Understanding Glass through Differential Scanning Cal

Chemical Reviews 119, 7848-7939

DOI: 10.1021/acs.chemrev.8b00510

Citation Report

#	Article	IF	CITATIONS
1	Pressureless Crystallization of Glass for Transparent Nanoceramics. Advanced Science, 2019, 6, 1901096.	5.6	29
2	Synthesis, phase transitions and vitrification of the zeolitic imidazolate framework: ZIF-4. Journal of Non-Crystalline Solids, 2019, 525, 119665.	1.5	11
3	Effects of cooling rate and oxygen partial pressure on heterogeneous crystal nucleation of supercooled lithium disilicate melt in PtRh20 containers. Journal of Non-Crystalline Solids, 2019, 524, 119642.	1.5	7
4	Zinc containing bioactive glasses with ultra-high crystallization temperature, good biological performance and antibacterial effects. Materials Science and Engineering C, 2019, 104, 109910.	3.8	38
5	Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility. Science China Materials, 2020, 63, 157-164.	3.5	6
6	Effect of crystallinity on capacity and cyclic stability of Na1.1V3O7.9 nanoplates as lithium-ion cathode materials. Journal of Solid State Electrochemistry, 2020, 24, 217-223.	1.2	7
7	Topological understanding of the mixed alkaline earth effect in glass. Journal of Non-Crystalline Solids, 2020, 527, 119696.	1.5	21
8	Comment on "The fragility of alkali silicate glass melts: Part of a universal topological pattern―by D.L. Sidebottom. Journal of Non-Crystalline Solids, 2020, 529, 119799.	1.5	O
9	Model-driven design of bioactive glasses: from molecular dynamics through machine learning. International Materials Reviews, 2020, 65, 297-321.	9.4	31
10	Colorâ€Based Optical Detection of Glass Transitions on Microsecond Timescales Enabled by Exciplex Dynamics. Advanced Materials, 2020, 32, 1906764.	11.1	2
11	Experimental evidence of co-existence of equilibrium and nonequilibrium in two-glass-transition miscible mixtures. Physical Chemistry Chemical Physics, 2020, 22, 25631-25637.	1.3	6
12	Eu2+/Eu3+ activated phosphate glasses synthesized via melting with multi-wall carbon nanotubes. Optical Materials, 2020, 109, 110336.	1.7	5
13	Toward hard and highly crack resistantÂmagnesium aluminosilicate glasses and transparent glassâ€eramics. Journal of the American Ceramic Society, 2020, 103, 3600-3609.	1.9	28
14	Determining the liquidus viscosity of glassâ€forming liquids through differential scanning calorimetry. Journal of the American Ceramic Society, 2020, 103, 6070-6074.	1.9	10
15	Arrhenius Crossover Phenomena and Ionic Conductivity in Ionic Glassâ€Forming Liquids. Physica Status Solidi (B): Basic Research, 2020, 257, 2000139.	0.7	6
16	Preliminary Thermal Investigations of Calcium Antimonate Opacified White Glass Tesserae. Heritage, 2020, 3, 549-560.	0.9	2
17	Silver nanoparticles: Synthesis, investigation techniques, and properties. Advances in Colloid and Interface Science, 2020, 284, 102246.	7.0	147
18	Local Structure of Glassy Lithium Phosphorus Oxynitride Thin Films: A Combined Experimental and Ab Initio Approach. Angewandte Chemie, 2020, 132, 22369-22377.	1.6	3

#	ARTICLE	IF	Citations
19	Local Structure of Glassy Lithium Phosphorus Oxynitride Thin Films: A Combined Experimental and Abâ€Initio Approach. Angewandte Chemie - International Edition, 2020, 59, 22185-22193.	7.2	21
20	The Onset and Solidification Path of a Basaltic Melt by in situ Differential Scanning Calorimetry (DSC) and ex situ Investigations. Frontiers in Earth Science, 2020, 8, .	0.8	7
21	Production of Transparent Soda-Lime Glass from Rice Husk Containing Iron and Manganese Impurities. Ceramics, 2020, 3, 494-506.	1.0	3
22	A Novel Bioactive Glass Containing Therapeutic Ions with Enhanced Biocompatibility. Materials, 2020, 13, 4600.	1.3	13
23	Tensile properties of mineral fibers determined with Sentmanat extensional rheometer. Construction and Building Materials, 2020, 253, 119215.	3.2	2
