Enhanced Motion-Compensated Video Coding With Dee Generation

IEEE Transactions on Image Processing 28, 4832-4844

DOI: 10.1109/tip.2019.2913545

Citation Report

#	Article	IF	CITATIONS
1	Residual in Residual Based Convolutional Neural Network In-loop Filter for AVS3. , 2019, , .		15
2	Image and Video Compression With Neural Networks: A Review. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 1683-1698.	8.3	218
3	Video Coding for Machines: A Paradigm of Collaborative Compression and Intelligent Analytics. IEEE Transactions on Image Processing, 2020, 29, 8680-8695.	9.8	110
4	Deep Virtual Reference Frame Generation For Multiview Video Coding. , 2020, , .		3
5	Deep Video Prediction Network-Based Inter-Frame Coding in HEVC. IEEE Access, 2020, 8, 95906-95917.	4.2	20
6	Compression Priors Assisted Convolutional Neural Network for Fractional Interpolation. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 1953-1967.	8.3	2
7	Deep Affine Motion Compensation Network for Inter Prediction in VVC. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 3923-3933.	8.3	12
8	Deep Multi-Domain Prediction for 3D Video Coding. IEEE Transactions on Broadcasting, 2021, 67, 813-823.	3.2	10
9	Recent trending on learning based video compression: A survey. Cognitive Robotics, 2021, 1, 145-158.	5.4	2
10	BVI-DVC: A Training Database for Deep Video Compression. IEEE Transactions on Multimedia, 2022, 24, 3847-3858.	7.2	39
11	Communicating pictures – the future. , 2021, , 485-513.		3
12	Digital Retina: A Way to Make the City Brain More Efficient by Visual Coding. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 4147-4161.	8.3	19
13	Enhanced Surveillance Video Compression With Dual Reference Frames Generation. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 1592-1606.	8.3	6
14	Neural Network-Based Enhancement to Inter Prediction for Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 826-838.	8.3	6
15	MFRNet: A New CNN Architecture for Post-Processing and In-loop Filtering. IEEE Journal on Selected Topics in Signal Processing, 2021, 15, 378-387.	10.8	31
16	A Trellis Based Temporal Rate Allocation and Virtual Reference Frames for High Efficiency Video Coding. Electronics (Switzerland), 2021, 10, 1384.	3.1	0
17	Instance Segmentation Based Background Reference Frame Generation for Surveillance Video Coding. , 2021, , .		1
18	Artificial intelligence in the creative industries: a review. Artificial Intelligence Review, 2022, 55, 589-656.	15.7	82

TATION REDO

ARTICLE IF CITATIONS # Deep Learning-Based Chroma Prediction for Intra Versatile Video Coding. IEEE Transactions on 19 8.3 20 Circuits and Systems for Video Technology, 2021, 31, 3168-3181. Advances in Video Compression System Using Deep Neural Network: A Review and Case Studies. 21.3 Proceedings of the IEEE, 2021, 109, 1494-1520. Affine Transformation-Based Deep Frame Prediction. IEEE Transactions on Image Processing, 2021, 30, 21 9.8 10 3321-3334. Deep Learning-Based Video Coding. ACM Computing Surveys, 2021, 53, 1-35. VRFCNN: Virtual Reference Frame Generation Network for Quality SHVC. IEEE Signal Processing 23 3.6 3 Letters, 2020, 27, 2049-2053. Towards Modality Transferable Visual Information Representation with Optimal Model Compression., 2020,,. Neural Reference Synthesis for Inter Frame Coding. IEEE Transactions on Image Processing, 2022, 31, 25 9.8 4 773-787. A Lightweight Model for Deep Frame Prediction in Video Coding., 2020, , . 26 iDAM: Iteratively Trained Deep In-loop Filter with Adaptive Model Selection. ACM Transactions on 27 4.3 8 Multimedia Computing, Communications and Applications, 2023, 19, 1-22. Deep motion $\hat{a} \in compensation$ enhancement in video compression. Electronics Letters, 2022, 58, 426-428. 1.0 Deep Inter Prediction with Error-Corrected Auto-Regressive Network for Video Coding. ACM 29 3 4.3Transactions on Multimedia Computing, Communications and Applications, 2023, 19, 1-22. NR-CNN: Nested-Residual Guided CNN In-loop Filtering for Video Coding. ACM Transactions on 4.3 Multimedia Computing, Communications and Applications, 2022, 18, 1-22. Deep Inter Prediction via Reference Frame Interpolation for Blurry Video Coding., 2021, , . $\mathbf{31}$ 0 Enhanced Inter-layer Prediction forÂSHVC Based onÂCross-Layer Adaptive Reference. Communications in Computer and Information Science, 2022, , 412-425. Dilated Convolutional Neural Network-Based Deep Reference Picture Generation for Video 33 0 Compression., 2022,,. Disparity-Aware Reference Frame Generation Network for Multiview Video Coding. IEEE Transactions on Image Processing, 2022, 31, 4515-4526. A Dynamic Convolutional Generative Adversarial Network for Video Anomaly Detection. Arabian 35 3.01 Journal for Science and Engineering, 0, , . Projective Transformation Based Virtual Reference Frame Generation Scheme for Video Coding in Moving Camera., 2022, , .

