Defect Engineering in Two Common Types of Dielectric Absorption Applications

Advanced Functional Materials 29, 1901236 DOI: 10.1002/adfm.201901236

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of LiCo0.94Mg0.06O2: a promising material with high dielectric and microwave absorption performance. Journal of Materials Science: Materials in Electronics, 2019, 30, 15935-15942.	1.1	2
2	Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceramics International, 2019, 45, 23600-23610.	2.3	37
3	Hollow porous Fe ₂ O ₃ microspheres wrapped by reduced graphene oxides with high-performance microwave absorption. Journal of Materials Chemistry C, 2019, 7, 11167-11176.	2.7	59
4	Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method. Journal of Alloys and Compounds, 2019, 806, 983-991.	2.8	94
5	Space-Confined Synthesis of Core–Shell BaTiO ₃ @Carbon Microspheres as a High-Performance Binary Dielectric System for Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 31182-31190.	4.0	110
6	Boosted Interfacial Polarization from Multishell TiO ₂ @Fe ₃ O ₄ @PPy Heterojunction for Enhanced Microwave Absorption. Small, 2019, 15, e1902885.	5.2	293
7	Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance. Journal of Alloys and Compounds, 2019, 805, 1071-1080.	2.8	61
8	One-pot solvothermal synthesis of Fe/Fe3O4 composites with broadband microwave absorption. Journal of Alloys and Compounds, 2019, 803, 818-825.	2.8	23
9	Core–Shell CoNi@Graphitic Carbon Decorated on B,N-Codoped Hollow Carbon Polyhedrons toward Lightweight and High-Efficiency Microwave Attenuation. ACS Applied Materials & Interfaces, 2019, 11, 25624-25635.	4.0	363
10	Flexible rGO/Fe 3 O 4 NPs/polyurethane film with excellent electromagnetic properties. Chinese Physics B, 2019, 28, 108103.	0.7	5
11	Novel two-dimensional Ti3C2TX/Ni-spheres hybrids with enhanced microwave absorption properties. Ceramics International, 2019, 45, 22880-22888.	2.3	69
12	Fe/Fe ₃ O ₄ @N-Doped Carbon Hexagonal Plates Decorated with Ag Nanoparticles for Microwave Absorption. ACS Applied Nano Materials, 2019, 2, 7266-7278.	2.4	43
13	Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties. Composites Part B: Engineering, 2019, 178, 107518.	5.9	58
14	Surface modification and microwave absorption properties of lightweight CNT absorbent. Journal of Materials Science: Materials in Electronics, 2019, 30, 21048-21058.	1.1	14
15	Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Composites Part B: Engineering, 2019, 179, 107525.	5.9	54
16	Fe ₃ O ₄ Nanoflower-Carbon Nanotube Composites for Microwave Shielding. ACS Applied Nano Materials, 2019, 2, 5475-5482.	2.4	42
17	Optimizing electromagnetic wave absorption performance: Design from microscopic bamboo carbon nanotubes to macroscopic patterns. Journal of Alloys and Compounds, 2019, 809, 151866.	2.8	31
18	Lightweight Fe@C hollow microspheres with tunable cavity for broadband microwave absorption. Composites Part B: Engineering, 2019, 177, 107346.	5.9	89

	CITATION	Report	
#	Article	IF	CITATIONS
19	Synthesis and properties of high performance polysulfone resin with low dielectric constant and dielectric loss. Journal of Materials Science: Materials in Electronics, 2019, 30, 18168-18176.	1.1	8
20	Morphology-dependent electromagnetic wave absorbing properties of iron-based absorbers: one-dimensional, two-dimensional, and three-dimensional classification. EPJ Applied Physics, 2019, 87, 20901.	0.3	14
21	A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective. Journal of Materials Science: Materials in Electronics, 2019, 30, 10961-10984.	1.1	103
22	Extended Effective Frequency of Three-Dimensional Graphene with Sustainable Energy Attenuation. ACS Sustainable Chemistry and Engineering, 2019, 7, 10477-10483.	3.2	26
23	Heterostructured TiO ₂ /C/Co from ZIF-67 Frameworks for Microwave-Absorbing Nanomaterials. ACS Applied Nano Materials, 2019, 2, 4451-4461.	2.4	61
24	Structural dependence of the microwave dielectric properties of Cr ³⁺ -substituted ZnGa ₂ O ₄ spinel ceramics: crystal distortion and vibration mode studies. Journal of Materials Chemistry C, 2019, 7, 8261-8268.	2.7	35
25	In situ deposition of α-Co nanoparticles on three-dimensional nitrogen-doped porous graphene foams as microwave absorbers. Journal of Materials Science: Materials in Electronics, 2019, 30, 13412-13424.	1.1	5
26	Mesoporous carbon hollow spheres as a light weight microwave absorbing material showing modulating dielectric loss. Dalton Transactions, 2019, 48, 10145-10150.	1.6	46
27	Ultrathin and Light-Weight Graphene Aerogel with Precisely Tunable Density for Highly Efficient Microwave Absorbing. ACS Applied Materials & Interfaces, 2019, 11, 46386-46396.	4.0	97
28	Enhanced microwave absorption performance from abundant polarization sites of ZnO nanocrystals embedded in CNTs <i>via</i> confined space synthesis. Nanoscale, 2019, 11, 22539-22549.	2.8	41
29	A biomass derived porous carbon for broadband and lightweight microwave absorption. Scientific Reports, 2019, 9, 18617.	1.6	42
30	Fe/N-Codoped Hollow Carbonaceous Nanospheres Anchored on Reduced Graphene Oxide for Microwave Absorption. ACS Applied Nano Materials, 2019, 2, 8063-8074.	2.4	40
31	Synthesis of rGO/p-Fe ₃ O ₄ @PANI three-phase nanomaterials and electromagnetic wave absorption properties. Materials Research Express, 2019, 6, 125621.	0.8	8
32	Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chemical Engineering Journal, 2020, 381, 122653.	6.6	408
33	Enhanced microwave absorption properties of barium ferrites by Zr4+-Ni2+ doping and oxygen-deficient sintering. Journal of Magnetism and Magnetic Materials, 2020, 494, 165828.	1.0	23
34	Excellent microwave absorbing performance of the sandwich structure absorber Fe@B2O3/MoS2/Fe@B2O3 in the Ku-band and X-band. Chemical Engineering Journal, 2020, 382, 122804.	6.6	26
35	Electromagnetic wave absorption enhancement of double-layer structural absorbers based on carbon nanofibers and hollow Co2Y hexaferrite microfibers. Journal of Alloys and Compounds, 2020, 814, 152302.	2.8	30
36	Enhanced microwave absorption properties of (1â^'x)CoFe2O4/xCoFe composites at multiple frequency bands. Journal of Magnetism and Magnetic Materials, 2020, 493, 165699.	1.0	44

#	Article	IF	CITATIONS
37	3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chemical Engineering Journal, 2020, 379, 122241.	6.6	128
38	Graphene oxide/carbon nanotubes/Co Fe3-O4 ternary nanocomposites: Controllable synthesis and their excellent microwave absorption capabilities. Journal of Alloys and Compounds, 2020, 813, 151996.	2.8	33
39	Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chemical Engineering Journal, 2020, 380, 122591.	6.6	225
40	A facile strategy for the core-shell FeSiAl composites with high-efficiency electromagnetic wave absorption. Journal of Alloys and Compounds, 2020, 818, 152861.	2.8	16
41	Microwave absorption performances of planar anisotropy ferromagnetic Pr2Co17 flakes prepared by high-energy ball-milling process. Inorganic Chemistry Communication, 2020, 112, 107736.	1.8	5
42	Tailoring electromagnetic absorption performances of TiO2/Co/carbon nanofibers through tuning graphitization degrees. Ceramics International, 2020, 46, 4754-4761.	2.3	29
43	An efficient high-frequency electromagnetic wave absorber: Nickel-N@Carbon composite. Journal of Alloys and Compounds, 2020, 814, 152171.	2.8	23
44	Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl /ferrite composites. Journal of Alloys and Compounds, 2020, 822, 153674.	2.8	55
45	N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon, 2020, 159, 357-365.	5.4	185
46	Positive and Reverse Core/Shell Structure Co _{<i>x</i>} Fe _{3â€"<i>x</i>} O ₄ /MoS ₂ and MoS ₂ /Co _{<i>x</i>} Fe _{3â€"<i>x</i>} O ₄ Nanocomposites: Selective Production and Outstanding Electromagnetic Absorption Comprehensive Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 613-623.	3.2	125
47	Hybrid zeolite imidazolate framework derived N-implanted carbon polyhedrons with tunable heterogeneous interfaces for strong wideband microwave attenuation. Carbon, 2020, 159, 83-93.	5.4	118
48	Three-dimensional graphene supported Fe3O4 coated by polypyrrole toward enhanced stability and microwave absorbing properties. Journal of Materials Research and Technology, 2020, 9, 762-772.	2.6	61
49	Mechanical and microwave absorption properties of Ti-filled SiCf/SiC composites via precursor infiltration and pyrolysis. Journal of Materials Science: Materials in Electronics, 2020, 31, 2634-2642.	1.1	10
50	3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Composites Science and Technology, 2020, 200, 108479.	3.8	82
51	Extending effective microwave absorbing bandwidth of CoNi bimetallic alloy derived from binary hydroxides. Scientific Reports, 2020, 10, 16044.	1.6	12
52	Novel ceramic-based microwave absorbents derived from gangue. Journal of Materials Chemistry C, 2020, 8, 14238-14245.	2.7	15
53	Porous carbon materials for microwave absorption. Materials Advances, 2020, 1, 2631-2645.	2.6	60
54	Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon, 2020, 168, 606-623.	5.4	490

