
166	Trial Risk Assessment Based on Total Utility of Generalized Fuzzy Numbers. , 2020, , .		0
167	Computer Aided Classification of Benign and Malignant Breast Lesions using Maximum Response 8 Filter Bank and Genetic Algorithm. , 2020, , .		1
168	Diagnostic Performance of Al for Cancers Registered in A Mammography Screening Program: A Retrospective Analysis. Technology in Cancer Research and Treatment, 2022, 21, 153303382210751.	0.8	8
169	Artificial Intelligence (AI) for Screening Mammography, From the <i>AJR</i> Special Series on AI Applications. American Journal of Roentgenology, 2022, 219, 369-380.	1.0	21
170	Automated Deep Learning Empowered Breast Cancer Diagnosis Using Biomedical Mammogram Images. Computers, Materials and Continua, 2022, 71, 4221-4235.	1.5	15
171	Optimizing risk-based breast cancer screening policies with reinforcement learning. Nature Medicine, 2022, 28, 136-143.	15.2	34

#	Article	IF	CITATIONS
172	Beyond the AJR: Validation of an Artificial Intelligence Breast Cancer Risk Assessment Model Across Diverse International Cohorts. American Journal of Roentgenology, 2022, , .	1.0	0
173	Detection of Abnormalities in Mammograms Using Deep Convolutional Neural Networks. Algorithms for Intelligent Systems, 2022, , 407-416.	0.5	3
174	Interval Cancer Detection Using a Neural Network and Breast Density in Women with Negative Screening Mammograms. Radiology, 2022, 303, 269-275.	3.6	26
175	An overview of artificial intelligence in oncology. Future Science OA, 2022, 8, FSO787.	0.9	29
176	A Review of Generative Adversarial-Based Networks of Machine Learning/Artificial Intelligence in Healthcare. Advances in Computational Intelligence and Robotics Book Series, 2022, , 37-56.	0.4	1
177	Prediction, Detection and Recurrence of Breast Cancer Using Machine Learning Based on Image and Gene Datasets. Lecture Notes in Electrical Engineering, 2022, , 263-273.	0.3	1
178	Importance of Al in Medicine. , 2022, , 99-114.		0
179	Artificial intelligence and imaging for risk prediction of pancreatic cancer: a narrative review. Chinese Clinical Oncology, 2022, 11, 1-1.	0.4	17
180	Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. Breast Cancer Research, 2022, 24, 14.	2.2	31
181	Breast cancer diagnosis in an early stage using novel deep learning with hybrid optimization technique. Multimedia Tools and Applications, 2022, 81, 13935-13960.	2.6	14
182	Patchless Multi-Stage Transfer Learning for Improved Mammographic Breast Mass Classification. Cancers, 2022, 14, 1280.	1.7	14
183	Application of Deep Learning in Breast Cancer Imaging. Seminars in Nuclear Medicine, 2022, 52, 584-596.	2.5	46
184	Prediction of hereditary cancers using neural networks. Annals of Applied Statistics, 2022, 16, .	0.5	0
185	Al Insurance: How Liability Insurance Can Drive the Responsible Adoption of Artificial Intelligence in Health Care. NEJM Catalyst, 2022, 3, .	0.4	5
186	Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets. PLoS ONE, 2022, 17, e0265751.	1.1	12
187	Clinical Explainability Failure (CEF) & Explainability Failure Ratio (EFR) – Changing the Way We Validate Classification Algorithms. Journal of Medical Systems, 2022, 46, 20.	2.2	9
188	Advancements in Oncology with Artificial Intelligence—A Review Article. Cancers, 2022, 14, 1349.	1.7	22
189	Deep curriculum learning in task space for multi-class based mammography diagnosis. , 2022, , .		1

#	Article	IF	CITATIONS
190	Context in medical imaging: the case of focal liver lesion classification. , 2022, , .		4
191	Comprehensive quantitative malignant risk prediction of pure grouped amorphous calcifications: clinico-mammographic nomogram. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2672-2683.	1.1	1
