Meteorological conditions leading to extreme low varia and extreme high energy shortfall

Renewable and Sustainable Energy Reviews 111, 261-275 DOI: 10.1016/j.rser.2019.04.065

Citation Report

#	Article	IF	CITATIONS
1	The influence of weather regimes on European renewable energy production and demand. Environmental Research Letters, 2019, 14, 094010.	2.2	80
2	Cost-optimal reliable power generation in a deep decarbonisation future. Applied Energy, 2019, 253, 113587.	5.1	36
3	Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall. Renewable and Sustainable Energy Reviews, 2019, 111, 261-275.	8.2	83
4	Incorporating climate change effects into the European power system adequacy assessment using a post-processing method. Sustainable Energy, Grids and Networks, 2020, 24, 100403.	2.3	12
5	Meteorological Drivers of European Power System Stress. Journal of Renewable Energy, 2020, 2020, 1-12.	2.1	10
6	Energy descent as a post-carbon transition scenario: How â€~knowledge humility' reshapes energy futures for post-normal times. Futures, 2020, 122, 102565.	1.4	26
7	A typology of compound weather and climate events. Nature Reviews Earth & Environment, 2020, 1, 333-347.	12.2	536
8	Characterizing the winter meteorological drivers of the European electricity system using targeted circulation types. Meteorological Applications, 2020, 27, e1858.	0.9	42
9	Ensemble climate-impact modelling: extreme impacts from moderate meteorological conditions. Environmental Research Letters, 2020, 15, 034050.	2.2	47
10	Multi-objective economic model predictive control for gas turbine system based on quantum simultaneous whale optimization algorithm. Energy Conversion and Management, 2020, 207, 112498.	4.4	29
11	Balancing potential of natural variability and extremes in photovoltaic and wind energy production for European countries. Renewable Energy, 2021, 163, 674-684.	4.3	21
12	Recent strategies and trends in implanting of renewable energy sources for sustainability – A review. Materials Today: Proceedings, 2021, 46, 8204-8208.	0.9	20
13	Identifying meteorological drivers of extreme impacts: an application to simulated crop yields. Earth System Dynamics, 2021, 12, 151-172.	2.7	30
14	Larger Spatial Footprint of Wintertime Total Precipitation Extremes in a Warmer Climate. Geophysical Research Letters, 2021, 48, e2020GL091990.	1.5	19
15	Mitigating a century of European renewable variability with transmission and informed siting. Environmental Research Letters, 2021, 16, 064026.	2.2	7
16	The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa. Energies, 2021, 14, 2978.	1.6	11
17	United kingdom energy survey considerations for enhancement of sustainable engineering. IOP Conference Series: Earth and Environmental Science, 2021, 779, 012022.	0.2	3
18	Territorial Energy Vulnerability Assessment to Enhance Just Energy Transition of Cities. Frontiers in Sustainable Cities, 2021, 3, .	1.2	10