#	Article	IF	CITATIONS
55	Assembling Nano–Microarchitecture for Electromagnetic Absorbers and Smart Devices. Advanced Materials, 2020, 32, e2002112.	11.1	259
56	Obtaining Strong, Broadband Microwave Absorption of Polyaniline Through Dataâ€Driven Materials Discovery. Advanced Materials Interfaces, 2020, 7, 2000658.	1.9	45
57	Electromagnetic wave absorption properties in Ku-band of magnetic iron nitrides prepared by high energy ball milling. Journal of Magnetism and Magnetic Materials, 2020, 514, 167246.	1.0	6
58	Synthesis of sandwich-like Co ₁₅ Fe ₈₅ @C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance. Nanoscale, 2020, 12, 18790-18799.	2.8	39
59	A review on electrospinning nanofibers in the field of microwave absorption. Ceramics International, 2020, 46, 26441-26453.	2.3	75
60	Fabrication of porous graphene-like carbon nanosheets with rich doped-nitrogen for high-performance electromagnetic microwave absorption. Applied Surface Science, 2020, 530, 147298.	3.1	49
61	Improved microwave absorbing performance of natural rubber composite with multiâ€walled carbon nanotubes and molybdenum disulfide hybrids. Polymers for Advanced Technologies, 2020, 31, 2752-2762.	1.6	17
62	Simple Saltâ€Template Assembly for Layered Heterostructures of C/Ferrite and EG/C/MFe ₂ O ₄ (M = Fe, Co, Ni, Zn) Nanoparticle Arrays toward Superior Microwave Absorption Capabilities. Advanced Materials Interfaces, 2020, 7, 2000736.	1.9	34
63	Core-rim structured carbide MXene/SiO2 nanoplates as an ultrathin microwave absorber. Carbon, 2020, 169, 214-224.	5.4	57
64	Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. Journal of Materials Chemistry A, 2020, 8, 18863-18871.	5.2	94
65	Highly Compressible Polymer Composite Foams with Thermal Heating-Boosted Electromagnetic Wave Absorption Abilities. ACS Applied Materials & Interfaces, 2020, 12, 50793-50802.	4.0	47
66	Dielectric properties of polyethersulfone copolymers containing bisphenol S and six fluorine hexafluorobisphenolA (6AF) segments. Journal of Polymer Research, 2020, 27, 1.	1.2	5
67	Rutile TiO ₂ Nanoparticles Encapsulated in a Zeolitic Imidazolate Framework-Derived Hierarchical Carbon Framework with Engineered Dielectricity as an Excellent Microwave Absorber. ACS Applied Materials & Interfaces, 2020, 12, 48140-48149.	4.0	22
68	Hierarchical Carbon Fiber@MXene@MoS ₂ Coreâ€sheath Synergistic Microstructure for Tunable and Efficient Microwave Absorption. Advanced Functional Materials, 2020, 30, 2002595.	7.8	311
69	Constructing Ni ₁₂ P ₅ /Ni ₂ P Heterostructures to Boost Interfacial Polarization for Enhanced Microwave Absorption Performance. ACS Applied Materials & Interfaces, 2020, 12, 52208-52220.	4.0	89
70	Production of hierarchical porous carbon nanosheets from cheap petroleum asphalt toward lightweight and high-performance electromagnetic wave absorbents. Carbon, 2020, 166, 218-226.	5.4	63
71	Regulation of dielectric loss by different exposed crystal facets in graphite-coated titanium carbide nanocomposites. Ceramics International, 2020, 46, 18339-18346.	2.3	19
72	A PDMS modified polyurethane/Ag composite coating with super-hydrophobicity and low infrared emissivity. Infrared Physics and Technology, 2020, 108, 103351.	1.3	13

#	Article	IF	CITATIONS
73	Bimetallic MOF-derived hollow ZnNiC nano-boxes for efficient microwave absorption. Nanoscale, 2020, 12, 13311-13315.	2.8	75
74	Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption. Carbon, 2020, 167, 530-540.	5.4	80
75	Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high-efficiency and wideband microwave absorption. Carbon, 2020, 167, 19-30.	5.4	130
76	Correlations between structure and microwave dielectric properties of Co doped MgMoO4 ceramics. Ceramics International, 2020, 46, 22024-22029.	2.3	32
77	Efficient Electromagnetic Wave Absorption of Porous CoO–Co@RGO Composites with Optimized Impedance Matching Derived from Metal-Organic Frameworks. Nano, 2020, 15, 2050104.	0.5	6
78	Magnetic and electromagnetic properties of Fe/Fe2–3N composites prepared by high-energy ball milling. Journal of Materials Research and Technology, 2020, 9, 8646-8651.	2.6	4
79	Multimaterial 3D-printing of graphene/Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth. Carbon, 2020, 167, 62-74.	5.4	78
80	Metal–organic framework-derived C/Co/Co3O4 nanocomposites with excellent microwave absorption properties in low frequencies. Journal of Materials Science: Materials in Electronics, 2020, 31, 11700-11713.	1.1	18
81	Scalable self-supported FeNi ₃ /Mo ₂ C flexible paper for enhanced electromagnetic wave absorption evaluated <i>via</i> coaxial, waveguide and arch methods. Journal of Materials Chemistry C, 2020, 8, 10204-10212.	2.7	37
82	Graphene and MXene Nanomaterials: Toward Highâ€Performance Electromagnetic Wave Absorption in Gigahertz Band Range. Advanced Functional Materials, 2020, 30, 2000475.	7.8	356
83	Emerging Perovskite Electromagnetic Wave Absorbers from Bi-Metal–Organic Frameworks. Crystal Growth and Design, 2020, 20, 4818-4826.	1.4	21
84	Confining Tiny MoO ₂ Clusters into Reduced Graphene Oxide for Highly Efficient Low Frequency Microwave Absorption. Small, 2020, 16, e2001686.	5.2	87
85	Synthesis of a hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as a microwave absorber. RSC Advances, 2020, 10, 10510-10518.	1.7	82
86	Multidimension ontrollable Synthesis of MOFâ€Derived Co@Nâ€Doped Carbon Composite with Magneticâ€Dielectric Synergy toward Strong Microwave Absorption. Small, 2020, 16, e2000158.	5.2	350
87	Engineering Phase Transformation of MoS ₂ /RGO by N-doping as an Excellent Microwave Absorber. ACS Applied Materials & Interfaces, 2020, 12, 16831-16840.	4.0	57
88	Hollow Polypyrrole Nanofiber-Based Self-Assembled Aerogel: Large-Scale Fabrication and Outstanding Performance in Electromagnetic Pollution Management. Industrial & Engineering Chemistry Research, 2020, 59, 7604-7610.	1.8	10
89	Metal–organic framework-based Fe/C@Co3O4 core–shell nanocomposites with outstanding microwave absorption properties in low frequencies. Journal of Materials Science, 2020, 55, 7304-7320.	1.7	44
90	Excellent lightweight carbon-based microwave absorbers derived from metal–organic frameworks with tunable electromagnetic properties. Inorganic Chemistry Frontiers, 2020, 7, 1667-1675.	3.0	28