192	A Web-based Hybrid System for Skin Lesion Classification. , 2021, , .		0
193	Convolutional Neural Network-Based Computer-Assisted Diagnosis of Hashimoto's Thyroiditis on Ultrasound. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 953-963.	1.8	17
194	Assessing PD-L1 Expression Status Using Radiomic Features from Contrast-Enhanced Breast MRI in Breast Cancer Patients: Initial Results. Cancers, 2021, 13, 6273.	1.7	9
195	A Comprehensive Survey on Deep-Learning-Based Breast Cancer Diagnosis. Cancers, 2021, 13, 6116.	1.7	34
196	A convolutional deep learning model for improving mammographic breast-microcalcification diagnosis. Scientific Reports, 2021, 11, 23925.	1.6	12
197	Radiomics, deep learning and early diagnosis in oncology. Emerging Topics in Life Sciences, 2021, 5, 829-835.	1.1	6
198	Transfer Learning Based Breast Cancer Detection and Classification using Mammogram Images. , 2022, , \cdot		2
199	Evaluation of the Combination of Artificial Intelligence and Radiologist Assessments to Interpret Malignant Architectural Distortion on Mammography. Frontiers in Oncology, 2022, 12, 880150.	1.3	2
200	Classification of Breast Cancer Images by Implementing Improved DCNN with Artificial Fish School Model. Computational Intelligence and Neuroscience, 2022, 2022, 1-12.	1.1	11
201	Breast cancer screening and early diagnosis in Chinese women. Cancer Biology and Medicine, 2022, 19, 450-467.	1.4	19
202	Research on Rice Yield Prediction Model Based on Deep Learning. Computational Intelligence and Neuroscience, 2022, 2022, 1-9.	1.1	7
203	Automation in the fish industry. Animal Frontiers, 2022, 12, 32-39.	0.8	6
204	Generating Full-Field Digital Mammogram From Digitized Screen-Film Mammogram for Breast Cancer Screening With High-Resolution Generative Adversarial Network. Frontiers in Oncology, 2022, 12, 868257.	1.3	1
205	Deep learning in breast imaging. BJR Open, 2022, 4, .	0.4	5
206	Cost-effectiveness of using artificial intelligence versus polygenic risk score to guide breast cancer screening. BMC Cancer, 2022, 22, 501.	1.1	11
207	Imaging Surveillance Options for Individuals With a Personal History of Breast Cancer: <i>AJR</i> Expert Panel Narrative Review. American Journal of Roentgenology, 2022, 219, 854-868.	1.0	7

#	Article	IF	CITATIONS
208	Breast mass classification based on supervised contrastive learning and multiâ€view consistency penalty on mammography. IET Biometrics, 2022, 11, 588-600.	1.6	1
209	The integration of artificially intelligent technologies with breast imaging. , 0, , 32-36.		0
210	Sex and gender inequality in precision medicine: Socioeconomic determinants of health. , 2022, , 35-54.		1
211	Reliable quality assurance of X-ray mammography scanner by evaluation the standard mammography phantom image using an interpretable deep learning model. European Journal of Radiology, 2022, 154, 110369.	1.2	4
212	Prediction of Breast Cancer using Machine Learning Approaches. Journal of Biomedical Physics and Engineering, 2022, 12, .	0.5	25
213	A hybrid classifier based on support vector machine and Jaya algorithm for breast cancer classification. Neural Computing and Applications, 2022, 34, 16669-16681.	3.2	6
214	Impact of a Deep Learning Model for Predicting Mammographic Breast Density in Routine Clinical Practice. Journal of the American College of Radiology, 2022, 19, 1021-1030.	0.9	2
215	Artificial Intelligence and Machine Learning in Cancer Research: A Systematic and Thematic Analysis of the Top 100 Cited Articles Indexed in Scopus Database. Cancer Control, 2022, 29, 107327482210959.	0.7	16
