Continuous manufacturing – the Green Chemistry pr

Green Chemistry 21, 3481-3498 DOI: 10.1039/c9gc00773c

Citation Report

#	Article	IF	CITATIONS
1	Continuous flow upgrading of glycerol toward oxiranes and active pharmaceutical ingredients thereof. Green Chemistry, 2019, 21, 4422-4433.	4.6	39
2	Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European Journal of Organic Chemistry, 2019, 2019, 7188-7217.	1.2	33
3	Safe and highly efficient adaptation of potentially explosive azide chemistry involved in the synthesis of Tamiflu using continuous-flow technology. Beilstein Journal of Organic Chemistry, 2019, 15, 2577-2589.	1.3	17
4	Electrochemical Coupling of Arylsulfonyl Hydrazides and Tertiary Amines for the Synthesis of βâ€Amidovinyl Sulfones. European Journal of Organic Chemistry, 2019, 2019, 6951-6955.	1.2	19
5	Continuous flow/waste-minimized synthesis of benzoxazoles catalysed by heterogeneous manganese systems. Green Chemistry, 2019, 21, 5298-5305.	4.6	38
6	Multistep Solvent-Free 3 m ² Footprint Pilot Miniplant for the Synthesis of Annual Half-Ton Rufinamide Precursor. ACS Sustainable Chemistry and Engineering, 2019, 7, 17237-17251.	3.2	13
7	Biocatalysis and Pharmaceuticals: A Smart Tool for Sustainable Development. Catalysts, 2019, 9, 792.	1.6	22
8	A Green Chemistry Continuum for a Robust and Sustainable Active Pharmaceutical Ingredient Supply Chain. ACS Sustainable Chemistry and Engineering, 2019, 7, 16937-16951.	3.2	37
9	Continuous Flow Synthesis of Methyl Oximino Acetoacetate: Accessing Greener Purification Methods with Inline Liquid–Liquid Extraction and Membrane Separation Technology. ACS Sustainable Chemistry and Engineering, 2019, 7, 20088-20096.	3.2	18
10	Challenges and Directions for Green Chemical Engineering—Role of Nanoscale Materials. , 2020, , 1-18.		11
11	Continuousâ€Flow Amide and Ester Reductions Using Neat Borane Dimethylsulfide Complex. ChemSusChem, 2020, 13, 1800-1807.	3.6	13
12	Waste minimized synthesis of pharmaceutically active compounds <i>via</i> heterogeneous manganese catalysed C–H oxidation in flow. Green Chemistry, 2020, 22, 397-403.	4.6	40
13	Continuous Hydrogenolysis of <i>N</i> -Diphenylmethyl Groups in a Micropacked-Bed Reactor. Organic Process Research and Development, 2020, 24, 59-66.	1.3	41
14	Continuous synthesis of 2,5-hexanedione through direct C–C coupling of acetone in a Hilbert fractal photo microreactor. Reaction Chemistry and Engineering, 2020, 5, 2250-2259.	1.9	5
15	Continuous Flow Upgrading of Selected C ₂ –C ₆ Platform Chemicals Derived from Biomass. Chemical Reviews, 2020, 120, 7219-7347.	23.0	222
16	Carbon as a Simple Support for Redox Biocatalysis in Continuous Flow. Organic Process Research and Development, 2020, 24, 2281-2287.	1.3	12
17	Evolution of flow-oriented design strategies in the continuous preparation of pharmaceuticals. Reaction Chemistry and Engineering, 2020, 5, 1527-1555.	1.9	28
18	Cluster Preface: Integrated Synthesis Using Continuous-Flow Technologies. Synlett, 2020, 31, 1878-1879.	1.0	Ο

#	Article	IF	CITATIONS
19	The future of sustainable chemistry and process: Convergence of artificial intelligence, data and hardware. Energy and AI, 2020, 2, 100036.	5.8	12
20	A mineralogically-inspired silver–bismuth hybrid material: Structure, stability and application for catalytic benzyl alcohol dehydrogenations under continuous flow conditions. Molecular Catalysis, 2020, 498, 111263.	1.0	3
21	Digital Twin for Extraction Process Design and Operation. Processes, 2020, 8, 866.	1.3	20
22	Mechanistic Understanding of Competitive Destabilization of Carbamazepine Cocrystals under Solvent Free Conditions. Crystal Growth and Design, 2020, 20, 6024-6029.	1.4	7