#	Article	IF	CITATIONS
91	Synthesis of CuS nanoparticles decorated Ti3C2Tx MXene with enhanced microwave absorption performance. Progress in Natural Science: Materials International, 2020, 30, 343-351.	1.8	65
92	MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchical structure as a high-efficiency electromagnetic wave absorber. Journal of Alloys and Compounds, 2020, 846, 156215.	2.8	80
93	Preparation of CTCNFs/Co ₉ S ₈ hybrid nanofibers with enhanced microwave absorption performance. Nanotechnology, 2020, 31, 225605.	1.3	10
94	Nitrogen-doped carbon nanofibers with sulfur heteroatoms for improving microwave absorption. Journal of Materials Science, 2020, 55, 5832-5842.	1.7	30
95	Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon, 2020, 162, 157-171.	5.4	189
96	Microwave absorption coating based on assemblies of magnetic nanoparticles for enhancing absorption bandwidth and durability. Progress in Organic Coatings, 2020, 141, 105538.	1.9	9
97	Preparation and characterization of a flexible microwave absorber based on MnNiZn ferrite (Mn0.1Ni0.45Zn0.45Fe2O4) in a thermoset polyurethane matrix. SN Applied Sciences, 2020, 2, 1.	1.5	5
98	High-efficiency electromagnetic wave absorption of epoxy composites filled with ultralow content of reduced graphene/carbon nanotube oxides. Composites Science and Technology, 2020, 189, 108020.	3.8	44
99	Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chemical Engineering Journal, 2020, 387, 124149.	6.6	167
100	Filter paper templated one-dimensional NiO/NiCo2O4 microrod with wideband electromagnetic wave absorption capacity. Journal of Colloid and Interface Science, 2020, 566, 347-356.	5.0	84
101	Synthesis, characterization of Fe3O4/polymer composites with stealth capabilities. Results in Physics, 2020, 16, 102975.	2.0	9
102	Periodic Three-Dimensional Nitrogen-Doped Mesoporous Carbon Spheres Embedded with Co/Co ₃ O ₄ Nanoparticles toward Microwave Absorption. ACS Applied Materials & Interfaces, 2020, 12, 24102-24111.	4.0	107
103	General strategy for fabrication of N-doped carbon nanotube/reduced graphene oxide aerogels for dissipation and conversion of electromagnetic energy. Journal of Materials Chemistry C, 2020, 8, 7847-7857.	2.7	51
104	Flexible and stretchable MXene/Polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process. Composites Communications, 2020, 19, 90-98.	3.3	73
105	Synthesis of Ultralight and Porous Magnetic g-C ₃ N ₄ /g-Carbon Foams with Excellent Electromagnetic Wave (EMW) Absorption Performance and Their Application as a Reinforcing Agent for 3D Printing EMW Absorbers. Industrial & Engineering Chemistry Research, 2020, 59, 7633-7645.	1.8	28
106	Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chemical Engineering Journal, 2020, 395, 125190.	6.6	195
107	Environment-Stable CoxNiy Encapsulation in Stacked Porous Carbon Nanosheets for Enhanced Microwave Absorption. Nano-Micro Letters, 2020, 12, 102.	14.4	218
108	Enhanced Dielectric Permittivity of Optimized Surface Modified of Barium Titanate Nanocomposites. Polymers, 2020, 12, 827.	2.0	15

#	Article	IF	CITATIONS
109	Ferromagnetic carbonized polyaniline/nanodiamond hybrids for ultrabroad-band electromagnetic absorption. Carbon, 2020, 164, 224-234.	5.4	46
110	Carbonized zeolitic imidazolate framework-67/polypyrrole: A magnetic-dielectric interface for enhanced microwave absorption properties. Journal of Colloid and Interface Science, 2020, 574, 87-96.	5.0	46
111	Tuning of Shells in Trilaminar Core@Shell Nanocomposites in Controlling Electromagnetic Interference through Switching of the Shielding Mechanism. Langmuir, 2020, 36, 4519-4531.	1.6	16
112	Core-shell, wire-in-tube and nanotube structures: Carbon-based materials by molecular layer deposition for efficient microwave absorption. Carbon, 2021, 173, 145-153.	5.4	34
113	Multistage reclamation of Co2+-containing alginate hydrogels as excellent reduction catalyst and subsequent microwave absorber by facile transformation. International Journal of Biological Macromolecules, 2021, 166, 1513-1525.	3.6	10
114	In situ-derived carbon nanotube-decorated nitrogen-doped carbon-coated nickel hybrids from MOF/melamine for efficient electromagnetic wave absorption. Journal of Colloid and Interface Science, 2021, 581, 783-793.	5.0	104
115	Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation. Journal of Materials Science and Technology, 2021, 67, 265-272.	5.6	134
116	A rational route towards dual wave-transparent type of carbonyl iron@SiO2@heterogeneous state polypyrrole@paraffin composites for electromagnetic wave absorption application. Journal of Colloid and Interface Science, 2021, 581, 84-95.	5.0	39
117	Bamboo-like N-doped carbon tubes encapsulated CoNi nanospheres towards efficient and anticorrosive microwave absorbents. Carbon, 2021, 171, 142-153.	5.4	64
118	A Perspective on the Behavior of Lithium Anodes under a Magnetic Field. Small Structures, 2021, 2, 2000043.	6.9	34
119	Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Research, 2021, 14, 738-746.	5.8	70
120	Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chemical Engineering Journal, 2021, 408, 127313.	6.6	72
121	Dielectric regulation of high-graphitized fine ash wrapped cube-like ZnSnO3 composites with boosted microwave absorption performance. Ceramics International, 2021, 47, 4994-5002.	2.3	27
122	Investigations into the microwave shielding behavior of oriented Polycaprolactone/Carbonyl iron particles composites fabricated using magnetic field assisted extrusion 3D printing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 2768-2781.	1.1	4
123	Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Applied Surface Science, 2021, 538, 148051.	3.1	74
124	Electrospinning and in-situ hierarchical thermal treatment to tailor C–NiCo2O4 nanofibers for tunable microwave absorption. Carbon, 2021, 171, 953-962.	5.4	185
125	Hollow double-shell structured Void@SiO2@Co-C composite for broadband electromagnetic wave absorption. Chemical Engineering Journal, 2021, 417, 128093.	6.6	31
126	Carbon encapsulation of MoS2 nanosheets to tune their interfacial polarization and dielectric properties for electromagnetic absorption applications. Journal of Materials Chemistry C, 2021, 9, 537-546.	2.7	13

#	Article	IF	CITATIONS
127	Nitrogenâ€Ðopingâ€Regulated Electromagnetic Wave Absorption Properties of Ultralight Threeâ€Dimensional Porous Reduced Graphene Oxide Aerogels. Advanced Electronic Materials, 2021, 7, 2001001.	2.6	93
128	Cu2O@nanoporous carbon composites derived from Cu-based MOFs with ultrabroad-bandwidth electromagnetic wave absorbing performance. Ceramics International, 2021, 47, 2155-2164.	2.3	30
129	A theoretical strategy of pure carbon materials for lightweight and excellent absorption performance. Carbon, 2021, 174, 662-672.	5.4	98
130	High-performance electromagnetic wave absorption of FeNi/N, S-codoped carbon composites in 2–40ÂGHz. Carbon, 2021, 174, 201-213.	5.4	45
131	Progress on agricultural residue-based microwave absorber: a review and prospects. Journal of Materials Science, 2021, 56, 4097-4119.	1.7	27
132	From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Research, 2021, 14, 1495-1501.	5.8	182
133	Electromagnetic wave absorption properties of MWCNTs-COOH/cement composites with different shapes of chiral, armchair and zigzag. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 386-393.	1.0	14
134	In situ fabrication of flower-like metallopolymeric superstructure on Nd2Fe14B template for enhanced microwave absorption. Journal of Physics and Chemistry of Solids, 2021, 149, 109755.	1.9	11
135	Theoretical study on the electronic structures and electromagnetic wave absorption properties of Fe3Si/PPy composites. Materials Letters, 2021, 282, 128875.	1.3	4
136	A super-hydrophobic composite coating with near-infrared absorption properties. Infrared Physics and Technology, 2021, 112, 103603.	1.3	1
137	Synthesis of core–shell Co@S-doped carbon@ mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. Journal of Materials Chemistry A, 2021, 9, 3567-3575.	5.2	131
138	Molten salt assisted synthesis and electromagnetic wave absorption properties of (V _{1â^'xâ^'y} Ti _x Cr _y) ₂ AlC solid solutions. Journal of Materials Chemistry C, 2021, 9, 7697-7705.	2.7	23
139	Lightweight, flexible and freestanding PVA/PEDOT: PSS/Ag NWs film for high-performance electromagnetic interference shielding. Science China Materials, 2021, 64, 1723-1732.	3.5	49
140	Multiple interface-induced evolution of electromagnetic patterns for efficient microwave absorption at low thickness. Inorganic Chemistry Frontiers, 2021, 8, 1810-1818.	3.0	16
141	Polypyrrole-Based Composite Materials for Electromagnetic Wave Absorption. Polymer Reviews, 2021, 61, 646-687.	5.3	86
142	Sulfur-doped wood-derived porous carbon for optimizing electromagnetic response performance. Nanoscale, 2021, 13, 16084-16093.	2.8	6
143	Advances in electromagnetic shielding properties of composite foams. Journal of Materials Chemistry A, 2021, 9, 8896-8949.	5.2	184
144	Anchoring porous carbon nanoparticles on carbon nanotubes as a high-performance composite with a unique core-sheath structure for electromagnetic pollution precaution. Journal of Materials Chemistry A, 2021, 9, 22489-22500.	5.2	38