217	Transformers Improve Breast Cancer Diagnosis from Unregistered Multi-View Mammograms. Diagnostics, 2022, 12, 1549.	1.3	15
218	MS-LSTMEA: Predicting Clinical Events for Hypertension Using Multi-Sources LSTM Explainable Approach. SSRN Electronic Journal, 0, , .	0.4	1
219	Get Your Foes Fooled: Proximal Gradient Split Learning for Defense Against Model Inversion Attacks on IoMT Data. IEEE Transactions on Network Science and Engineering, 2023, 10, 2607-2616.	4.1	4
220	Identification of women with high grade histopathology results after conisation by artificial neural networks. Radiology and Oncology, 2022, 56, 355-364.	0.6	0
221	Applications of artificial intelligence multiomics in precision oncology. Journal of Cancer Research and Clinical Oncology, 2023, 149, 503-510.	1.2	9
222	Effect of Grid Search and Hyper Parameter Tuned Pipeline with Various Classifiers and PCA for Breast Cancer Detection. Current Signal Transduction Therapy, 2022, 17, .	0.3	1
223	Feature-level ensemble approach for COVID-19 detection using chest X-ray images. PLoS ONE, 2022, 17, e0268430.	1.1	6
224	A deep learning model based on dynamic contrast-enhanced magnetic resonance imaging enables accurate prediction of benign and malignant breast lessons. Frontiers in Oncology, 0, 12, .	1.3	5
225	Deep learning of longitudinal mammogram examinations for breast cancer risk prediction. Pattern Recognition, 2022, 132, 108919.	5.1	7
226	Breast cancer classification using snapshot ensemble deep learning model and t-distributed stochastic neighbor embedding. Multimedia Tools and Applications, 2023, 82, 4011-4029.	2.6	8

#	Article	IF	CITATIONS
227	Assessment of performances of a deep learning algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma X-rays. European Journal of Radiology, 2022, 154, 110447.	1.2	10
228	Personalized Approaches for the Prevention and Treatment of Breast Cancer. Journal of Personalized Medicine, 2022, 12, 1201.	1.1	0
229	A Probability-Based Models Ranking Approach: An Alternative Method of Machine-Learning Model Performance Assessment. Sensors, 2022, 22, 6361.	2.1	2
230	Radiologist Preferences for Artificial Intelligence-Based Decision Support During Screening Mammography Interpretation. Journal of the American College of Radiology, 2022, 19, 1098-1110.	0.9	7
231	Domain generalization in deep learning based mass detection in mammography: A large-scale multi-center study. Artificial Intelligence in Medicine, 2022, 132, 102386.	3.8	10
233	Patch Selection forÂMelanoma Classification. Lecture Notes in Computer Science, 2022, , 148-159.	1.0	0
234	Breast imaging and deep learning: past, present, and future. Advances in Magnetic Resonance Technology and Applications, 2022, , 589-609.	0.0	0
235	Bilateral Analysis Boosts the Performance of Mammography-based Deep Learning Models in Breast Cancer Risk Prediction. , 2022, , .		0
236	Coupling Deep Imputation with Multitask Learning for Downstream Tasks on Omics Data. , 2022, , .		0
237	Al in Breast Cancer Imaging: A Survey of Different Applications. Journal of Imaging, 2022, 8, 228.	1.7	10
238	Applying artificial intelligence technology to assist with breast cancer diagnosis and prognosis prediction. Frontiers in Oncology, 0, 12, .	1.3	9
240	Integrated multimodal artificial intelligence framework for healthcare applications. Npj Digital Medicine, 2022, 5, .	5.7	44
245	Machine Learning in Nutrition Research. Advances in Nutrition, 2022, 13, 2573-2589.	2.9	24
246	Meeting the Moment: Addressing Barriers and Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis. NAM Perspectives, 2022, 22, .	1.3	10