23	Optimization and sustainability assessment of a continuous flow Ru-catalyzed ester hydrogenation for an important precursor of a l²2-adrenergic receptor agonist. Green Chemistry, 2020, 22, 5762-5770.	4.6	16
24	Sustainable flow approaches to active pharmaceutical ingredients. Green Chemistry, 2020, 22, 5937-5955.	4.6	56
25	Highly Efficient and Selective Synthesis of Methyl Carbonate-Ended Polycarbonate Precursors from Dimethyl Carbonate and Bisphenol A. Industrial & Engineering Chemistry Research, 2020, 59, 13948-13955.	1.8	8
26	Continuous hydrothermal leaching of LiCoO ₂ cathode materials by using citric acid. Reaction Chemistry and Engineering, 2020, 5, 2148-2154.	1.9	13
27	Continuous reactive crystallization of an API in PFR-CSTR cascade with in-line PATs. Reaction Chemistry and Engineering, 2020, 5, 1950-1962.	1.9	13
28	Advances in the green chemistry of coordination polymer materials. Green Chemistry, 2020, 22, 3693-3715.	4.6	67
29	A green and efficient Pd-free protocol for the Suzuki–Miyaura cross-coupling reaction using Fe3O4@APTMS@Cp2ZrClx(x = 0, 1, 2) MNPs in PEG-400. Research on Chemical Intermediates, 2020, 46, 3361-3382.	1.3	15
30	Microreactor technology for synthesis of ethyl methyl oxalate from diethyl oxalate with methanol and its kinectics. Canadian Journal of Chemical Engineering, 2020, 98, 2321-2329.	0.9	5
31	Process Intensification for Obtaining a Cannabidiol Intermediate by Photo-oxygenation of Limonene under Continuous-Flow Conditions. Organic Process Research and Development, 2020, 24, 2017-2024.	1.3	12
32	Development of a Versatile Modular Flow Chemistry Benchtop System. Organic Process Research and Development, 2020, 24, 2105-2112.	1.3	5
33	Continuous flow Suzuki–Miyaura couplings in water under micellar conditions in a CSTR cascade catalyzed by Fe/ppm Pd nanoparticles. Green Chemistry, 2020, 22, 3441-3444.	4.6	24
34	Preparation of Mono- and Diisocyanates in Flow from Renewable Carboxylic Acids. Organic Process Research and Development, 2020, 24, 2342-2346.	1.3	19
35	E-factor analysis of a pilot plant for end-to-end integrated continuous manufacturing (ICM) of pharmaceuticals. Green Chemistry, 2020, 22, 4350-4356.	4.6	19
36	Flow chemistry remains an opportunity for chemists and chemical engineers. Current Opinion in Chemical Engineering, 2020, 29, 42-50.	3.8	42

#	Article	IF	CITATIONS
37	Continuous Production of Five Active Pharmaceutical Ingredients in Flexible Plug-and-Play Modules: A Demonstration Campaign. Organic Process Research and Development, 2020, 24, 2183-2196.	1.3	50
38	Ultrafast synthesis of 2-(benzhydrylthio)benzo[d]oxazole, an antimalarial drug, via an unstable lithium thiolate intermediate in a capillary microreactor. Reaction Chemistry and Engineering, 2020, 5, 849-852.	1.9	6
39	Reaction Calorimetry in Continuous Flow Mode: A New Approach for the Thermal Characterization of High Energetic and Fast Reactions. Organic Process Research and Development, 2020, 24, 2004-2016.	1.3	12
40	Enhancement of Ultraviolet B Irradiation with a Photoluminescent Composite Film and Its Application in Photochemical Microfluidic Synthesis. Industrial & Engineering Chemistry Research, 2020, 59, 12870-12878.	1.8	3
41	Sustainability by design: automated nanoscale 2,3,4-trisubstituted quinazoline diversity. Green Chemistry, 2020, 22, 2459-2467.	4.6	10
42	Accelerated Material-Efficient Investigation of Switchable Hydrophilicity Solvents for Energy-Efficient Solvent Recovery. ACS Sustainable Chemistry and Engineering, 2020, 8, 3347-3356.	3.2	18
43	Continuous Ultrasonic Reactors: Design, Mechanism and Application. Materials, 2020, 13, 344.	1.3	75
44	Scrap waste automotive converters as efficient catalysts for the continuous-flow hydrogenations of biomass derived chemicals. Green Chemistry, 2020, 22, 1414-1423.	4.6	13