#	Article	IF	CITATIONS
145	Porous carbon/graphite nanosheet/ferromagnetic nanoparticle composite absorbents with adjustable electromagnetic properties. Nanotechnology, 2021, 32, 205707.	1.3	10
146	Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Advanced Composites and Hybrid Materials, 2021, 4, 173-185.	9.9	356
147	Structural and AC Electrical Properties of Tantalum Disulfide Embedded Polyaniline Composites. Journal of Materials Engineering and Performance, 2021, 30, 1885-1894.	1.2	10
148	Defect Induced Polarization Loss in Multiâ€Shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application. Advanced Science, 2021, 8, 2004640.	5.6	195
149	A review on recent advances in carbon-based dielectric system for microwave absorption. Journal of Materials Science, 2021, 56, 10782-10811.	1.7	45
150	Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: review and perspective. Journal Physics D: Applied Physics, 2021, 54, 203001.	1.3	54
151	Crystalline-amorphous Ni3P@Nix(POy)z core–shell heterostructures as corrosion-resistant and high-efficiency microwave absorbents. Applied Surface Science, 2021, 542, 148608.	3.1	13
152	NiFe LDH/MXene Derivatives Interconnected with Carbon Fabric for Flexible Electromagnetic Wave Absorption. ACS Applied Materials & amp; Interfaces, 2021, 13, 16713-16721.	4.0	63
153	Environmentally Friendly and Multifunctional Shaddock Peel-Based Carbon Aerogel for Thermal-Insulation and Microwave Absorption. Nano-Micro Letters, 2021, 13, 102.	14.4	257
154	MOFâ^'Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption. Composites Part B: Engineering, 2021, 211, 108643.	5.9	83
155	ZIF-67-derived micron-sized cobalt-doped porous carbon-based microwave absorbers with g-C3N4 as template. Ceramics International, 2021, 47, 11506-11513.	2.3	30
156	Hollow Engineering to Co@Nâ€Doped Carbon Nanocages via Synergistic Protectingâ€Etching Strategy for Ultrahigh Microwave Absorption. Advanced Functional Materials, 2021, 31, 2102812.	7.8	488
157	One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers. Chemical Engineering Journal, 2021, 410, 128295.	6.6	65
158	A facile synthesis of bare biomass derived holey carbon absorbent for microwave absorption. Applied Surface Science, 2021, 544, 148891.	3.1	52
159	Multi-dimensional ordered mesoporous carbon/silica@Ni composite with hierarchical nanostructure for strong and broadband microwave absorption. Carbon, 2021, 176, 209-218.	5.4	48
160	Boosted electromagnetic wave absorption performance from vacancies, defects and interfaces engineering in Co(OH)F/Zn0.76Co0.24S/Co3S4 composite. Chemical Engineering Journal, 2021, 411, 128601.	6.6	76
161	Graphitic carbon nitride (g-C3N4) in situ polymerization to synthesize MOF-Co@CNTs as efficient electromagnetic microwave absorption materials. Carbon, 2021, 176, 530-539.	5.4	87
162	Defect-Enhanced Electromagnetic Wave Absorption Property of Hierarchical Graphite Capsules@Helical Carbon Nanotube Hybrid Nanocomposites. ACS Applied Materials & Interfaces, 2021, 13, 28710-28720.	4.0	31

#	Article	IF	CITATIONS
163	Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption. Journal of Colloid and Interface Science, 2021, 591, 76-84.	5.0	72
164	A sustainable strategy to fabricate porous flower-like magnetic carbon composites for enhanced microwave absorption. Journal of Applied Physics, 2021, 129, .	1.1	15
165	Construction of core-shell BaFe12O19@MnO2 composite for effectively enhancing microwave absorption performance. Ceramics International, 2021, 47, 16579-16587.	2.3	43
166	Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Research, 2021, 14, 4006-4013.	5.8	56
167	Single Zinc Atoms Anchored on MOFâ€Derived Nâ€Doped Carbon Shell Cooperated with Magnetic Core as an Ultrawideband Microwave Absorber. Small, 2021, 17, e2101416.	5.2	92
168	Topological transformation strategy for layered double hydroxide@carbon nanofibers as highly efficient electromagnetic wave absorber. Journal of Alloys and Compounds, 2021, 867, 159046.	2.8	21
169	Tailoring conductive network nanostructures of ZIF-derived cobalt-decorated N-doped graphene/carbon nanotubes for microwave absorption applications. Journal of Colloid and Interface Science, 2021, 591, 463-473.	5.0	65
170	Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption. Carbon, 2021, 177, 97-106.	5.4	120
171	Lightweight, Fireâ€Retardant, and Antiâ€Compressed Honeycombedâ€Like Carbon Aerogels for Thermal Management and Highâ€Efficiency Electromagnetic Absorbing Properties. Small, 2021, 17, e2102032.	5.2	141
172	Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing. Nano Energy, 2021, 85, 106027.	8.2	50
173	Tuning electromagnetic absorption properties of transition metal oxides by hydrogenation with nascent hydrogen. Chemical Engineering Journal, 2021, 417, 127980.	6.6	18
174	Flower-like Ni/N-doped carbon composites with core–shell synergistic structure for broad-band electromagnetic wave absorption. Applied Surface Science, 2021, 556, 149533.	3.1	16
175	Double dielectric modification of nickel foam-based microwave absorbers with improved impedance matching and absorption performances. Ceramics International, 2021, 47, 33490-33497.	2.3	12
176	A Competitive Reaction Strategy toward Binary Metal Sulfides for Tailoring Electromagnetic Wave Absorption. Advanced Functional Materials, 2021, 31, 2105018.	7.8	133
177	Application progress of conductive conjugated polymers in electromagnetic wave absorbing composites. Composites Communications, 2021, 26, 100767.	3.3	54
178	Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications. Chemical Engineering Journal, 2021, 417, 129350.	6.6	47
179	Silica-based ceramics toward electromagnetic microwave absorption. Journal of the European Ceramic Society, 2021, 41, 7381-7403.	2.8	70
180	Heterogeneous rod-like Ni@C composites toward strong and stable microwave absorption performance. Carbon, 2021, 181, 358-369.	5.4	45

#	Article	IF	CITATIONS
181	Optimizing the electromagnetic wave absorption performance of designed hollow CoFe2O4/CoFe@C microspheres. Journal of Materials Science and Technology, 2021, 81, 190-202.	5.6	47
182	Enhanced dielectric polarization from disorder-engineered Fe3O4@black TiO2-x heterostructure for broadband microwave absorption. Chemical Engineering Journal, 2021, 419, 130020.	6.6	60
183	Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber. Materials Today Physics, 2021, 20, 100475.	2.9	42
184	In situ etching growth of defective ZnS nanosheets anchored vertically on layered-double-hydroxide microflowers for accelerated photocatalytic activity. Applied Catalysis B: Environmental, 2021, 292, 120187.	10.8	33
185	Controllable synthesis and enhanced microwave absorption properities of novel lightweight graphene quantum dots/hexagonal boron nitride composites. Carbon, 2021, 182, 134-143.	5.4	41
186	MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption. Journal of Materials Science and Technology, 2021, 88, 56-65.	5.6	249
187	Dual heteroatoms co-doping strategy of graphene-based dielectric loss electromagnetic absorbent. Applied Surface Science, 2021, 564, 150380.	3.1	20
188	lodine cation bridged graphene sheets with strengthened interface combination for electromagnetic wave absorption. Carbon, 2021, 183, 100-107.	5.4	34
189	Broadband microwave-absorbing and energy-storing composite foam with pomegranate-like microstructure created from Pickering emulsion method. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106551.	3.8	7
190	Intrinsic defect-rich porous carbon nanosheets synthesized from potassium citrate toward advanced supercapacitors and microwave absorption. Carbon, 2021, 183, 176-186.	5.4	67
191	Synergistic microstructure of sandwich-like NiFe2O4@SiO2@MXene nanocomposites for enhancement of microwave absorption in the whole Ku-band. Composites Part B: Engineering, 2021, 224, 109178.	5.9	74
192	Efficient microwave absorption of MOFs derived laminated porous Ni@C nanocomposites with waterproof and infrared shielding versatility. Carbon, 2021, 185, 477-490.	5.4	38
193	0D-1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chemical Engineering Journal, 2021, 423, 130132.	6.6	64
194	MOFs derived Co@C@MnO nanorods with enhanced interfacial polarization for boosting the electromagnetic wave absorption. Journal of Colloid and Interface Science, 2021, 602, 242-250.	5.0	46
195	Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber. Journal of Colloid and Interface Science, 2021, 602, 834-845.	5.0	34
196	Tailoring electronic properties and polarization relaxation behavior of MoS2 monolayers for electromagnetic energy dissipation and wireless pressure micro-sensor. Chemical Engineering Journal, 2021, 425, 131700.	6.6	35
197	Magnetic TiN composites for efficient microwave absorption: Nanoribbons vs nanoparticles. Composites Communications, 2021, 28, 100919.	3.3	27
198	In situ growth of 1D carbon nanotubes on well-designed 2D Ni/N co-decorated carbon sheets toward excellent electromagnetic wave absorbers. Applied Surface Science, 2021, 569, 150991.	3.1	11