CITATION REPORT

#	Article	IF	CITATIONS
19	A climate database with varying droughtâ€heat signatures for climate impact modelling. Geoscience Data Journal, 2022, 9, 154-166.	1.8	7
22	Spatial and temporal variability characteristics of offshore wind energy in the United Kingdom. Wind Energy, 2022, 25, 537-552.	1.9	14
23	Guidelines for Studying Diverse Types of Compound Weather and Climate Events. Earth's Future, 2021, 9, e2021EF002340.	2.4	66
24	A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas. Energies, 2021, 14, 6508.	1.6	8
25	How many offshore wind turbines does New England need?. Meteorological Applications, 2020, 27, e1969.	0.9	5
26	Detection of Critical Events in Renewable Energy Production Time Series. Lecture Notes in Computer Science, 2021, , 104-119.	1.0	1
27	Climatology of dark doldrums in Japan. Renewable and Sustainable Energy Reviews, 2022, 155, 111927.	8.2	10
28	Diversity of Options to Reach Carbon-Neutrality Across the Entire European Energy System. SSRN Electronic Journal, 0, , .	0.4	0
29	Balancing wind and solar power variability through spatial deployment informed by weather regimes: A review and roadmap ahead. , 2022, , .		2
30	Interpreting extreme climate impacts from large ensemble simulations—are they unseen or unrealistic?. Environmental Research Letters, 2022, 17, 044052.	2.2	13
31	Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks. , 2022, 1, .		8
32	Extreme Events in the European Renewable Power System: Validation of a Modeling Framework to Estimate Renewable Electricity Production and Demand from Meteorological Data. SSRN Electronic Journal, O, , .	0.4	0
33	Overcoming the disconnect between energy system and climate modeling. Joule, 2022, 6, 1405-1417.	11.7	31
34	A <scp>decisionâ€making</scp> experiment under wind power forecast uncertainty. Meteorological Applications, 2022, 29, .	0.9	5
35	Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system. Joule, 2022, 6, 1253-1276.	11.7	51
36	Fossil-Fuel Options for Power Sector Net-Zero Emissions with Sequestration Tax Credits. Environmental Science & Technology, 2022, 56, 11162-11171.	4.6	3
37	Increased wheat price spikes and larger economic inequality with 2°C global warming. One Earth, 2022, 5, 907-916.	3.6	19
38	Trends and Interdependence of Solar Radiation and Air Temperature—A Case Study from Germany. Meteorology, 2022, 1, 341-354.	0.6	2

#	Article	IF	CITATIONS
39	Characterizing renewable energy compound events across Europe using a logistic regressionâ€based approach. Meteorological Applications, 2022, 29, .	0.9	7
40	Quantification of Effects of Errors in the Cloud Properties on the Representation of the Surface Downward Shortwave Flux Based on MERRA-2 in Japan. Journal of Applied Meteorology and Climatology, 2022, 61, 1509-1532.	0.6	1
41	A copula-based assessment of renewable energy droughts across Europe. Renewable Energy, 2022, 201, 667-677.	4.3	12
42	Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs. Applied Energy, 2022, 328, 120169.	5.1	5
43	Importance of renewable resource variability for electricity mix transformation: A case study from Germany based on electricity market data. Journal of Cleaner Production, 2022, 379, 134728.	4.6	9
44	Extreme events in the European renewable power system: Validation of a modeling framework to estimate renewable electricity production and demand from meteorological data. Renewable and Sustainable Energy Reviews, 2022, 170, 112987.	8.2	4
45	Offshore wind resource assessment by characterizing weather regimes based on self-organizing map. Environmental Research Letters, 2022, 17, 124009.	2.2	8
46	Towards a future-proof climate database for European energy system studies. Environmental Research Letters, 2022, 17, 121001.	2.2	3
47	Vulnerability and resilience of urban energy ecosystems to extreme climate events: A systematic review and perspectives. Renewable and Sustainable Energy Reviews, 2023, 173, 113038.	8.2	16
48	A probabilistic view on modelling weather regimes. International Journal of Climatology, 2023, 43, 1710-1730.	1.5	1
49	Intersecting near-optimal spaces: European power systems with more resilience to weather variability. Energy Economics, 2023, 118, 106496.	5.6	11
50	Gaussian copula modeling of extreme cold and weak-wind events over Europe conditioned on winter weather regimes. Environmental Research Letters, 2023, 18, 034008.	2.2	6
51	Standardised Indices to Monitor Energy Droughts. SSRN Electronic Journal, 0, , .	0.4	1
52	Effects of meteorological and climatological factors on extremely high residual load and possible future changes. Renewable and Sustainable Energy Reviews, 2023, 175, 113188.	8.2	3
53	Power-to-heat will increase power system weather risk: The Nordic case. Sustainable Energy Technologies and Assessments, 2023, 56, 103033.	1.7	0
54	Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study. Energies, 2023, 16, 1999.	1.6	1
55	Simulating hydrological extremes for different warming levels–combining large scale climate ensembles with local observation based machine learning models. Frontiers in Water, 0, 5, .	1.0	0
57	A framework to estimate a long-term power shortage risk following large-scale earthquake and tsunami disasters. PLoS ONE, 2023, 18, e0283686.	1.1	Ο

ARTICLE

IF CITATIONS