24	Influence of traces of NiO on crystallization of soda-lime-silicate glass. Journal of the European Ceramic Society, 2020, 40, 6014-6022.	2.8	3
25	Predicting the glass-forming ability of rare earth-contained Fe-based alloys by features of dynamic transition in their melts. Journal of Non-Crystalline Solids, 2020, 537, 120020.	1.5	7
26	Nanoscale Organization of a Platinum(II) Acetylide Cholesteric Liquid Crystal Molecular Glass for Photonics Applications. Advanced Functional Materials, 2020, 30, 1910562.	7.8	7
27	High rate calorimetry derived viscosity of oxide melts prone to crystallization. Journal of Non-Crystalline Solids, 2020, 536, 119992.	1.5	26
28	Dilatometric fragility and prediction of the viscosity curve of glassâ€forming liquids. Journal of the American Ceramic Society, 2020, 103, 4248-4255.	1.9	6
29	Distinct dynamics of structural relaxation in the amorphous phase of poly(<scp>l</scp> -lactic acid) revealed by quiescent crystallization. Soft Matter, 2020, 16, 3224-3233.	1.2	16
30	Shadow glass transition as a thermodynamic signature of \hat{l}^2 relaxation in hyper-quenched metallic glasses. National Science Review, 2020, 7, 1896-1905.	4.6	58
31	Effect of CeO2 and Eu2O3 on the calorimetric behavior of Siâ€"Alâ€"Znâ€"Kâ€"Ti oxide glass. Solid State Sciences, 2020, 107, 106315.	1.5	0
32	Dielectric and optical properties of glasses and glass-ceramics synthesized from agro-food wastes. Materials Chemistry and Physics, 2020, 246, 122754.	2.0	10
33	Correlation between the activation energies of structural relaxation and viscous flow for BaO–P2O5–Al2O3 glasses. Journal of Non-Crystalline Solids, 2020, 536, 119998.	1.5	13
34	Determination of the crystallization mechanism of glasses in the system BaO/SrO/ZnO/SiO2 with differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1193-1206.	2.0	9
35	Vertically aligned dopamine-reduced graphene oxide with high thermal conductivity for epoxy nanocomposites. Journal of Materials Science, 2020, 55, 8917-8929.	1.7	9
36	Temperature-induced structural change through the glass transition of silicate glass by neutron diffraction. Physical Review B, 2020, 101, .	1.1	10

3

#	Article	IF	CITATIONS
37	Development of novel alumina-containing bioactive glass-ceramics in the CaO-MgO-SiO2 system as candidates for dental implant applications. Journal of the European Ceramic Society, 2021, 41, 929-940.	2.8	19
38	Rejuvenation of granulated blast furnace slag (GBS) glass by ball milling. Journal of Non-Crystalline Solids, 2021, 556, 120557.	1.5	5
39	Mechanical and dynamic properties of V2O5-TeO2-P2O5 glasses. Journal of Alloys and Compounds, 2021, 863, 158074.	2.8	8
40	Glass transition temperature studies of planetary ball milled glasses: Accessing the rapidly cooled glassy state in Na4P2S7-xOx, 0Ââ‰ÂxÂâ‰Â7, Oxy-thio phosphate glasses. Journal of Non-Crystalline Solids, 202 551, 120462.	l 1. 5	1
41	Optical bandgap and luminescence in Er3+ doped oxyfluoro-germanate glass-ceramics. Journal of Non-Crystalline Solids, 2021, 555, 120533.	1.5	13
42	Glass-forming ability correlated with the liquid-liquid transition in Pd42.5Ni42.5P15 alloy. Scripta Materialia, 2021, 193, 117-121.	2.6	21
43	Chemical durability of lead crystal glass: Comparison of shortâ€term aqueous and atmospheric alteration at 90°C. International Journal of Applied Glass Science, 2021, 12, 158-174.	1.0	4
44	The Glassy State. , 2021, , 448-461.		4
45	Structure Characterizations and Molecular Dynamics Simulations of Melt, Glass, and Glass Fibers. , 2021, , 89-216.		1
46	Nonequilibrium Viscosity and the Glass Transition. , 2021, , 295-314.		1
47	Crystallization Kinetics and Structure Refinement of CaTiO3 Glass-Ceramics Produced by Melt-Quenching Technique. Materials Research, 2021, 24, .	0.6	0
48	A Fast Roomâ€Temperature Selfâ€Healing Glassy Polyurethane. Angewandte Chemie, 2021, 133, 8026-8034.	1.6	6