ARTICLE IF CITATIONS Flexible reduced graphene oxide@Fe3O4/silicone rubber composites for enhanced microwave 199 3.1 28 absorption. Applied Surface Science, 2021, 570, 151270. A MOFs-derived 3D superstructure nanocomposite as excellent microwave absorber. Chemical 6.6 Engineering Journal, 2021, 426, 130725. Anchoring of SiC and Fe3Si nanocrystallines in carbon nanofibers inducing interfacial polarization to 201 2.8 13 promote microwave attenuation ability. Journal of Alloys and Compounds, 2022, 891, 162006. Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption. 5.0 Journal of Colloid and Interface Science, 2022, 606, 406-423. Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption. Journal of Materials Science and 203 5.6 48 Technology, 2022, 100, 206-215. Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave 204 138 6.6 absorption. Chemical Engineering Journal, 2022, 429, 132253. Metal sulfides based composites as promising efficient microwave absorption materials: A review. 205 5.6 90 Journal of Materials Science and Technology, 2022, 104, 244-268. Porous cobalt ferrite microspheres decorated two-dimensional MoS2 as an efficient and wideband 206 2.8 29 microwave absorber. Journal of Alloys and Compounds, 2022, 892, 162126. Modulating surficial oxygen vacancy of the VO₂ nanostructure to boost its 207 2.7 56 electromagnetic absorption performance. Journal of Materials Chemistry C, O, , . A Review on Metal–Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption 208 14.4 216 Materials. Nano-Micro Letters, 2021, 13, 56. Large-scale fabrication of lightweight, tough polypropylene/carbon black composite foams as 209 3.3 33 broadband microwave absorbers. Composites Communications, 2020, 20, 100358. Dual-Interfacial Polarization Enhancement to Design Tunable Microwave Absorption Nanofibers of 2.0 SiC@C@PPy. ACS Applied Electronic Materials, 2020, 2, 1505-1513. Preparation of cobalt sulfide nanoparticles wrapped into reduced graphene oxide with tunable 211 1.1 19 microwave absorption performance. Journal of Applied Physics, 2020, 127, . Organic–inorganic hybrid-reinforced flexible and robust 2D papers for high-efficiency 5.2 14 microwave-absorbing films. Journal of Materials Chemistry A, 2021, 9, 24503-24509. A modified graphitic carbon nitride (MCN)/Fe₃O₄ composite as a super 213 5.29 electromagnetic wave absorber. Journal of Materials Chemistry A, 2021, 9, 23643-23650. Coral-like carbon-based composite derived from layered structure Co-MOF-71 with outstanding 214 impedance matching and tunable microwave absorption performance. Journal of Materials Science and 28 Technology, 2022, 108, 10-17. Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency 215 microwave absorption and ultrathin thickness. Advanced Composites and Hybrid Materials, 2021, 4, 9.9 215 1226-1238. Solid-state reaction induced defects in multi-walled carbon nanotubes for improving microwave absorption properties. Journal of Materials Science and Technology, 2022, 108, 37-45.

#	Article	IF	CITATIONS
217	Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities. Advanced Materials, 2022, 34, e2106195.	11.1	307
218	Conductive substrates-based component tailoring via thermal conversion of metal organic framework for enhanced microwave absorption performances. Journal of Colloid and Interface Science, 2022, 608, 1323-1333.	5.0	21
219	Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption. Carbon, 2022, 186, 262-272.	5.4	66
220	Metal/nitrogen co-doped hollow carbon nanorods derived from self-assembly organic nanostructure for wide bandwidth electromagnetic wave absorption. Composites Part B: Engineering, 2022, 228, 109424.	5.9	87
221	Optimal particle distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption. Carbon, 2022, 186, 323-332.	5.4	57
222	Porous N-doped Ni@SiO2/graphene network: Three-dimensional hierarchical architecture for strong and broad electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 106, 108-117.	5.6	54
223	Sheet-like NiCo2O4-interconnected multiwalled carbon nanotubes with high-performance electromagnetic wave absorption. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	3
224	A <scp>Twoâ€Dimensional</scp> Semiconductive <scp>Metalâ€Organic</scp> Framework for Highly Efficient Microwave Absorption. Chinese Journal of Chemistry, 2022, 40, 467-474.	2.6	23
225	Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Materials Horizons, 2022, 9, 708-719.	6.4	76
226	SiBNCx ceramics derived from single source polymeric precursor with controllable carbon structures for highly efficient electromagnetic wave absorption at high temperature. Carbon, 2022, 188, 12-24.	5.4	20
227	Design of hierarchical core-shell ZnFe2O4@MnO2@RGO composite with heterogeneous interfaces for enhanced microwave absorption. Ceramics International, 2022, 48, 5217-5228.	2.3	35
228	The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Research, 2022, 15, 3720-3728.	5.8	129
229	Dimensional Design and Core–Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. Advanced Materials, 2022, 34, e2107538.	11.1	353
230	Multifunctional carbon foam with hollow microspheres and a concave–convex microstructure for adjustable electromagnetic wave absorption and wearable applications. Journal of Materials Chemistry A, 2021, 9, 25982-25998.	5.2	19
231	Integrating Hierarchical Interfacial Polarization in Yeast-Derived Mo ₂ C/C Nanoflower/Microsphere Nanoarchitecture for Boosting Microwave Absorption Performance. SSRN Electronic Journal, 0, , .	0.4	0
232	0D/1D/2D Architectural Co@C@MXene Composite for Boosting Microwave Attenuation Performance in 2-18 GHz. SSRN Electronic Journal, 0, , .	0.4	0
233	Enhanced microwave absorption property of ferroferric Oxide: The role of magnetoelectric resonance. Chemical Engineering Journal, 2022, 433, 134455.	6.6	22
234	Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance. Carbon, 2022, 189, 530-538.	5.4	34

#	Article	IF	CITATIONS
235	An angle-insensitive electromagnetic absorber enabling a wideband absorption. Journal of Materials Science and Technology, 2022, 113, 33-39.	5.6	66
236	Engineering A-site cation deficiency into LaCoO3 thin sheets for improved microwave absorption performance. Journal of Materials Science, 2022, 57, 204-216.	1.7	8
237	Hollow MoC/NC sphere for electromagnetic wave attenuation: direct observation of interfacial polarization on nanoscale hetero-interfaces. Journal of Materials Chemistry A, 2022, 10, 1290-1298.	5.2	68
238	A solid solution-based millimeter-wave absorber exhibiting highly efficient absorbing capability and ultrabroad bandwidth simultaneously <i>via</i> a multi-elemental co-doping strategy. Journal of Materials Chemistry C, 2022, 10, 1381-1393.	2.7	7
239	Cu/NC@Co/NC composites derived from core-shell Cu-MOF@Co-MOF and their electromagnetic wave absorption properties. Journal of Colloid and Interface Science, 2022, 613, 182-193.	5.0	59
240	Crumpled Nitrogen-Doped Porous Carbon Nanosheets Derived from Petroleum Pitch for High-Performance and Flexible Electromagnetic Wave Absorption. Industrial & Engineering Chemistry Research, 2022, 61, 2799-2808.	1.8	22
241	Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. Advanced Science, 2022, 9, e2105553.	5.6	422
242	Supramolecular self-assembly derived Mo2C/FeCo/NC hierarchical nanostructures with excellent wideband microwave absorption properties. Composites Science and Technology, 2022, 221, 109325.	3.8	26
243	Fabricating Fe3o4 and Fe3o4&Fe Flower-Like Microspheres for Electromagnetic Wave Absorbing Applications. SSRN Electronic Journal, 0, , .	0.4	0
244	Temperature Induced Transformation of Co@C Nanoparticle in 3d Hierarchical Core-Shell Nanofiber Network for Enhancing Electromagnetic Wave Adsorption. SSRN Electronic Journal, 0, , .	0.4	0
245	Interface engineering in the hierarchical assembly of carbon-confined Fe ₃ O ₄ nanospheres for enhanced microwave absorption. Journal of Materials Chemistry A, 2022, 10, 8807-8816.	5.2	32
246	Hierarchical Ti3C2Tx@ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins. Nano-Micro Letters, 2022, 14, 76.	14.4	99
247	Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs). Journal of Advanced Ceramics, 2022, 11, 545-555.	8.9	50
248	Ni-MOF/Ti3C2Tx derived multidimensional hierarchical Ni/TiO2/C nanocomposites with lightweight and efficient microwave absorption. Ceramics International, 2022, 48, 22681-22690.	2.3	25
249	Anionâ€Dopingâ€Induced Vacancy Engineering of Cobalt Sulfoselenide for Boosting Electromagnetic Wave Absorption. Advanced Functional Materials, 2022, 32, .	7.8	96
250	Graphite-like carbon nitride (g-C3N4): A promising microwave absorber. Ceramics International, 2022, 48, 16461-16476.	2.3	19
251	Understanding the efficient microwave absorption for FeCo@ZnO flakes at elevated temperatures a combined experimental and theoretical approach. Journal of Materials Science and Technology, 2022, 125, 212-221.	5.6	28
252	Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption. Carbon, 2022, 195, 44-56.	5.4	50