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Cloud Gaming Video Coding Optimization Based on Camera Motion-Guided Reference Frame Enhancement. Applied Sciences (Switzerland), 2022, 12, 8504.	2.5	0
38	Deep Video Compression for P-frame in Sub-sampled Color Spaces. , 2022, , .		2
39	Improving video quality by predicting inter-frame residuals based on an additive 3D-CNN model. Journal of Visual Communication and Image Representation, 2023, 90, 103734.	2.8	1
40	Semantical video coding: Instill static-dynamic clues into structured bitstream for AI tasks. Journal of Visual Communication and Image Representation, 2023, 93, 103816.	2.8	2
41	Attention-Based Bi-Prediction Network for Versatile Video Coding (VVC) over 5G Network. Sensors, 2023, 23, 2631.	3.8	1
42	Reinforcement Learning for Rate-Distortion Optimized Hierarchical Prediction Structure. IEEE Access, 2023, 11, 20240-20253.	4.2	1
43	Neural Network Based Rate Control for Versatile Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33, 6072-6085.	8.3	0
44	Efficient Super-Resolution for Compression Of Gaming Videos. , 2023, , .		1
45	Hierarchical Random Access Coding for Deep Neural Video Compression. IEEE Access, 2023, 11, 57494-57502.	4.2	1
46	Towards Next Generation Video Coding: from Neural Network Based Predictive Coding to In-Loop Filtering. , 2023, , .		0
47	TTVFI: Learning Trajectory-Aware Transformer for Video Frame Interpolation. IEEE Transactions on Image Processing, 2023, 32, 4728-4741.	9.8	1
48	SVT-AVS3: An Open-Source High-Performance AVS3 Encoder With Scalable Video Technology. IEEE Transactions on Multimedia, 2024, 26, 3291-3301.	7.2	0
49	Video Global Motion Compensation Based on Affine Inverse Transform Model. Sensors, 2023, 23, 7750.	3.8	0
50	Overview of intelligent video coding: from model-based to learning-based approaches. , 2023, 1, .		1
51	Spatial-Temporal Inter-Layer Reference Frame Generation Network for Spatial SHVC. IEEE Transactions on Multimedia, 2024, 26, 3235-3250.	7.2	0
52	An Investigation of Latency-Accuracy Trade-off in Inter-frame Video Prediction using Quantized CNNs. , 2023, , .		0
53	Scene Matters: Model-based Deep Video Compression. , 2023, , .		0
54	Towards Lightweight Deep Reference Frame for Versatile Video Coding. , 2023, , .		0

	Сітатіо	CITATION REPORT		
#	Article	IF	CITATIONS	
55	Transformer-based Deep Frame Rate up Conversion for Hybrid High-Efficiency Video Coding. , 2023, , .		0	
56	Neural network-based cross-channel chroma prediction for versatile video coding. Journal of Supercomputing, 0, , .	3.6	0	