45	Electrochemical CO ₂ Reduction in a Continuous Non-Aqueous Flow Cell with [Ni(cyclam)] ²⁺ . Inorganic Chemistry, 2020, 59, 1883-1892.	1.9	26
46	N-Acetylation of Amines in Continuous-Flow with Acetonitrile—No Need for Hazardous and Toxic Carboxylic Acid Derivatives. Molecules, 2020, 25, 1985.	1.7	7
47	Continuous Flow Organophosphorus Chemistry. European Journal of Organic Chemistry, 2020, 2020, 5236-5277.	1.2	19
48	Recent advances in continuous-flow organocatalysis for process intensification. Reaction Chemistry and Engineering, 2020, 5, 1017-1052.	1.9	62
49	Flow Chemistry in Contemporary Chemical Sciences: A Real Variety of Its Applications. Molecules, 2020, 25, 1434.	1.7	45
50	Photochemical microfluidic synthesis of vitamin D3 by improved light sources with photoluminescent substrates. Chinese Journal of Chemical Engineering, 2021, 29, 204-211.	1.7	5
51	Microreaction processes for synthesis and utilization of epoxides: A review. Chemical Engineering Science, 2021, 229, 116071.	1.9	56
52	Efficient, continuous <i>N</i> -Boc deprotection of amines using solid acid catalysts. Reaction Chemistry and Engineering, 2021, 6, 279-288.	1.9	6
53	Green solvents for membrane manufacture: Recent trends and perspectives. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100427.	3.2	44
54	Nanomedicine: future therapy for brain cancers. , 2021, , 37-74.		1

#	Article	IF	CITATIONS
55	Recent advances in artificial enzyme cascades for the production of value-added chemicals. Bioresource Technology, 2021, 323, 124551.	4.8	38
56	Magnetic metal–organic framework composites: structurally advanced catalytic materials for organic transformations. Materials Advances, 2021, 2, 2153-2187.	2.6	42
57	Continuous flow heterogeneous catalytic reductive aminations under aqueous micellar conditions enabled by an oscillatory plug flow reactor. Green Chemistry, 2021, 23, 5625-5632.	4.6	19
58	Continuous slurry plug flow Fe/ppm Pd nanoparticle-catalyzed Suzuki–Miyaura couplings in water utilizing novel solid handling equipment. Green Chemistry, 2021, 23, 7724-7730.	4.6	17
59	Exploiting a silver–bismuth hybrid material as heterogeneous noble metal catalyst for decarboxylations and decarboxylative deuterations of carboxylic acids under batch and continuous flow conditions. Green Chemistry, 2021, 23, 4685-4696.	4.6	7
60	Flow synthesis approaches to privileged scaffolds – recent routes reviewed for green and sustainable aspects. Green Chemistry, 2021, 23, 2233-2292.	4.6	39
61	A 3D-printed continuous flow platform for the synthesis of methylaluminoxane. Green Chemistry, 2021, 23, 4087-4094.	4.6	5
62	Nanoscale, automated, high throughput synthesis and screening for the accelerated discovery of protein modifiers. RSC Medicinal Chemistry, 2021, 12, 809-818.	1.7	20
63	Tropylium-promoted Ritter reactions. Chemical Communications, 2021, 57, 8901-8904.	2.2	15
64	Development of a continuous-flow system with immobilized biocatalysts towards sustainable bioprocessing. Reaction Chemistry and Engineering, 2021, 6, 1771-1790.	1.9	17
65	High-Throughput Synthesis of (<i>S</i>)-α-Phellandrene through Three-Step Sequential Continuous-Flow Reactions. Organic Process Research and Development, 2021, 25, 192-198.	1.3	10
66	Flow Chemistry in Drug Discovery: Challenges and Opportunities. Topics in Medicinal Chemistry, 2021, , 1-22.	0.4	1
67	Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1â€Methylimidazolium Thiocyanate. Angewandte Chemie - International Edition, 2021, 60, 7927-7934.	7.2	43
68	Summit: Benchmarking Machine Learning Methods for Reaction Optimisation. Chemistry Methods, 2021, 1, 116-122.	1.8	34