49	The Modified Random Network (MRN) Model within the Configuron Percolation Theory (CPT) of Glass Transition. Ceramics, 2021, 4, 121-134.	1.0	17
50	A Fast Roomâ€Temperature Selfâ€Healing Glassy Polyurethane. Angewandte Chemie - International Edition, 2021, 60, 7947-7955.	7.2	183
51	Inferring bubble volume fraction in a glass melt through in situ impedance spectroscopy measurements. International Journal of Applied Glass Science, 2021, 12, 358-366.	1.0	3
52	An Insight into the Correlation between Chemical Composition Changes of Aluminum-Iron-Polyphosphate Glasses and Thermal Properties. Materials, 2021, 14, 2065.	1.3	9
53	Interplay between Melt and Cold Crystallization in a Smectic Liquid Crystal, 4-Pentylphenyl 4-(<i>trans</i> -4-Pentylcyclohexyl)benzoate. Crystal Growth and Design, 2021, 21, 2777-2785.	1.4	10
54	Crystallization kinetics and glass-forming ability of rapidly crystallizing drugs studied by Fast Scanning Calorimetry. International Journal of Pharmaceutics, 2021, 599, 120427.	2.6	19

#	Article	IF	CITATIONS
55	Identifying the structural relaxation dynamics in a strongly asymmetric binary glass former. Journal of Chemical Physics, 2021, 154, 144504.	1.2	5
56	Geometric analysis of the calorimetric glass transition and fragility using constant cooling rate cycles. International Journal of Applied Glass Science, 2021, 12, 348-357.	1.0	10
57	Preparation and thermal properties of commercial vermiculite bonded with potassium silicate. Thermochimica Acta, 2021, 699, 178926.	1.2	10
58	Nanoscale Sensing Vitrification of 3D Confined Glassy Polymers Through Refractory Thermoplasmonics. ACS Photonics, 2021, 8, 1477-1488.	3.2	12
59	On the flexural strength and stiffness of cast glass. Glass Structures and Engineering, 2021, 6, 147-194.	0.8	4
60	Microscopic-Phenomenological Model of Glass Transition and Temperature Dependence of Viscosity—Part I: Foundations of the Model. Ceramics, 2021, 4, 302-330.	1.0	0
61	Structural origin of thermal shrinkage in soda-lime silicate glass below the glass transition temperature: A theoretical investigation by microsecond timescale molecular dynamics simulations. Journal of Chemical Physics, 2021, 155, 044501.	1.2	6
62	Rapid optical plasmonic transformation of silver-doped glass. Journal of Thermal Analysis and Calorimetry, $0,1.$	2.0	O
63	Glassâ€eramics in the CaO–MgO–Al ₂ O ₃ –SiO ₂ system as potential dental restorative materials. International Journal of Applied Ceramic Technology, 2021, 18, 1938-1949.	1.1	12
64	Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses. Journal of the American Ceramic Society, 2022, 105, 193-206.	1.9	3
65	Influence of additives on the crystallization and thermal conductivity of container glass cullet for foamed glass preparation. Ceramics International, 2021, 47, 32867-32873.	2.3	13
66	Spheroidization of borosilicate glass powder by RF induction coupled plasma. Ceramics International, 2021, 47, 22578-22586.	2.3	2
67	A precisely space-separated strategy of donor-acceptor for intense red emitting composite borosilicate glass co-doped with CsPbCl3 quantum dots and Mn2+ ions. Chemical Engineering Journal, 2021, 417, 129177.	6.6	14
68	Modeling the Viscosity of Anhydrous and Hydrous Volcanic Melts. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009918.	1.0	9
69	Large heat-capacity jump in cooling-heating of fragile glass from kinetic Monte Carlo simulations based on a two-state picture. Physical Review E, 2021, 104, 024131.	0.8	4
70	A review of asphalt-filler interaction: Mechanisms, evaluation methods, and influencing factors. Construction and Building Materials, 2021, 299, 124279.	3.2	45
71	The Relationship between Free Volume and Cooperative Rearrangement: From the Temperature-Dependent Neutron Total Scattering Experiment of Polystyrene. Polymers, 2021, 13, 3042.	2.0	1