# 253	ARTICLE Ultrahigh Density of Atomic CoFe-Electron Synergy in Noncontinuous Carbon Matrix for Highly	IF 14.4	CITATIONS
254	Efficient Magnetic Wave Adsorption. Nano-Micro Letters, 2022, 14, 96. Electromagnetic attenuation distribution in a three-dimensional amorphous carbon matrix with highly dispersed Fe/Fe3C@graphite-C nanoparticles. Materials and Design, 2022, 216, 110528.	3.3	10
255	Achieving multiband compatible and mechanical tuning absorber using edge topological defect-induced graphene plasmon. Carbon, 2022, 192, 1-13.	5.4	8
256	0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18ÂGHz. Carbon, 2022, 193, 182-194.	5.4	108
257	Hierarchical engineering of Large-caliber carbon Nanotube/Mesoporous Carbon/Fe3C nanoparticle hybrid nanocomposite towards Ultra-lightweight electromagnetic microwave absorber. Journal of Colloid and Interface Science, 2022, 616, 618-630.	5.0	12
258	Surface modification engineering of iron-silicon-aluminum alloys: Microstructure evolution investigation and microwave absorption enhancement. Journal of Alloys and Compounds, 2022, 909, 164807.	2.8	8
259	Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior. Journal of Colloid and Interface Science, 2022, 618, 129-140.	5.0	39
260	Nitrogen-doped carbon nanosheets homogeneously embedded with Co nanoparticles via biostructure confinement as highly efficient microwave absorbers. Applied Surface Science, 2022, 590, 153119.	3.1	11
261	g-C3N4-modulated bifunctional SnO2@g-C3N4@SnS2 hollow nanospheres for efficient electrochemical overall water splitting. Applied Surface Science, 2022, 589, 153016.	3.1	17
262	A quantitative permittivity model for designing electromagnetic wave absorption materials with conduction loss: A case study with microwave-reduced graphene oxide. Chemical Engineering Journal, 2022, 439, 135672.	6.6	26
263	One-pot synthesis of Cu@porous nitrogen–doped carbon (Cu@PNC) for high-efficiency electromagnetic wave absorption. Journal of Alloys and Compounds, 2022, 908, 164620.	2.8	7
264	Carbon nanofilm stabilized twisty V2O3 nanorods with enhanced multiple polarization behavior for electromagnetic wave absorption application. Journal of Materials Science and Technology, 2022, 119, 37-44.	5.6	59
265	Watching Microwaveâ€Induced Microscopic Hot Spots via the Thermosensitive Fluorescence of Europium/Terbium Mixedâ€Metal Organic Complexes. Angewandte Chemie, 2022, 134, .	1.6	3
266	Enhancing the Low/Middleâ€Frequency Electromagnetic Wave Absorption of Metal Sulfides through F ^{â[~]} Regulation Engineering. Advanced Functional Materials, 2022, 32, .	7.8	67
268	Watching Microwaveâ€Induced Microscopic Hot Spots via the Thermosensitive Fluorescence of Europium/Terbium Mixedâ€Metal Organic Complexes. Angewandte Chemie - International Edition, 2022, 61,	7.2	17
269	Enhanced Electromagnetic Wave Absorbing Material CoO/MWCNTs Prepared by Pyrolysis of Zeolitic Imidazolate Framework. Russian Journal of Physical Chemistry A, 2021, 95, S352-S358.	0.1	0
270	Magnetic nanomaterials for electromagnetic interference shielding application. , 2022, , 607-622.		0
271	Customizing Heterointerfaces in Multilevel Hollow Architecture Constructed by Magnetic Spindle Arrays Using the Polymerizingâ€Etching Strategy for Boosting Microwave Absorption. Advanced Science, 2022, 9, e2200804.	5.6	61

#	Article	IF	CITATIONS
272	Ti ₃ C ₂ T <i>_x</i> /MoS ₂ Selfâ€Rolling Rodâ€Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption. Advanced Science, 2022, 9, e2201118.	5.6	85
273	Size-Dependent Oxidation-Induced Phase Engineering for MOFs Derivatives Via Spatial Confinement Strategy Toward Enhanced Microwave Absorption. Nano-Micro Letters, 2022, 14, 102.	14.4	156
274	Electromagnetic wave absorbing properties of In–Sn/rGO composites supported by impurity defect. Ceramics International, 2022, , .	2.3	4
275	Enhanced Tunability of Broadband Microwave Absorption for MoSe ₂ /FeSe ₂ Nanocomposites with a Unique Heterostructure. Industrial & Engineering Chemistry Research, 2022, 61, 5807-5815.	1.8	17
276	Approximate solution of impedance matching for nonmagnetic homogeneous absorbing materials. European Physical Journal: Special Topics, 2022, 231, 4213-4220.	1.2	4
277	A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature. Journal of Materials Science and Technology, 2022, 125, 29-37.	5.6	17
278	3-D hierarchical urchin-like Fe3O4/CNTs architectures enable efficient electromagnetic microwave absorption. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 281, 115721.	1.7	14
279	Multi-nanocavities and multi-defects synergetic enhancement for the electromagnetic absorption of the rGO-NG film. Nanotechnology, 2022, 33, 315603.	1.3	2
280	Composition Design and Performance Regulation of Three-Dimensional Interconnected Feni@Carbon Nanofibers as Ultra-Lightweight and High Efficiency Electromagnetic Wave Absorbers. SSRN Electronic Journal, 0, , .	0.4	0
281	Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale, 2022, 14, 7322-7331.	2.8	69
282	Electrically Conductive Two-Dimensional Metal-Organic Frameworks for Superior Electromagnetic Wave Absorption. SSRN Electronic Journal, 0, , .	0.4	0
283	Mesoscopically ordered Fe3O4/C nano-composite for superior broadband electromagnetic wave absorption. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106983.	3.8	18
284	Hierarchical bath lily-like hollow microspheres constructed by graphene and Fe3O4 nanoparticles with enhanced broadband and highly efficient low-frequency microwave absorption. Carbon, 2022, 196, 280-289.	5.4	16
285	Single source precursor derived SiBCNHf ceramic with enhanced highâ€ŧemperature microwave absorption and antioxidation. Journal of Materials Science and Technology, 2022, 126, 215-227.	5.6	21
286	Light-weight FeCo/CNTs/HNTs triple-phase magnetic composites for high-performance microwave absorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129121.	2.3	6
287	High aspect-ratio sycamore biomass microtube constructed permittivity adjustable ultralight microwave absorbent. Journal of Colloid and Interface Science, 2022, 622, 719-727.	5.0	18
288	MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Research, 2022, 15, 5781-5789.	5.8	102
289	A study on the electrical, magnetic, optical and structural properties of bare biomass derived holey carbon absorbent. Materials Chemistry and Physics, 2022, 287, 126262.	2.0	6

#	Article	IF	CITATIONS
290	Coral-like Polypyrrole/LiFe ₅ O ₈ /MoS ₂ Nanocomposites for High-Efficiency Microwave Absorbers. ACS Applied Nano Materials, 2022, 5, 7944-7953.	2.4	11
291	Excellent Microwave Absorption and Broad Frequency Range Modulation Through Strain-Response of 3d Hierarchical Ultralight Porous Composites. SSRN Electronic Journal, 0, , .	0.4	0
292	Impedance-attenuation balance on Ni@CN/WO3-δternary composites to enhance microwave absorption. Journal of Materials Science: Materials in Electronics, 2022, 33, 14426-14442.	1.1	1
293	Hierarchical Engineering of Doubleâ€Shelled Nanotubes toward Heteroâ€Interfaces Induced Polarization and Microscale Magnetic Interaction. Advanced Functional Materials, 2022, 32, .	7.8	161
294	Fabricating Fe3O4 and Fe3O4&Fe Flower-Like Microspheres for Electromagnetic Wave Absorbing in C and X Bands. Electronic Materials Letters, 2022, 18, 370-380.	1.0	3
295	Wood-Derived Porous Carbon/Iron Oxide Nanoparticle Composites for Enhanced Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 8537-8545.	2.4	15
296	Manipulation of microstructure of MXene aerogel via metal ions-initiated gelation for electromagnetic wave absorption. Journal of Colloid and Interface Science, 2022, 624, 505-514.	5.0	50
297	Metal-coordination-driven self-assembly synthesis of porous iron/carbon composite for high-efficiency electromagnetic wave absorption. Journal of Colloid and Interface Science, 2022, 623, 1002-1014.	5.0	14
298	Porous hybrid scaffold strategy for the realization of lightweight, highly efficient microwave absorbing materials. Journal of Materials Science and Technology, 2022, 129, 215-222.	5.6	24
299	Salt Template Assisted Synthesis of Fe@Graphene for High-Performance Electromagnetic Wave Absorption. SSRN Electronic Journal, 0, , .	0.4	0
300	Magneto-Electric Adjustable Co/C Porous Layer Organic Coated Fci Composites for Lightweight High Performance Anticorrosive Microwave Absorbents. SSRN Electronic Journal, 0, , .	0.4	0
301	Multi-spectrum bands compatibility: New trends in stealth materials research. Science China Materials, 2022, 65, 2936-2941.	3.5	12
302	Electrically conductive Two-dimensional Metal-Organic frameworks for superior electromagnetic wave absorption. Chemical Engineering Journal, 2022, 446, 137409.	6.6	58
303	Facile synthesis of ultralight S-doped Co ₃ O ₄ microflowers@reduced graphene oxide aerogels with defect and interface engineering for broadband electromagnetic wave absorption. Journal of Materials Chemistry C, 2022, 10, 12630-12643.	2.7	10
304	Synergistic Enhancement of Thermal Conduction and Microwave Absorption of Silica Films Based on Graphene /C Hiral Ppy/Al2o3 Ternary Aerogels. SSRN Electronic Journal, 0, , .	0.4	0
305	Tailorable Microwave Absorption Properties of Macro-Porous Core@Shell Structured Sic@Ti3sic2via Molten Salt Shielded Synthesis (Ms3) Method in Air. SSRN Electronic Journal, 0, , .	0.4	0
306	Recent Progress in Iron-Based Microwave Absorbing Composites: A Review and Prospective. Molecules, 2022, 27, 4117.	1.7	17
307	A Review on Grapheneâ€Based Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption. Advanced Functional Materials, 2022, 32, .	7.8	165