69	Protic Ionic Liquid as Reagent, Catalyst, and Solvent: 1â€Methylimidazolium Thiocyanate. Angewandte Chemie, 2021, 133, 8006-8013.	1.6	6
70	Advances in green synthesis and applications of graphene. Nano Research, 2021, 14, 3724-3743.	5.8	18
71	Use of Lithium Diisopropylamide in Flow: Operability and Safety Challenges Encountered on a Multigram Scale. Organic Process Research and Development, 2021, 25, 988-1000.	1.3	9
72	Synthesis of the Lipophilic Amine Tail of Abediterol Enabled by Multiphase Flow Transformations. Organic Process Research and Development, 2021, 25, 947-959.	1.3	8

#	Article	IF	CITATIONS
73	Rapid and Mild Lactamization Using Highly Electrophilic Triphosgene in a Microflow Reactor. Chemistry - A European Journal, 2021, 27, 7525-7532.	1.7	11
74	Circular bioeconomy and integrated biorefinery in the production of xylooligosaccharides from lignocellulosic biomass: A review. Industrial Crops and Products, 2021, 162, 113274.	2.5	99
75	Bismuth Subnitrate-Catalyzed Markovnikov-Type Alkyne Hydrations under Batch and Continuous Flow Conditions. Molecules, 2021, 26, 2864.	1.7	2
76	Reactor design and selection for effective continuous manufacturing of pharmaceuticals. Journal of Flow Chemistry, 2021, 11, 243-263.	1.2	24
77	A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein Journal of Organic Chemistry, 2021, 17, 1181-1312.	1.3	38
78	Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. Chemical Engineering Science: X, 2021, 10, 100097.	1.5	81
79	A Showcase of Green Chemistry: Sustainable Synthetic Approach of Zirconiumâ€Based MOF Materials. Chemistry - A European Journal, 2021, 27, 9967-9987.	1.7	33
80	On-Demand Continuous Manufacturing of Ciprofloxacin in Portable Plug-and-Play Factories: Development of a Highly Efficient Synthesis for Ciprofloxacin. Organic Process Research and Development, 2021, 25, 1524-1533.	1.3	14
81	Comparative Life Cycle Assessment of Different Production Processes for Waterborne Polyurethane Dispersions. ACS Sustainable Chemistry and Engineering, 2021, 9, 8980-8989.	3.2	15
82	Evaluating the Green Credentials of Flow Chemistry towards Industrial Applications. Synthesis, 2021, 53, 3963-3976.	1.2	16
83	On-Demand Continuous Manufacturing of Ciprofloxacin in Portable Plug-and-Play Factories: Implementation and <i>In Situ</i> Control of Downstream Production. Organic Process Research and Development, 2021, 25, 1534-1546.	1.3	18
84	Microwave-Promoted Continuous Flow Systems in Nanoparticle Synthesis—A Perspective. ACS Sustainable Chemistry and Engineering, 2021, 9, 9988-10015.	3.2	13
85	Mathematical model of gas-liquid or liquid-liquid Taylor flow with non-Newtonian continuous liquid in microchannels. Journal of Flow Chemistry, 2021, 11, 525-537.	1.2	5
86	Scale-Up of Ozonolysis using Inherently Safer Technology in Continuous Flow under Pressure: Case Study on β-Pinene. Organic Process Research and Development, 2021, 25, 1589-1597.	1.3	13
87	Preparation and Application of α-Imino Ketones through One-Pot Tandem Reactions Based on Heyns Rearrangement. Organic Letters, 2021, 23, 6819-6824.	2.4	6
88	Adsorbents for real-scale water remediation: Gaps and the road forward. Journal of Environmental Chemical Engineering, 2021, 9, 105380.	3.3	21
89	Review: Continuous Manufacturing of Small Molecule Solid Oral Dosage Forms. Pharmaceutics, 2021, 13, 1311.	2.0	10
90	Twoâ€Step Continuousâ€Flow Synthesis of Fungicide Metalaxyl through Catalytic Câ^'N Bondâ€Formation Processes. Advanced Synthesis and Catalysis, 0, , .	2.1	3

#	Article	IF	CITATIONS
91	Catalytic <i>Syn</i> -Selective Nitroaldol Approach to Amphenicol Antibiotics: Evolution of a Unified Asymmetric Synthesis of (â^')-Chloramphenicol, (â^')-Azidamphenicol, (+)-Thiamphenicol, and (+)-Florfenicol. Journal of Organic Chemistry, 2021, 86, 11557-11570.	1.7	17