72	Energy landscape modeling of crystal nucleation. Acta Materialia, 2021, 217, 117163.	3.8	19

#	ARTICLE	IF	Citations
73	Modeling the relaxation and crystallization kinetics of glass without fictive temperature: Toy landscape approach. Journal of the American Ceramic Society, 2022, 105, 245-256.	1.9	6
74	Preparation and Characterization of High-Strength Glass-Ceramics via Ion-Exchange Method. Materials, 2021, 14, 5477.	1.3	4
75	Applications of characterization methods in polyurethane materials: analysis of microphase-separated structures. Applied Spectroscopy Reviews, 2022, 57, 153-176.	3.4	7
76	Controlling crystal precipitation in magnesium aluminosilicate glasses via thermoelectric coupling. Journal of Non-Crystalline Solids, 2021, 568, 120960.	1.5	0
77	On Structural Rearrangements Near the Glass Transition Temperature in Amorphous Silica. Materials, 2021, 14, 5235.	1.3	22
78	Crystallization mechanisms of cordierite glass-ceramics with "surface-center―crystallization behavior. Journal of the European Ceramic Society, 2021, 41, 6708-6721.	2.8	14
79	Heterogeneous crystal nucleation of supercooled lithium disilicate melt in glassy carbon containers. Journal of Non-Crystalline Solids, 2021, 571, 121068.	1.5	9
80	Influence of K and Mg substitutions on the synthesis and the properties of CaO-MgO-SiO2/Na2O, P2O5, CaF2 bioactive glasses. Journal of Non-Crystalline Solids, 2021, 573, 121140.	1.5	12
81	Glasses: Alkali and Alkaline-Earth Silicates. , 2021, , 462-482.		3
82	Thermal Analysis Techniques for Technical Ceramics and Glasses. , 2021, , 676-688.		1
85	Borosilicate Glasses., 2021,, 519-539.		6
86	Ionic liquid glasses: properties and applications. Russian Chemical Reviews, 2022, 91, .	2.5	4
87	Tough, strong, hard, and chemically durable enstatite‣irconia glassâ€eeramic. Journal of the American Ceramic Society, 2020, 103, 5036-5049.	1.9	10
88	Light-Induced Heating of PMMA Film by a TiN Plasmon Metasurface. , 2021, , .		0
89	Enhancing glass anode performance for lithiumâ€ion batteries via crystallization. Journal of the American Ceramic Society, 2022, 105, 1001-1009.	1.9	5
90	Organic Crystal Growth: Directly from Amorphous Solid Powder to Single Crystals. Chemistry - an Asian Journal, 2021, 16, 4067-4071.	1.7	1
91	High-contrast lead-free pair of soft glasses for large numerical aperture imaging bundles. Optical Materials Express, 2020, 10, 1891.	1.6	2
92	Mechanical and dielectric response within and beyond the linear regime. Journal of Physics Condensed Matter, 2020, 32, 494001.	0.7	O

#	ARTICLE	IF	CITATIONS
93	Transparent tellurite glass-ceramics for photonics applications: A comprehensive review on crystalline phases and crystallization mechanisms. Progress in Materials Science, 2022, 125, 100890.	16.0	40
94	Relaxation dynamics in multicomponent glass formers with adjustable concentration fluctuations. Journal of Non-Crystalline Solids: X, 2021, 11-12, 100072.	0.5	2
95	Topological control of negatively charged local environments for tuning bismuth NIR luminescence in glass materials. Journal of Alloys and Compounds, 2022, 898, 162884.	2.8	5
96	Properties of Singleâ€Component Metal–Organic Framework Crystalâ€Glass Composites. Chemistry - A European Journal, 2022, 28, e202104026.	1.7	2
97	Innovative Approaches in Characterization of Carbon Nanotube. , 2021, , 1-22.		0
98	Sensitivity of the glass transition and melting in a metal–organic framework to ligand chemistry. Chemical Communications, 2022, 58, 823-826.	2.2	8
99	Metal–Organic Network-Forming Glasses. Chemical Reviews, 2022, 122, 4163-4203.	23.0	121
100	Determination of non-freezing water in different nonfouling materials by differential scanning calorimetry. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1012-1024.	1.9	4
101	Amorphization of hybrid framework materials. , 2022, , .		0