#	Article	IF	CITATIONS
 308	One-pot hydrothermally prepared rGO/SiC/CoFe2O4 composites with strong microwave absorption at different thicknesses. Ceramics International, 2022, 48, 30640-30650.	2.3	9
309	Quantitative Evaluation of Loss Capability for In Situ Conductive Phase Enhanced Microwave Absorption of Highâ€Entropy Transition Metal Oxides. Advanced Functional Materials, 2022, 32, .	7.8	26
310	Composition design and performance regulation of three-dimensional interconnected FeNi@carbon nanofibers as ultra-lightweight and high efficiency electromagnetic wave absorbers. Carbon, 2022, 197, 494-507.	5.4	32
311	Mechanical Properties of High Temperature Resistant Energy Storage Dielectric Materials and Radiation Scintillation Detection Composite Materials in Bridge Construction. Integrated Ferroelectrics, 2022, 228, 51-66.	0.3	1
312	Metal-organic framework-derived carbon nanotubes for broadband electromagnetic wave absorption. Chemical Engineering Journal, 2022, 450, 138205.	6.6	76
313	Carbon Nanotubes Decorated Co/C from Zif-67/Melamine as High Efficient Microwave Absorbing Material. SSRN Electronic Journal, 0, , .	0.4	0
314	Cooperative Effect of Plasmonic AU Npcs Embedded Ytterbium-Doped Tio2 Nanostructured Photoanode for Efficient Indoor Photovoltaics. SSRN Electronic Journal, 0, , .	0.4	0
315	Lightweight and Compression-Resistant Carbon-Based Sandwich Honeycomb Absorber with Excellent Electromagnetic Wave Absorption. Nanomaterials, 2022, 12, 2622.	1.9	2
316	Preparation and optimization of silver niobate-based lead-free ceramic energy storage materials. Ceramics International, 2022, , .	2.3	3
317	Constructing Conductive Network in Hybrid Perovskite for a Highly Efficient Microwave Absorption System. Advanced Functional Materials, 2022, 32, .	7.8	48
318	Hollow ZnO/Fe ₃ O ₄ @C Nanofibers for Efficient Electromagnetic Wave Absorption. ACS Applied Nano Materials, 2022, 5, 11617-11626.	2.4	20
319	Achieving Ultra-Wideband and Elevated Temperature Electromagnetic Wave Absorption via Constructing Lightweight Porous Rigid Structure. Nano-Micro Letters, 2022, 14, .	14.4	73
320	Flexible MOF on CoXFe1-XOOH@Biomass derived Alloy@Carbon films for efficient electromagnetic interference shielding and energy conversion. Carbon, 2022, 199, 96-109.	5.4	7
321	Salt template assisted synthesis of Fe@graphene for high-performance electromagnetic wave absorption. Carbon, 2022, 199, 268-278.	5.4	23
322	Synergistic enhancement of thermal conduction and microwave absorption of silica films based on graphene/chiral PPy/Al2O3 ternary aerogels. Carbon, 2022, 199, 1-12.	5.4	26
323	Strain-responsive 3D hierarchical composites for smart microwave absorption modulation within broad C-Ku band. Materials Today Physics, 2022, 27, 100823.	2.9	2
324	Lightweight 3D interconnected porous carbon with robust cavity skeleton derived from petroleum pitch for effective multi-band electromagnetic wave absorption. Carbon, 2022, 200, 390-400.	5.4	25
325	Tailorable microwave absorption properties of macro-porous core@shell structured SiC@Ti3SiC2 via molten salt shielded synthesis (MS3) method in air. Journal of Alloys and Compounds, 2022, 927, 167046	2.8	8

#	Article	IF	CITATIONS
326	Magneto-electric adjustable Co/C porous layer coated flaky carbonyl iron composites with bifunctions of anti-corrosion and microwave absorption. Journal of Alloys and Compounds, 2022, 927, 167104.	2.8	18
327	Microalgae-derived nanoporous biochar for ammonia removal in sustainable wastewater treatment. Journal of Environmental Chemical Engineering, 2022, 10, 108514.	3.3	6
328	Cationic doping induced sulfur vacancy formation in polyionic sulfide for enhanced electromagnetic wave absorption. Journal of Colloid and Interface Science, 2023, 629, 147-155.	5.0	22
329	Heterogeneous N-doped carbon composite NiSe2–FeSe double-shell hollow nanorods for tunable and high-efficient microwave attenuation. Carbon, 2023, 201, 491-503.	5.4	35
330	Lightweight 3d Interconnected Porous Carbon with Robust Cavity Skeleton Derived from Petroleum Pitch for Effective Multi-Band Electromagnetic Wave Absorption. SSRN Electronic Journal, 0, , .	0.4	0
331	The effect of Sr doping on the electronic structure and electromagnetic properties of LaCo _{0.9} Fe _{0.1} O ₃ perovskites. Inorganic Chemistry Frontiers, 2022, 9, 5745-5756.	3.0	5
332	Facile Synthesis of Nitrogen-Doped Porous Ni@C Nanocomposites with Excellent Synergistically Enhanced Microwave Absorption and Thermal Conductive Performances. SSRN Electronic Journal, 0, ,	0.4	0
333	Interlayer Heterostructure Constructed by Atomic Fluorination Process for Enhancing Microwave Absorption Performance. SSRN Electronic Journal, 0, , .	0.4	0
334	A synergistic route of heterointerface and metal single-atom configurations towards enhancing microwave absorption. Chemical Engineering Journal, 2023, 452, 139430.	6.6	13
335	Facile synthesis of nitrogen-doped porous Ni@C nanocomposites with excellent synergistically enhanced microwave absorption and thermal conductive performances. Carbon, 2023, 201, 587-598.	5.4	30
336	Synchronously modulated the morphology and crystal defects of \hat{i}_{\pm} -MnO2 for high-performance mono-component electromagnetic wave absorber. Applied Surface Science, 2023, 608, 155024.	3.1	9
337	Recent advance in three-dimensional porous carbon materials for electromagnetic wave absorption. Science China Materials, 2022, 65, 2911-2935.	3.5	25
338	Engineering the electronic structure on MXenes via multidimensional component interlayer insertion for enhanced electromagnetic shielding. Journal of Materials Science and Technology, 2023, 138, 149-156.	5.6	16
339	Enhanced mechanical, thermal and dielectric properties of polyimide nanocomposites containing SiCp (SiCw) nanofillers for high energy-storage applications. Journal of Polymer Research, 2022, 29, .	1.2	0
340	Magnetic Field Influence on the Microwave Characteristics of Composite Samples Based on Polycrystalline Y-Type Hexaferrite. Polymers, 2022, 14, 4114.	2.0	3
341	Structural Defects in Phaseâ€Regulated Highâ€Entropy Oxides toward Superior Microwave Absorption Properties. Advanced Functional Materials, 2023, 33, .	7.8	102
342	Ultralight N-doped platanus acerifolia biomass carbon microtubes/RGO composite aerogel with enhanced mechanical properties and high-performance microwave absorption. Carbon, 2023, 202, 194-203.	5.4	47
343	Carbon nanotubes decorated Co/C from ZIF-67/melamine as high efficient microwave absorbing material. Carbon, 2023, 202, 66-75.	5.4	57

