Age-dependent association of white matter abnormality stroke

Neurology 93, e272-e282 DOI: 10.1212/wnl.000000000007772

Citation Report

#	Article	IF	CITATIONS
1	Automated lesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding. NeuroImage, 2019, 202, 116056.	4.2	32
2	Effects of White Matter Hyperintensities on 90-Day Functional Outcome after Large Vessel and Non-Large Vessel Stroke. Cerebrovascular Diseases, 2020, 49, 419-426.	1.7	7
3	Age Moderates Associations of Hypertension, White Matter Hyperintensities, and Cognition. Journal of Alzheimer's Disease, 2020, 75, 1351-1360.	2.6	20
4	Plasma Neurofilament Light and Longitudinal Progression of White Matter Hyperintensity in Elderly Persons Without Dementia. Journal of Alzheimer's Disease, 2020, 75, 729-737.	2.6	14
5	Diffusion Properties of Normal-Appearing White Matter Microstructure and Severity of Motor Impairment in Acute Ischemic Stroke. American Journal of Neuroradiology, 2020, 41, 71-78.	2.4	9
6	Utility of white matter disease and atrophy on routinely acquired brain imaging for prediction of long-term delirium risk: population-based cohort study. Age and Ageing, 2022, 51, .	1.6	9
7	Apathy in small vessel cerebrovascular disease is associated with deficits in effort-based decision making. Brain, 2021, 144, 1247-1262.	7.6	25
8	Prevalence and risk factors for brain white matter changes in young and middle-aged participants with Brain Dock (brain screening): a registry database study and literature review. Aging, 2021, 13, 9496-9509.	3.1	6
9	The associations of increased cerebral small vessel disease with cognitive impairment in neurosyphilis presenting with ischemic stroke. Brain and Behavior, 2021, 11, e02187.	2.2	8
10	Possibilities of diff usion-weighted magnetic resonance imaging in determining the rehabilitation potential of the acute period of ischemic stroke. Russian Neurological Journal, 2021, 26, 23-33.	0.3	0
11	Integrating large-scale neuroimaging research datasets: Harmonisation of white matter hyperintensity measurements across Whitehall and UK Biobank datasets. NeuroImage, 2021, 237, 118189.	4.2	10
12	Quantifying changes over 1Âyear in motor and cognitive skill after transient ischemic attack (TIA) using robotics. Scientific Reports, 2021, 11, 17011.	3.3	2
13	Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images. Medical Image Analysis, 2021, 73, 102184.	11.6	29
16	Recovery of balance and gait after stroke is deteriorated by confluent white matter hyperintensities: Cohort study. Annals of Physical and Rehabilitation Medicine, 2022, 65, 101488.	2.3	10
17	Bridging patterns of neurocognitive aging across the older adult lifespan. Neuroscience and Biobehavioral Reviews, 2022, 135, 104594.	6.1	6
18	The Cognitive Sequelae of Transient Ischemic Attacks—Recent Insights and Future Directions. Journal of Clinical Medicine, 2022, 11, 2637.	2.4	5
19	Risk of self-harm in post TIA patients: A population-based cohort study. Journal of Psychosomatic Research, 2022, , 110937.	2.6	0
20	White matter hyperintensities are an independent predictor of cognitive decline 3 years following first-ever stroke—results from the PROSCIS-B study. Journal of Neurology, 0, , .	3.6	1

#	Article	IF	CITATIONS
21	Strategic white matter hyperintensity locations for cognitive impairment: A multicenter lesionâ€symptom mapping study in 3525 memory clinic patients. Alzheimer's and Dementia, 2023, 19, 2420-2432.	0.8	10
22	Leukoaraiosis as a Predictor of Depression and Cognitive Impairment among Stroke Survivors: A Systematic Review. Neurology International, 2023, 15, 238-272.	2.8	8
23	Outcomes in Patients with Minor Stroke: Diagnosis and Management in the Post-thrombectomy Era. Neurotherapeutics, 2023, 20, 732-743.	4.4	1
24	Task-residual effective connectivity of motor network in transient ischemic attack. Communications Biology, 2023, 6, .	4.4	Ο
25	White matter hyperintensity burden and functional outcomes in acute ischemic stroke patients after mechanical thrombectomy: A systematic review and meta-analysis. NeuroImage: Clinical, 2024, 41, 103549.	2.7	0
26	Editorial: White matter hyperintensities: the messages beneath and beyond. Frontiers in Aging Neuroscience, 0, 16, .	3.4	0
27	Bioinformatics identification of potential biomarkers and therapeutic targets for ischemic stroke and vascular dementia. Experimental Gerontology, 2024, 187, 112374.	2.8	0