102	Nanodiamond-induced modifications of Eu-doped phosphate glasses toward photonic applications: A synergistic physico-chemical approach. Materials Advances, 2022, 3, 318-327.	2.6	5
103	Impact of a temperatureâ€dependent stretching exponent on glass relaxation. International Journal of Applied Glass Science, 2022, 13, 338-346.	1.0	2
104	Metalâ€Organic Framework Glass Anode with an Exceptional Cyclingâ€Induced Capacity Enhancement for Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2110048.	11.1	83
105	In Situ Growth Mechanism of CsPbX $<$ sub $>3sub>(X = Cl, Br, and I) Quantum Dots in an Amorphous Oxide Matrix. Chemistry of Materials, 2022, 34, 1599-1610.$	3.2	12
106	Study of phosphate glasses containing iron, sodium and chromium : 30Fe2O3–3Cr2O3–12Na2O–55P2O5. Materials Chemistry and Physics, 2022, 279, 125740.	2.0	2
107	Stability of metallic glasses under simulated space conditions. Journal of Alloys and Compounds, 2022, 902, 163811.	2.8	1
108	On Structural Rearrangements during the Vitrification of Molten Copper. Materials, 2022, 15, 1313.	1.3	12
109	Multispectral Chalcogenide Glasses Transmitting from Visible to Lwir. SSRN Electronic Journal, 0, , .	0.4	0
110	Determination of cooling rates of glasses over four orders of magnitude. Contributions To Mineralogy and Petrology, 2022, 177, 1.	1.2	6

#	Article	IF	CITATIONS
111	Quantifying Concentration Fluctuations in Binary Glass-Forming Systems by Small- and Wide-Angle X-ray Scattering. Journal of Physical Chemistry Letters, 2022, 13, 2205-2210.	2.1	O
112	Crystallization of Lanthanideâ€"Ho3+ and Tm3+ Ions Doped Tellurite Glasses. Materials, 2022, 15, 2662.	1.3	1
113	Revealing the nature of glass by the hyperquenching-annealing-calorimetry approach. Journal of Non-Crystalline Solids: X, 2022, 14, 100099.	0.5	4
114	High-entropy induced a glass-to-glass transition in a metallic glass. Nature Communications, 2022, 13, 2183.	5.8	34
115	Amorphization by mechanical deformation. Materials Science and Engineering Reports, 2022, 149, 100673.	14.8	30
117	Unveiling Non-isothermal Crystallization of CaOâ€"Al ₂ 0 ₃ 06€"Li ₂ 160, 7017-7025.	/sub>Oâ€	" SjO ₂
118	Nucleation, Growth, and Crystallization in Oxide Glass-formers. A Current Perspective. Reviews in Mineralogy and Geochemistry, 2022, 87, 405-429.	2.2	7
119	Dual effect of ZrO ₂ on phase separation and crystallization in Li ₂ 0–Al ₂ O ₃ –SiO ₂ –P ₂ O ₅ glasses. Journal of the American Ceramic Society, 2022, 105, 5698-5710.	1.9	10
120	The Transformation from Translucent into Transparent Rare Earth Ions Doped Oxyfluoride Glassâ€Ceramics with Enhanced Luminescence. Advanced Optical Materials, 2022, 10, .	3.6	15
121	The Scavenging Effect of Different Rare-Earth Elements in the Low-Purity Zr50Cu40Al10 Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2902-2925.	1.1	3
122	Influence of Ceria Addition on Crystallization Behavior and Properties of Mesoporous Bioactive Glasses in the SiO2–CaO–P2O5–CeO2 System. Gels, 2022, 8, 344.	2.1	4
123	Examining the role of nucleating agents within glass-ceramic systems. Journal of Non-Crystalline Solids, 2022, 591, 121714.	1.5	20
124	Crystallization Study of Pb Additive Se-Te-Ge Nanostructured Alloys using Non-isothermal Differential Scanning Calorimetry. Nanofabrication, 0, 7, .	1.1	0
125	Superhigh-Luminance Ce:YAG Phosphor in Glass and Phosphor-in-Glass Film for Laser Lighting. ACS Sustainable Chemistry and Engineering, 2022, 10, 8105-8114.	3.2	30
127	Calorimetry to Understand Structural Relaxation in Chalcogenide Glasses. , 0, , .		1
129	Recent progress of amorphous and glassy coordination polymers. Coordination Chemistry Reviews, 2022, 469, 214646.	9.5	15
130	Statistical mechanical modeling of glass-forming systems: A practical review considering an example calcium silicate system. Current Opinion in Solid State and Materials Science, 2022, 26, 101018.	5.6	2