247	A deep-wavelet neural network to detect and classify lesions in mammographic images. Research on Biomedical Engineering, 0, , .	1.5	0
248	Exploring the Individualized Effect of Climatic Drivers on MODIS Net Primary Productivity through an Explainable Machine Learning Framework. Remote Sensing, 2022, 14, 4401.	1.8	7
249	AI Technologies and Accountability in Digital Health. , 2022, , 166-206.		0
250	The Landmark Series—Addressing Disparities in Breast Cancer Screening: New Recommendations for Black Women. Annals of Surgical Oncology, 2023, 30, 58-67.	0.7	10

#	Article	IF	CITATIONS
251	Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation. Artificial Intelligence in Agriculture, 2022, 6, 199-210.	4.4	1
252	Artificial Intelligence in Breast Imaging. Medical Radiology, 2022, , 435-453.	0.0	2
253	Mammographic Density. , 2022, , 41-49.		0
254	Ethical and Legal Risks of Artificial Intelligence in Radiology. , 2022, , 113-122.		0
255	Artificial intelligence for multimodal data integration in oncology. Cancer Cell, 2022, 40, 1095-1110.	7.7	115
256	Deep Learning Models for Automated Assessment of Breast Density Using Multiple Mammographic Image Types. Cancers, 2022, 14, 5003.	1.7	2
257	Artificial intelligence and machine learning in cancer imaging. Communications Medicine, 2022, 2, .	1.9	58
258	Fourâ€gene signature based on machine learning filtration could predict prognosis of patients with breast cancer. Expert Systems, 0, , .	2.9	0
259	A nomogram based on radiomics signature and deep-learning signature for preoperative prediction of axillary lymph node metastasis in breast cancer. Frontiers in Oncology, 0, 12, .	1.3	8
260	What if the age at which a woman started regular mammographic screening depended on her risk, not age?. Cancer, 0, , .	2.0	0
261	Virtual Biopsy by Using Artificial Intelligence–based Multimodal Modeling of Binational Mammography Data. Radiology, 2023, 306, .	3.6	4
262	Breast Cancer Screening in Women With Dense Breasts: Current Status and Future Directions for Appropriate Risk Stratification and Imaging Utilization. Journal of Breast Imaging, 2022, 4, 559-567.	0.5	4
263	Predicting Medical Outcomes. , 2022, , 309-342.		0
264	New Horizons: Artificial Intelligence for Digital Breast Tomosynthesis. Radiographics, 2023, 43, .	1.4	3
265	Mammographic Breast Density: Current Assessment Methods, Clinical Implications, and Future Directions. Seminars in Ultrasound, CT and MRI, 2023, 44, 35-45.	0.7	1
266	Risk Association of Liver Cancer and Hepatitis B with Tree Ensemble and Lifestyle Features. International Journal of Environmental Research and Public Health, 2022, 19, 15171.	1.2	0
267	Algorithm, Human, or the Centaur: How to Enhance Clinical Care?. SSRN Electronic Journal, 0, , .	0.4	1
268	Artificial Intelligence in the Era of Precision Oncological Imaging. Technology in Cancer Research and Treatment, 2022, 21, 153303382211417.	0.8	5

ARTICLE IF CITATIONS # Colombian Dialect Recognition fromÂCall-Center Conversations Using Fusion Strategies. 269 0.4 1 Communications in Computer and Information Science, 2022, , 54-65. Artificial Intelligence and Neurologic Physical Therapy. Journal of Neurologic Physical Therapy, 2023, 270 47, 1-2. Comparative Study On Breast Cancer Classification Using Multiple Convolution Neural Network 271 1 Architectures., 2022, , . Artificial Intelligence in Breast Imaging: a special focus on advances in digital mammography & amp; 0.4 digital breast tomosynthesis. Current Medical Imaging, 2022, 19, . Improving the malignancy prediction of breast cancer based on the integration of radiomics features from dual-view mammography and clinical parameters. Clinical