#	Article	IF	CITATIONS
344	Amorphous carbon engineering of hierarchical carbonaceous nanocomposites toward boosted dielectric polarization for electromagnetic wave absorption. Carbon, 2023, 201, 1011-1024.	5.4	22
345	A Review on Physicochemical and Electrical Performance of Vegetable Oil-Based Nanofluids for High Voltage Equipment. Electric Power Systems Research, 2023, 214, 108873.	2.1	14
346	Relationship between microwave dielectric properties and structure of Ca2+-substituted ZnZrTa2O8 ceramics. Journal of Alloys and Compounds, 2023, 934, 167981.	2.8	4
347	Induced Crystallization ontrollable Nanoarchitectonics of 3Dâ€Ordered Hierarchical Macroporous Co@Nâ€Doped Carbon Frameworks for Enhanced Microwave Absorption. Small, 2023, 19, .	5.2	21
348	Dielectric and Electrical Conductivity Studies of Carbon Nanotubeâ€Polymer Composites. , 2022, , 1209-1233.		0
349	Basic research on the microwave dielectric properties of ammonium hexachlororuthenate(â£) via Ru doping. Journal of Magnetism and Magnetic Materials, 2023, 565, 170182.	1.0	Ο
350	Lewis acidic molten salts etching route driven construction of double-layered MXene-Fe/carbon nanotube/silicone rubber composites for high-performance microwave absorption. Carbon, 2023, 204, 136-146.	5.4	13
351	Fe3O4 nanospheres deposited on Prussian blue analogue-derived Ni-Co/CNTs networks for electromagnetic wave absorption. Diamond and Related Materials, 2023, 132, 109620.	1.8	4
352	Excellent microwave absorbing properties of Fe/MnO@C composites with three carbon skeleton structures. Synthetic Metals, 2023, 293, 117270.	2.1	5
353	Customizing defect location in MWCNTs/Fe3O4 composites by direct fluorination for enhancing microwave absorption performance. Applied Surface Science, 2023, 612, 155860.	3.1	11
354	A Multifunctional Reconfigurable Absorber Enabled by Graphene and Shape Memory Alloy. Advanced Optical Materials, 2023, 11, .	3.6	3
355	Facile Preparation, Microstructure and Dielectric Properties of La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskite High-Entropy Ceramics. Crystals, 2022, 12, 1756.	1.0	1
356	3D flower-shape Co/Cu bimetallic nanocomposites with excellent wideband electromagnetic microwave absorption. Applied Surface Science, 2023, 615, 156219.	3.1	10
357	Hollow Gradient-Structured Iron-Anchored Carbon Nanospheres for Enhanced Electromagnetic Wave Absorption. Nano-Micro Letters, 2023, 15, .	14.4	36
358	Defect-induced dipole polarization engineering of electromagnetic wave absorbers: Insights and perspectives. Composites Part B: Engineering, 2023, 252, 110479.	5.9	12
359	In situ growing fusiform SnO2 nanocrystals film on carbon fiber cloth as an efficient and flexible microwave absorber. Materials and Design, 2023, 225, 111576.	3.3	10
360	Polymer-derived SiOC reinforced with core–shell nanophase structure of ZrB2/ZrO2 for excellent and stable high-temperature microwave absorption (up to 900°C). Scientific Reports, 2023, 13, .	1.6	4
361	Highâ€Entropy Enhanced Microwave Attenuation in Titanate Perovskites. Advanced Materials, 2023, 35, .	11.1	93

#	Article	IF	CITATIONS
362	Phase-Transformation Nanoparticles Synchronously Boosting Mechanical and Electromagnetic Performance of SiBCN Ceramics. ACS Applied Materials & Interfaces, 2023, 15, 4234-4245.	4.0	7
363	Synchronously enhanced electromagnetic wave absorption and heat conductance capabilities of flower-like porous γ-Al2O3@Ni@C composites. Chemical Engineering Journal, 2023, 457, 141318.	6.6	26
364	MXene/PEO aerogels with two-hierarchically porous architecture for electromagnetic wave absorption. Carbon, 2023, 204, 538-546.	5.4	22
365	Defects engineering in metal oxides for gas sensing and electromagnetic wave absorption. , 2023, , 491-531.		1
366	Construction of Conductive Network in Carbon-Nanotube-Based Nanocomposites for Electromagnetic Wave Absorption via Diameter and Composition Regulation. Journal of Physics: Conference Series, 2023, 2437, 012053.	0.3	0
367	Construction and application of carbon aerogels in microwave absorption. Physical Chemistry Chemical Physics, 2023, 25, 8244-8262.	1.3	3
368	Confined magnetic vortex motion from metal-organic frameworks derived Ni@C microspheres boosts electromagnetic wave energy dissipation. , 2023, 2, 100111.		6
369	Sandwich nanoarchitectonics of heterogenous CB/CNTs honeycomb composite for impedance matching design and microwave absorption. Journal of Alloys and Compounds, 2023, 943, 169154.	2.8	6
370	Determining the preferable polarization loss for magnetoelectric microwave absorbers by strategy of controllably regulating defects. Chemical Engineering Journal, 2023, 463, 142440.	6.6	21
371	Development of electromagnetic microwave absorbers in cementitious materials. Composite Structures, 2023, 312, 116886.	3.1	10
372	Bimetallic MOF-derived composites with broad electromagnetic wave absorption and strong corrosion resistance. Carbon, 2023, 208, 33-42.	5.4	21
373	High-temperature stability core-shell engineered Ti3AlC2@C@SiO2 for excellent microwave absorbing properties. Vacuum, 2023, 212, 112049.	1.6	10
374	Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Progress in Materials Science, 2023, 135, 101088.	16.0	147
375	Structural and phase reconfiguration induced electromagnetic wave absorption of g-C3N4 bridging Co@NC and Fe3C@NC. Materials Research Bulletin, 2023, 164, 112278.	2.7	10
376	Two-Dimensional Metal Organic Framework derived Nitrogen-doped Graphene-like Carbon Nanomesh toward Efficient Electromagnetic Wave Absorption. Journal of Colloid and Interface Science, 2023, 643, 318-327.	5.0	26
377	Confined Diffusion Strategy for Customizing Magnetic Coupling Spaces to Enhance Lowâ€frequency Electromagnetic Wave Absorption. Advanced Functional Materials, 2023, 33, .	7.8	115
378	Controllable heterogeneous interfaces and dielectric regulation of hollow raspberry-shaped Fe3O4@rGO hybrids for high-performance electromagnetic wave absorption. Journal of Materials Science and Technology, 2023, 151, 10-18.	5.6	24
379	Morphology modulated defects engineering from MnO2 supported on carbon foam toward excellent electromagnetic wave absorption. Carbon, 2023, 206, 192-200.	5.4	32

#	Article	IF	CITATIONS
380	Synergistically enhanced flexibility, mechanical strength and microwave absorption performances of TPE-based hybrid films via thermally assisted homogeneous separation technology. Carbon, 2023, 206, 392-401.	5.4	5
381	Lightweight MXene/carbon composite foam with hollow skeleton for air-stable, high-temperature-resistant and compressible electromagnetic interference shielding. Carbon, 2023, 206, 375-382.	5.4	16
382	Porous C/Co (derived from ZIF-67) embedded in anazotic g-C3N4 (PC/Co/ACN) composite as a super electromagnetic wave absorber. Carbon, 2023, 207, 59-66.	5.4	10
383	Multifunctional Organic–Inorganic Hybrid Perovskite Microcrystalline Engineering and Electromagnetic Response Switching Multiâ€Band Devices. Advanced Materials, 2023, 35, .	11.1	70
384	Preparation of magnetic three-dimensional porous Co-rGO aerogel for enhanced microwave absorption. Carbon, 2023, 208, 111-122.	5.4	20
385	Microstructures, absorption and adhesion evolution of FeCoCr/silicone resin coatings at elevated temperature. Frontiers in Materials, 0, 10, .	1.2	1
386	Regulation of Impedance Matching and Dielectric Loss Properties of Nâ€Doped Carbon Hollow Nanospheres Modified With Atomically Dispersed Cobalt Sites for Microwave Energy Attenuation. Small, 2023, 19, .	5.2	17
387	Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nature Communications, 2023, 14, .	5.8	81
388	Manipulation of nano-metals to implement rational conduction tailoring for high-efficiency microwave absorption. Carbon, 2023, 210, 118045.	5.4	4
403	Synchronously boosting microwave-absorbing and heat-conducting capabilities in CeO ₂ /Ce(OH) ₃ core–shell nanorods/nanofibers <i>via</i> Fe-doping amount control. Materials Horizons, 2023, 10, 2677-2690.	6.4	16
406	Advances in microwave absorbing materials with broad-bandwidth response. Nano Research, 2023, 16, 11054-11083.	5.8	11
412	Simple Preparation of ZnFe2O4 with Different Precipitants by Co-precipitation for Microwave Absorption Material. Journal of Electronic Materials, 2023, 52, 6391-6402.	1.0	2
415	Facile synthesis of ZnFe2O4 with different dispersants for microwave absorption material by co-precipitation. Ionics, 0, , .	1.2	0
420	Establishing a unified paradigm of microwave absorption inspired by the merging of traditional microwave absorbing materials and metamaterials. Materials Horizons, 2023, 10, 5202-5213.	6.4	1
441	State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: from the perspective of nitrogen source. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	8