131	Machine Learning Predictions of Knoop Hardness in Lithium Disilicate Glass-Ceramics. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
132	Insights into Stereocomplexation of Poly(lactic acid) Materials: Evolution of Interaction between Enantiomeric Chains and Its Role in Conformational Transformation in Racemic Blends. ACS Applied Polymer Materials, 2022, 4, 5891-5900.	2.0	7
133	Ln ₂ Te ₆ O ₁₅ (Ln = La, Gd, and Eu) "Anti-Glass―Phase-Assisted Lanthanum-Tellurite Transparent Glass–Ceramics: Eu ³⁺ Emission and Local Site Symmetry Analysis. Inorganic Chemistry, 2022, 61, 10342-10358.	1.9	3
134	Kinetics of the Glass Transition of Silica-Filled Styrene–Butadiene Rubber: The Effect of Resins. Polymers, 2022, 14, 2626.	2.0	2
135	The effect of melt-homogenization and heat-treatment on the optical properties of the rare earth doped oxyfluoride glass-ceramics. Journal of Non-Crystalline Solids, 2022, 593, 121773.	1.5	3
136	Thai creamed honey: enthalpy of crystal melting and texture profile under different storage conditions., 2021, 28, 936-944.		0
137	Identification of Lithocholic Acid as a Molecular Glass Host for Roomâ€√emperature Phosphorescent Materials. ChemPhotoChem, 0, , .	1.5	0
138	Thermal conduction in a densified oxide glass: Insights from lattice dynamics. Materials Today Communications, 2022, 32, 104160.	0.9	1
139	Crystallization Kinetics in a Glass-Forming Hybrid Metal Halide Perovskite. , 2022, 4, 1840-1847.		10
140	Composition engineering of ultra-soft-magnetic Co-based alloys. Journal of Alloys and Compounds, 2022, 924, 166366.	2.8	5
141	The effect of impurities in zirconium on the formation and mechanical properties of Zr55Cu30Al10Ni5 metallic glass. Journal of Non-Crystalline Solids, 2022, 596, 121878.	1.5	1
142	Augmented Adam-Gibbs model for glass melt viscosity and configuration entropy as functions of temperature and composition. Journal of Non-Crystalline Solids, 2022, 595, 121832.	1.5	6
143	Controlling the relaxation versus rejuvenation behavior in Zr-based bulk metallic glasses induced by elastostatic compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 855, 143906.	2.6	2
144	Kinetics of enthalpy recovery studied by temperature-modulated differential scanning calorimetry. Thermochimica Acta, 2022, 716, 179330.	1.2	2
145	Crystallization Enhancement and Microstructure Evolution Characteristics of Ti-Bearing Blast Furnace Slag Glass-Ceramics with the Introduction of Ferrochromium Slag. SSRN Electronic Journal, 0, , .	0.4	0
146	Advances and Challenges of Self-Healing Elastomers: A Mini Review. Materials, 2022, 15, 5993.	1.3	6
148	Vibration assisted glass-formation in zeolitic imidazolate framework. Journal of Chemical Physics, 2022, 157, 104501.	1.2	7
149	Effect of Phase Separation and Crystallization on Enthalpy Relaxation in Thermoplastic Polyurethane. Macromolecules, 2022, 55, 8566-8576.	2.2	12
150	Glass-ceramics in dentistry: Fundamentals, technologies, experimental techniques, applications, and open issues. Progress in Materials Science, 2023, 132, 101023.	16.0	20

#	Article	IF	CITATIONS
151	Eutectic CsHSO ₄ -Coordination Polymer Glasses with Superprotonic Conductivity. Journal of the American Chemical Society, 2022, 144, 18619-18628.	6.6	18
152	Mechanical, thermal, and structural investigations of chemically strengthened Na2O–CaO–Al2O3–SiO2 glasses. Frontiers in Materials, 0, 9, .	1.2	8
153	Rejuvenation by enthalpy relaxation in metallic glasses. Acta Materialia, 2022, 241, 118376.	3.8	9
154	Soluble Imide-Bridged Polypentamethyltrisiloxane (IBPPMS) with Rationally Designed Ladder-like Structure for O ₂ /N ₂ Permselectivity. Macromolecules, 2022, 55, 9833-9840.	2.2	0
155	Structural relaxation in chalcogenide glasses. Journal of the American Ceramic Society, 2023, 106, 1739-1747.	1.9	2