and Experimental Medicine, 2023, 23, 273 1.9 3 2357-2368. Applications of machine learning in metabolomics: Disease modeling and classification. Frontiers in 274 1.1 Genetics, 0, 13, . Assessment and prediction of glioblastoma therapy response: challenges and opportunities. Brain, 275 3.7 3 2023, 146, 1281-1298. Towards optimal deep fusion of imaging and clinical data via a modelâ€based description of fusion 1.6 quality. Medical Physics, 2023, 50, 3526-3537. Effects of Image Quality on the Accuracy Human Pose Estimation and Detection of Eye Lid 278 1.7 2 Opening/Closing Using Openpose and DLib. Journal of Imaging, 2022, 8, 330. Attention-based deep learning for breast lesions classification on contrast enhanced spectral 279 mammography: a multicentre study. British Journal of Cancer, 2023, 128, 793-804. Artificial intelligence in breast cancer imaging: risk stratification, lesion detection and classification, 280 treatment planning and prognosisâ€"a narrative review. Exploration of Targeted Anti-tumor Therapy, 0, 4 0.5 ,795-816. Deep learning-based system for automatic prediction of triple-negative breast cancer from ultrasound 1.6 images. Medical and Biological Engineering and Computing, 2023, 61, 567-578. Artificial Intelligence: The Milestone in Modern Biomedical Research. BioMedInformatics, 2022, 2, 282 1.0 17 727-744. Artificial Intelligence in Breast X-Ray Imaging. Seminars in Ultrasound, CT and MRI, 2023, 44, 2-7. Predicting 30-day all-cause hospital readmission using multimodal spatiotemporal graph neural 284 3.9 6 networks. IEEE Journal of Biomedical and Health Informatics, 2023, , 1-12. Vision-Transformer-Based Transfer Learning for Mammogram Classification. Diagnostics, 2023, 13, 178. Transformer-based personalized attention mechanism for medical images with clinical records. 286 0.8 3 Journal of Pathology Informatics, 2023, 14, 100185. Machine Learning Approaches with Textural Features to Calculate Breast Density on Mammography. Current Oncology, 2023, 30, 839-853.

		Citation Ref	ITATION REPORT	
#	Article		IF	CITATIONS
288	Resting state network mapping in individuals using deep learning. Frontiers in Neurology, 0, 13, .		1.1	3
289	Effect of an Educational Intervention on Women's Health Care Provider Knowledge Gaps Abour Cancer Risk Model Use and High-risk Screening Recommendations. Journal of Breast Imaging, 2023 30-39.		0.5	5
290	Deep Learning in Lung and Colon Cancer classifications. , 2022, , .			2
292	Promoting Health Equity through Improved Regulation of Artificial Intelligence Medical Devices. Journal of Science Policy & Governance, 2023, 21, .		0.1	3
293	The Future of Precision Medicine in the Cure of Alzheimer's Disease. Biomedicines, 2023, 11, 3	35.	1.4	7
294	Deep Learning Approach for Mammographic Breast Density Classification and Cancer Risk Predictic 2022, , .	n.,		0
295	Artificial Intelligence Models for Analyzing Thermally Sprayed Functional Coatings. Journal of Thermal Spray Technology, 2023, 32, 388-400.		1.6	5
296	Epidemiology and Risk Factors for Breast Cancer: 21st Century Advances, Gaps to Address through Interdisciplinary Science. Cold Spring Harbor Perspectives in Medicine, 2023, 13, a041317.		2.9	0
297	Guiding principles for the responsible development of artificial intelligence tools for healthcare. Communications Medicine, 2023, 3, .		1.9	11
298	Role of calibration in uncertainty-based referral for deep learning. Statistical Methods in Medical Research, 2023, 32, 927-943.		0.7	1
299	What are the diagnostic capabilities of glycans for breast cancer?. Expert Review of Molecular Diagnostics, 2023, 23, 1-7.		1.5	0