92	Rapid and Mild Oneâ€Flow Synthetic Approach to Unsymmetrical Sulfamides Guided by Bayesian Optimization. Chemistry Methods, 2021, 1, 484-490.	1.8	18
93	Towards the Standardization of Flow Chemistry Protocols for Organic Reactions. Chemistry Methods, 2021, 1, 454-467.	1.8	41
94	Design and operation of an enhanced pervaporation device with static mixers. AICHE Journal, 2022, 68, e17455.	1.8	7
95	Synthesis of a dipeptide by integrating a continuous flow reaction and continuous crystallization. Chemical Engineering Research and Design, 2021, 175, 259-271.	2.7	5
96	Continuous synthesis of isobutylaluminoxanes in a compact and integrated approach. Chemical Engineering Journal, 2021, 425, 131750.	6.6	4
97	Mathematical model of two-phase Taylor flow hydrodynamics for four combinations of non-Newtonian and Newtonian fluids in microchannels. Chemical Engineering Science, 2022, 247, 116930.	1.9	9
98	Reactions of two primary aromatic amines in modified supercritical carbon dioxide to synthesize sulfonamides: On-line SFC to perform solubility measurements and method to monitor reaction progress. Journal of Supercritical Fluids, 2022, 179, 105419.	1.6	1
99	A meso-scale ultrasonic milli-reactor enables gas–liquid-solid photocatalytic reactions in flow. Chemical Engineering Journal, 2022, 428, 130968.	6.6	36
100	Introduction to Green Chemistry. Materials Horizons, 2021, , 1-14.	0.3	0
101	Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. Green Chemistry, 2021, 23, 6117-6138.	4.6	62
102	Pharmaceutical industry perspectives on flow chemocatalysis and biocatalysis. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100350.	3.2	25
103	Recent advances toward sustainable flow photochemistry. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100351.	3.2	60
104	Living with our machines: Towards a more sustainable future. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100353.	3.2	9
105	Continuous one-flow multi-step synthesis of active pharmaceutical ingredients. Reaction Chemistry and Engineering, 2020, 5, 1186-1197.	1.9	63
106	Recent Developments on Synthesis of Indole Derivatives Through Green Approaches and Their Pharmaceutical Applications. Current Organic Chemistry, 2020, 24, 2665-2693.	0.9	15
107	A continuous flow process for biaryls based on sequential Suzuki–Miyaura coupling and supercritical carbon dioxide extraction. Reaction Chemistry and Engineering, 2021, 6, 2248-2252.	1.9	3

#	Article	IF	CITATIONS
109	Green metrics in pharmaceutical development. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100564.	3.2	12
110	Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100562.	3.2	36
111	Continuous-flow chemistry toward sustainable chemical synthesis. , 2020, , 49-69.		0
112	Advances on Greener Asymmetric Synthesis of Antiviral Drugs via Organocatalysis. Pharmaceuticals, 2021, 14, 1125.	1.7	4
113	Key measurements performed using on-line supercritical fluid chromatography to support process design and development. TrAC - Trends in Analytical Chemistry, 2022, 146, 116479.	5.8	2
114	A mathematical model of a lateral electrochromatography device for continuous chiral separation. Separation and Purification Technology, 2022, 282, 120033.	3.9	4
115	Numerically investigating the effects of geometry on hydrodynamics and particle suspension performance in continuous oscillatory baffled crystallizers. Chemical Engineering Science, 2022, 249, 117352.	1.9	4
116	Continuous chiral resolution of racemic Ibuprofen by diastereomeric salt formation in a Couette-Taylor crystallizer. Chemical Engineering Research and Design, 2022, 178, 95-110.	2.7	8