156	Synthesis and characterization of silica-derived, silicate polymers: monovalent (rubidium) /divalent (strontium) system. Journal of Non-Crystalline Solids, 2023, 600, 122030.	1.5	0
157	Effectiveness of Low-Field NMR to Assess the Molecular Dynamics of Fatty Esters around the Glass Transition. Industrial & Engineering Chemistry Research, 2022, 61, 16602-16609.	1.8	0
158	Crystallization enhancement and microstructure evolution characteristics of Ti-bearing blast furnace slag glass-ceramics with the introduction of ferrochromium slag. Ceramics International, 2023, 49, 9708-9718.	2.3	5
160	Molecular dynamics and kinetics of isothermal cold crystallization with tunable dimensionality in a molecular glass former, 5′-(2,3-difluorophenyl)-2′-ethoxy-4-pentyloxy-2,3-difluorotolane. Physical Chemistry Chemical Physics, 2022, 25, 724-735.	1.3	5
161	Micro-Raman spectroscopy for a comprehensive understanding of the structural evolution of Basaltic-Andesite and Trachybasalt multiphase systems. Chemical Geology, 2023, 616, 121241.	1.4	6
162	Influences of Mn2+ ions, and Mn2+–Yb3+ dimer on the optical band gaps and bandwidth flatness of near-infrared emissions of Ho3+/Tm3+, Ho3+/Tm3+/Yb3+ co-doped calcium aluminosilicate glasses. Journal of Non-Crystalline Solids, 2023, 603, 122086.	1.5	2
163	Innovative Approaches in Characterization of Carbon Nanotube. , 2022, , 109-129.		O
164	Designing Glass and Crystalline Phases of Metal–Bis(acetamide) Networks to Promote High Optical Contrast. Journal of the American Chemical Society, 2022, 144, 22262-22271.	6.6	10
165	Effect of Coating Process on Properties of Two-Component Waterborne Polyurethane Coatings for Wood. Coatings, 2022, 12, 1857.	1.2	6
166	Effect of Al2O3 on Microstructure, Thermal, and Physicomechanical Properties, and Biomineralization of Na2O/K2O-CaO-MgO-SiO2-P2O5-CaF2 Glasses for Dental Applications. Journal of Materials Engineering and Performance, 2023, 32, 7895-7904.	1.2	1
167	Exploiting Desired Phosphorâ€Inâ€Glass for Allâ€Inorganic Solidâ€State White Illumination. Laser and Photonics Reviews, 2023, 17, .	4.4	5
168	Crystallization of LiNbO ₃ and NaNbO ₃ in niobiosilicate glass–ceramics. Journal of the American Ceramic Society, 2023, 106, 2716-2731.	1.9	5
169	High-accuracy thermodynamic properties to the melting point from ab initio calculations aided by machine-learning potentials. Npj Computational Materials, 2023, 9, .	3.5	12

#	Article	IF	CITATIONS
170	Synthesis and Characterization of Rare Earth Doped ZnO–Al2O3–SiO2 Glasses and Transparent Glass-Ceramics. Advances in Material Research and Technology, 2023, , 213-240.	0.3	0
171	Biomimetic Hybrid Networks with Excellent Toughness and Self-Healing Ability in the Glassy State. Chemistry of Materials, 2023, 35, 682-691.	3.2	9
172	Processing induced nanoscale heterogeneity impact on the mechanical and electrical behavior of Cu–Zr thin film metallic glasses. Results in Surfaces and Interfaces, 2023, 10, 100094.	1.0	1
173	Isothermal enthalpy relaxation of amorphous polystyrene studied using temperature-modulated fast scanning calorimetry. Thermochimica Acta, 2023, 721, 179433.	1.2	5
174	Unraveling the role of chemical composition in the critical cooling rate of high-temperature CMAS slag. Fuel, 2023, 338, 127307.	3.4	0
175	Optimization and Synthesis of a La-TMA MOF with Some Improvements in Its Properties. ACS Omega, 2023, 8, 262-270.	1.6	2
176	Hybridization Engineering of Oxyfluoride Aluminosilicate Glass for Construction of Dualâ€Phase Optical Ceramics. Advanced Materials, 2023, 35, .	11.1	7
177	Ring Repeating Unit: An Upgraded Structure Representation of Linear Condensation Polymers for Property Prediction. Journal of Chemical Information and Modeling, 2023, 63, 1177-1187.	2.5	7
178	Glass transition, topology, and elastic models of Seâ€based glasses. Journal of the American Ceramic Society, 2023, 106, 3277-3302.	1.9	0