300	Al-Powered Biomolecular-Specific and Label-Free Multispectral Imaging Rapidly Detects Malignant Neoplasm in Surgically Excised Breast Tissue Specimens. Archives of Pathology and Laboratory Medicine, 2023, , .		1.2	0
301	Beyond Breast Density: Risk Measures for Breast Cancer in Multiple Imaging Modalities. Radiology, 2023, 306, .		3.6	19
302	Machine learning based Breast Cancer screening: trends, challenges, and opportunities. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2023, 11, 976-99	96.	1.3	2
303	Comprehensive AI-assisted tool for ankylosing spondylitis based on multicenter research outperforms human experts. Frontiers in Public Health, 0, 11, .		1.3	3
304	Learning From Multiple Expert Annotators for Enhancing Anomaly Detection in Medical Image Analysis. IEEE Access, 2023, 11, 14105-14114.		2.6	2
305	Review on Computer Aided Breast Cancer Detection and Diagnosis Using Machine Learning Metho Mammogram Image. Current Medical Imaging, 2023, 19, .	ds on	0.4	0
306	Breast Cancer Risk Assessment Models and Multi-Cancer Early Detection Tests. , 2023, , 29-43.			0

#	Article	IF	CITATIONS
307	Deep learning - cancer genetics and application of deep learning to cancer oncology. Science and Technology, 2022, 60, 885-928.	0.1	0
310	Current Status and Future Direction of Artificial Intelligence in Healthcare and Medical Education. Korean Medical Education Review, 2020, 22, 99-114.	0.1	4
311	Artificial Intelligence as a Public Service. Journal of the American College of Radiology, 2023, 20, 919-921.	0.9	1
312	Artificial intelligence for image-based breast cancer risk prediction using attention. , 2023, , .		0
313	Mammogram Screening for Breast Density Classification using a soft voting ensemble of Swin Transformers and ConvNext models. , 2022, , .		1
314	Portable Ultrasound Sensors System for Breast Cancer Early Diagnosis. Lecture Notes in Electrical Engineering, 2023, , 411-420.	0.3	0
315	New Approaches and Recommendations for Riskâ€Adapted Breast Cancer Screening. Journal of Magnetic Resonance Imaging, 2023, 58, 987-1010.	1.9	4
316	Implementing the National Dense Breast Reporting Standard, Expanding Supplemental Screening Using Current Guidelines, and the Proposed Find It Early Act. Journal of Breast Imaging, 2023, 5, 712-723.	0.5	8
317	The Promise of Artificial Intelligence in Digestive Healthcare and the Bioethics Challenges It Presents. Medicina (Lithuania), 2023, 59, 790.	0.8	6
318	Multimodal medical tensor fusion network-based DL framework for abnormality prediction from the radiology CXRs and clinical text reports. Multimedia Tools and Applications, 2023, 82, 44431-44478.	2.6	2
323	Applications of Deep Learning in Healthcare: A Systematic Analysis. Lecture Notes in Electrical Engineering, 2023, , 385-399.	0.3	1
341	Multimodal Machine Learning in Prognostics and Health Management of Manufacturing Systems. Springer Series in Reliability Engineering, 2023, , 167-197.	0.3	0
345	Al for Longevity: Getting Past the Mechanical Turk Model Will Take Good Data. Healthy Ageing and Longevity, 2023, , 275-285.	0.2	0
353	Artificial Intelligence in Breast Imaging. , 2023, , 489-500.		0
384	Will Artificial Intelligence Improve Health Disparities?. The International Library of Bioethics, 2023, , 73-94.	0.1	0
385	Explainable AI in Healthcare Application. Advances in Computational Intelligence and Robotics Book Series, 2024, , 123-176.	0.4	6
386	Enhancing Breast Cancer Diagnosis Through Segmentation-Driven Generative Adversarial Networks for Synthetic Mammogram Generation. , 2023, , .		0
387	Scrutinization of mammogram images using deep learning. , 2024, , 177-202.		0