117	Sustainability case studies on the use of continuous manufacturing in pharmaceutical production. Current Research in Green and Sustainable Chemistry, 2022, 5, 100279.	2.9	5
118	Can â€~biodegradability' of adsorbents constitute an â€~Achilles' heel' in real-world water purificatior Perspectives and opportunities. Journal of Environmental Chemical Engineering, 2022, 10, 107321.	9.3	4
119	Radical-mediated thiol–ene â€ [~] click' reactions in deep eutectic solvents for bioconjugation. Green Chemistry, 2022, 24, 1456-1462.	4.6	30
120	Out-smarting smart drug modafinil through flow chemistry. Green Chemistry, 2022, 24, 2094-2103.	4.6	3
121	Commercial-Scale Visible Light Trifluoromethylation of 2-Chlorothiophenol Using CF ₃ I Gas. Organic Process Research and Development, 2022, 26, 404-412.	1.3	21
122	Understanding flow chemistry for the production of active pharmaceutical ingredients. IScience, 2022, 25, 103892.	1.9	16
123	Batch or flow chemistry? – a current industrial opinion on process selection. Current Opinion in Chemical Engineering, 2022, 36, 100798.	3.8	21
124	Green Chemistry in the Synthesis of Pharmaceuticals. Chemical Reviews, 2022, 122, 3637-3710.	23.0	155
125	A micro-flow rapid dual activation approach for urethane-protected α-amino acid <i>N</i> -carboxyanhydride synthesis. Organic and Biomolecular Chemistry, 2022, 20, 3303-3310.	1.5	8
126	Study of the Pauson–Khand reaction in flow over alkynylphenyl vinyl ethers: towards the synthesis of tricyclic multisubstituted benzofurans. RSC Advances, 2022, 12, 7313-7317.	1.7	Ο

#	Article	IF	CITATIONS
127	Sustainable Catalytic Transformation of Biomassâ€Derived 5â€Hydroxymethylfurfural to 2,5â€Bis(hydroxymethyl)tetrahydrofuran. ChemSusChem, 2022, 15, .	3.6	11
129	Ecofriendly Synthesis of Ribociclib Intermediate Using Regioselective Hydrodechlorination and DMAP Catalyzed Ester Hydrolysis. Topics in Catalysis, 2022, 65, 1669-1674.	1.3	11
130	Software tools for green and sustainable chemistry. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100623.	3.2	4
131	Green syntheses of graphene and its applications in internet of things (IoT)—a status review. Nanotechnology, 2022, 33, 322003.	1.3	7
132	Effects of aqueous systems and stabilization membranes on the separation of an antibiotic precursor in a microextractor. Separation and Purification Technology, 2022, 292, 121050.	3.9	3
133	Synthesis of fluoro and trifluoromethyl substituents containing novel tetracyclic N-benzylated benzopiperazine fused acridone regioisomers using a greener solvent 2-MeTHF and their DFT studies. Journal of Fluorine Chemistry, 2022, 257-258, 109989.	0.9	16
134	A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. European Polymer Journal, 2022, 173, 111293.	2.6	35
135	Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research and Development, 2022, 26, 1766-1793.	1.3	23
136	Green process intensification using microreactor technology for the synthesis of biobased chemicals and fuels. Chemical Engineering and Processing: Process Intensification, 2022, 177, 109002.	1.8	14
137	Semi-continuous and continuous processes for enantiomeric separation. Green Chemistry, 2022, 24, 4328-4362.	4.6	7
138	4â€(Dimethylamino)Pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Advanced Synthesis and Catalysis, 2022, 364, 2403-2415.	2.1	6
140	Ionic liquid gel microspheres as an emerging platform for constructing liquid compartment microreactors. Green Chemistry, 2022, 24, 5952-5964.	4.6	2
141	A sustainable approach for the synthesis of bismuth molybdate by continuous flow method using custom design reactor and their photocatalytic application for environmental remediation. Applied Nanoscience (Switzerland), 2022, 12, 2497-2509.	1.6	1