179	Effect of the alkali vs iron ratio on glass transition temperature and vibrational properties of synthetic basalt-like glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 293, 122430.	2.0	3
180	Volumetric and Energetic Properties of Polystyrene and Polyethylene Oxide Affected by Thermal Cycling. Macromolecular Theory and Simulations, 0, , .	0.6	2
181	Modern definition of bioactive glasses and glass-ceramics. Journal of Non-Crystalline Solids, 2023, 608, 122228.	1.5	21
182	Grid-like Fe3O4 nanocrystals enhance the performances of glass-ceramic anodes for lithium-ion batteries. Journal of Non-Crystalline Solids, 2023, 605, 122157.	1.5	5
183	Machine learning predictions of Knoop hardness in lithium disilicate glassâ€eeramics. Journal of the American Ceramic Society, 2023, 106, 3418-3425.	1.9	4
184	Perfluoro(7-methylbicyclo[4.3.0]nonane) and Perfluoro(butylcyclohexane): Physicochemical, Thermophysical, and Spectral Data. Journal of Chemical & Engineering Data, 2023, 68, 499-517.	1.0	5
185	The Temperature Interval of the Liquid–Glass Transition of Amorphous Polymers and Low Molecular Weight Amorphous Substances. Applied Sciences (Switzerland), 2023, 13, 2742.	1.3	0
186	A review of phase change materials in multi-designed tubes and buildings: Testing methods, applications, and heat transfer enhancement. Journal of Energy Storage, 2023, 63, 106990.	3.9	5
187	Glass transition temperature of lowâ€activity waste nuclear glasses. International Journal of Applied Glass Science, 2023, 14, 399-407.	1.0	1

#	ARTICLE	IF	CITATIONS
188	Non-isothermal crystallization kinetics of CaO-SiO2-B2O3-TiO2 glass studied by differential thermal analysis in the case of "site saturation― Ceramics International, 2023, 49, 19346-19354.	2.3	6
189	Some aspects of the glass transition of polyvinylpyrrolidone depending on the molecular mass. Physical Chemistry Chemical Physics, 2023, 25, 10706-10714.	1.3	4
190	Structural Relaxation Rate and Aging in Amorphous Solids. Journal of Physical Chemistry C, 2023, 127, 6080-6087.	1.5	4
191	Surface premelting and melting of colloidal glasses. Science Advances, 2023, 9, .	4.7	2
192	Eu ³⁺ Concentration Effects in Phosphate Glasses: An Experimental Study Linking Structural, Thermal, and Optical Properties. Journal of Physical Chemistry B, 2023, 127, 2818-2828.	1.2	5
193	Challenge, Advance and Emerging Opportunities for Metal-Organic Framework Glasses: from Dynamic Chemistry to Material Science and Noncrystalline Physics. Acta Chimica Sinica, 2023, 81, 246.	0.5	0
194	Mechanisms of microstructural deformation governing Vickers hardness in phaseâ€separated calcium aluminosilicate glasses. Journal of the American Ceramic Society, 0, , .	1.9	0
195	Broadband Optical Amplification in Biâ€Doped Multicomponent Glass Fiber. Advanced Materials Technologies, 2023, 8, .	3.0	2
196	Vitrification of the Entire Amorphous Phase during Crystallization of Poly(butylene terephthalate) near the Glass-Transition Temperature. Macromolecules, 2023, 56, 3110-3118.	2.2	4
197	Unconventional floppy network structures in titanate glasses. Acta Materialia, 2023, 253, 118953.	3. 8	2
198	Traversing with quantitative fidelity through the glass transition of amorphous polymers: Modeling the thermodynamic dilatational flow of polycarbonate. Journal of Rheology, 2023, 67, 749.	1.3	0
199	Modulating Liquid–Liquid Transitions and Glass Formation in Zeolitic Imidazolate Frameworks by Decoration with Electron-Withdrawing Cyano Groups. Journal of the American Chemical Society, 2023, 145, 9273-9284.	6.6	8
215	Amorphous MOFs for next generation supercapacitors and batteries. Energy Advances, 2023, 2, 1591-1603.	1.4	3
222	Food Quality: Engineering Perspective. Food Engineering Series, 2023, , 1-29.	0.3	0
244	Thermal properties of wool: thermal degradation studies and fire-retardant properties. , 2024, , 327-340.		0