142	Synthesis, Attributes and Defect Control of Defect-Engineered Materials as Superior Adsorbents for Aqueous Species: A Review. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	1.9	2
143	Electrochemical [3+2] Cycloaddition of Anilines and 1,3â€Dicarbonyl Compounds: Construction of Multisubstituted Indoles. Advanced Synthesis and Catalysis, 2022, 364, 2865-2871.	2.1	6
144	Tribromide Immobilized on Amino-Functionalized Magnetic Nanoparticles: A Active Magnetically Recoverable Catalyst for the Synthesis of Heterocycles. Polycyclic Aromatic Compounds, 2023, 43, 4750-4767.	1.4	0
145	Application of continuous-flow process for the efficient synthesis of 4-nitroaniline under high T/P. Chemical Engineering and Processing: Process Intensification, 2022, 178, 109033.	1.8	0
146	Intensification of mixing efficiency and reduction of pressure drop in a millimeter scale T-junction mixer optimized by an elliptical array hole structure. Chemical Engineering and Processing: Process Intensification, 2022, 178, 109034.	1.8	6

#	Article	IF	CITATIONS
147	Continuous-Flow Synthesis of <i>syn</i> -2-Amino-1,3-diol via Catalytic Hydrogenation: A Vital Intermediate of (+)-Thiamphenicol and (+)-Florfenicol. Organic Process Research and Development, 2022, 26, 2656-2664.	1.3	1
148	Experimental study and kinetic modeling of continuous flow conversion of fructose to 5-(chloromethyl)furfural using micro- and millistructured coiled flow inverter. Chemical Engineering Journal, 2022, 450, 138243.	6.6	4
149	A palladium polyaniline complex: a simple and efficient catalyst for batch and flow Suzuki–Miyaura cross-couplings. Chemical Communications, 2022, 58, 10845-10848.	2.2	4
150	The Continuous-flow Synthesis of 1H-Indazoles via Reaction of o-Fluorobenzaldehydes with tert-Butyl Carbazate under High Teperature. Heterocycles, 2022, 104, 1584.	0.4	0
151	An enantio- and diastereoselective approach to indoloquinolizidines in continuous flow. Organic and Biomolecular Chemistry, 2022, 20, 8273-8279.	1.5	1
152	Sustainable separations in pharmaceutical manufacturing. , 2022, , 155-200.		1
153	A sequential multistep process for the fully mechanochemical, one-pot synthesis of the antiepileptic drug rufinamide. Green Chemistry Letters and Reviews, 2022, 15, 638-645.	2.1	1
154	Solvent selection for chemical reactions toward optimal thermodynamic and kinetic performances: Group contribution and COSMO-based modeling. Fluid Phase Equilibria, 2023, 564, 113623.	1.4	2
155	An integrated system of a microreactor with a <scp>Taylorâ€Couette</scp> reactor for 2,2'â€dibenzothiazole disulfide synthesis. AICHE Journal, 0, , .	1.8	0
156	Synthesis of novel chiral spiro-β-lactams from nitrile oxides and 6-(<i>Z</i>)-(benzoylmethylene)penicillanate: batch, microwave-induced and continuous flow methodologies. RSC Advances, 2022, 12, 30879-30891.	1.7	1
157	Will the next generation of chemical plants be in miniaturized flow reactors?. Lab on A Chip, 2023, 23, 1349-1357.	3.1	13
158	An enzyme-assembled gel monolithic microreactor for continuous flow asymmetric synthesis of aryl alcohols. Green Chemistry, 2022, 24, 9508-9518.	4.6	5
159	The emerging role of radical chemistry in the amination transformation of highly strained [1.1.1]propellane: Bicyclo[1.1.1]pentylamine as bioisosteres of anilines. Frontiers in Chemistry, 0, 10, .	1.8	1
160	Consecutive photochemical reactions enabled by a dual flow reactor coil strategy. Chemical Communications, 2022, 58, 13274-13277.	2.2	2
161	Bayesian Selfâ \in Optimization for Telescoped Continuous Flow Synthesis. Angewandte Chemie, 0, , .	1.6	1
162	Femtosecond laser-engineered 3D microfluidic chips: Synthesis system sprouting highly efficient multiphase organic reactions. Chinese Chemical Letters, 2023, 34, 107985.	4.8	1
163	Bayesian Selfâ€Optimization for Telescoped Continuous Flow Synthesis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	21
164	Isocyanide chemistry enabled by continuous flow technology. Reaction Chemistry and Engineering, 2023, 8, 656-660.	1.9	2

#	Article	IF	CITATIONS
165	Towards Heterogeneous Catalysis: A Review on Recent Advances of Depositing Nanocatalysts in Continuous–Flow Microreactors. Molecules, 2022, 27, 8052.	1.7	1
166	Intensified Hydrogenation in Flow Using a Poly(\hat{l}^2 -cyclodextrin) Network-Supported Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 15987-15998.	3.2	2
167	Continuous Flow Chemistry Synthesis of Spirocyclic Sultams and Isoquinolines through Rhodium atalyzed Câ~'H Activation European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
168	Continuous flow synthesis and separation of mandelic acid enantiomers in a modular microfluidic system. Separation and Purification Technology, 2023, 309, 123009.	3.9	2
169	"Liquidâ€Toâ€Solid―Conversion of Biomass Wastes Enhanced by Uniform Nitrogen Doping for the Preparation of Highâ€Valueâ€Added Carbon Materials for Energy Storage with Superior Characteristics. ChemSusChem, 2023, 16, .	3.6	4
170	Polyetheretherketone fiber-supported TBD as an efficient fibrous superbase catalyst for organic conversions in continuous-flow processing. Journal of Catalysis, 2023, 418, 110-120.	3.1	2
171	Large-Scale Amide Coupling in Aqueous Media: Process for the Production of Diazabicyclooctane β-Lactamase Inhibitors. Organic Process Research and Development, 2023, 27, 120-128.	1.3	6
172	Heterogeneous Continuous Flow Hydrogenation of Hexafluoroacetone Trihydrate and Its Kinetic Modeling. Industrial & Engineering Chemistry Research, 0, , .	1.8	0
173	Flow photochemistry — from microreactors to large-scale processing. Current Opinion in Chemical Engineering, 2023, 39, 100897.	3.8	5
174	Green-Synthesized Graphene for Supercapacitors—Modern Perspectives. Journal of Composites Science, 2023, 7, 108.	1.4	7
175	Process Intensification of a Napabucasin Manufacturing Method Utilizing Microflow Chemistry. ACS Omega, 2023, 8, 10373-10382.	1.6	3
176	Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production. Annual Review of Chemical and Biomolecular Engineering, 2023, 14, 283-300.	3.3	25
177	Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polymer Chemistry, 2023, 14, 1690-1717.	1.9	5
178	Recent Advances in the Multistep Continuous Preparation of Apis and Fine Chemicals. Current Topics in Medicinal Chemistry, 2023, 23, .	1.0	1
179	Application of Spectroscopy Techniques for Monitoring (Bio)Catalytic Processes in Continuously Operated Microreactor Systems. Catalysts, 2023, 13, 690.	1.6	2
180	Versatile cobalt(<scp>Salenâ€NEt₂</scp>) for aqueous <scp>cobaltâ€mediated</scp> radical polymerization. Journal of the Chinese Chemical Society, 2023, 70, 1076-1086.	0.8	0
182	Continuous flow-mode synthesis of (chiral) amines with transaminase: a strategic biocatalytic approach to essential building blocks. Reaction Chemistry and Engineering, 2023, 8, 1505-1544.	1.9	4
195	Benefits of Application of Process Optimization in Pharmaceutical Manufacturing: A Panoramic View. , 2023, , 291-304.		0

#	Article	IF	CITATIONS
203	Green production of 9-aryl-fluoren-9-ols achieved through process intensification of the Grignard reaction using continuous flow at room temperature. Green Chemistry, 0, , .	4.6	0
207	Evaluating the green credentials of flow chemistry towards industrial applications. Monatshefte Für Chemie, 0, , .	0.9	0
212	Convergence of Data Science-AI-Green Chemistry-Affordable Medicine. Advances in Computational Intelligence and Robotics Book Series, 2023, , 348-373.	0.4	3