Evaluating the performance of four different heuristic a daily suspended sediment concentration modeling

Environmental Science and Pollution Research 26, 22670-22687

DOI: 10.1007/s11356-019-05553-9

Citation Report

#	Article	IF	CITATIONS
1	Prediction of Suspended Sediment Load Using Data-Driven Models. Water (Switzerland), 2019, 11, 2060.	2.7	49
2	Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall. Water Resources Management, 2019, 33, 5067-5087.	3.9	87
3	Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India. Sustainability, 2020, 12, 7877.	3.2	28
4	Simulating the Impact of Climate Change with Different Reservoir Operating Strategies on Sedimentation of the Mangla Reservoir, Northern Pakistan. Water (Switzerland), 2020, 12, 2736.	2.7	10
5	GF-1 Satellite Observations of Suspended Sediment Injection of Yellow River Estuary, China. Remote Sensing, 2020, 12, 3126.	4.0	13
6	Monthly evapotranspiration estimation using optimal climatic parameters: efficacy of hybrid support vector regression integrated with whale optimization algorithm. Environmental Monitoring and Assessment, 2020, 192, 696.	2.7	46
7	Research on distribution of suspended sediment concentration in long time series based on mid-resolution imaging spectrometer data and quantile trend analysis. Regional Studies in Marine Science, 2020, 39, 101399.	0.7	0
8	Support vector regression optimized by meta-heuristic algorithms for daily streamflow prediction. Stochastic Environmental Research and Risk Assessment, 2020, 34, 1755-1773.	4.0	87
9	Application of Soft Computing Models with Input Vectors of Snow Cover Area in Addition to Hydro-Climatic Data to Predict the Sediment Loads. Water (Switzerland), 2020, 12, 1481.	2.7	4
10	Meteorological drought prediction using heuristic approaches based on effective drought index: a case study in Uttarakhand. Arabian Journal of Geosciences, 2020, 13, 1.	1.3	40
11	Pan Evaporation Estimation in Uttarakhand and Uttar Pradesh States, India: Validity of an Integrative Data Intelligence Model. Atmosphere, 2020, 11, 553.	2.3	29
12	Efficient river water quality index prediction considering minimal number of inputs variables. Engineering Applications of Computational Fluid Mechanics, 2020, 14, 751-763.	3.1	42
13	Suspended sediment yield modeling in Mahanadi River, India by multi-objective optimization hybridizing artificial intelligence algorithms. International Journal of Sediment Research, 2021, 36, 76-91.	3.5	29
14	Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation. Catena, 2021, 198, 105024.	5.0	80
15	Hybrid artificial intelligence models for predicting daily runoff. , 2021, , 305-329.		3
16	Comprehensive evaluation of machine learning models for suspended sediment load inflow prediction in a reservoir. Stochastic Environmental Research and Risk Assessment, 2021, 35, 1805-1823.	4.0	25
17	Estimation of Daily Suspended Sediment Load Using a Novel Hybrid Support Vector Regression Model Incorporated with Observer-Teacher-Learner-Based Optimization Method. Complexity, 2021, 2021, 1-13.	1.6	16
18	A simple machine learning approach to model real-time streamflow using satellite inputs: Demonstration in a data scarce catchment. Journal of Hydrology, 2021, 595, 126046.	5.4	29

#	ARTICLE	IF	CITATIONS
19	Suspended Sediment Modeling Using a Heuristic Regression Method Hybridized with Kmeans Clustering. Sustainability, 2021, 13, 4648.	3.2	15
20	Artificial intelligence for suspended sediment load prediction: a review. Environmental Earth Sciences, 2021, 80, 1.	2.7	39
21	Prediction of suspended sediment concentration using hybrid SVM-WOA approaches. Geocarto International, 2022, 37, 5609-5635.	3.5	25
22	Complementary Modeling Approach for Estimating Sedimentation and Hydraulic Flushing Parameters Using Artificial Neural Networks and RESCON2 Model. KSCE Journal of Civil Engineering, 2021, 25, 3766-3778.	1.9	2
23	Advanced machine learning models development for suspended sediment prediction: comparative analysis study. Geocarto International, 2022, 37, 6116-6140.	3.5	9
24	Prediction of aeration efficiency of Parshall and Modified Venturi flumes: application of soft computing versus regression models. Water Science and Technology: Water Supply, 2021, 21, 4068-4085.	2.1	16
25	Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers. Sustainability, 2021, 13, 542.	3.2	30
26	Prediction of daily water level using new hybridized GS-GMDH and ANFIS-FCM models. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1343-1361.	3.1	30
27	Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Environmental Science and Pollution Research, 2020, 27, 30001-30019.	5. 3	83
28	Drought index prediction using advanced fuzzy logic model: Regional case study over Kumaon in India. PLoS ONE, 2020, 15, e0233280.	2.5	58
29	Seasonal Groundwater Table Depth Prediction Using Fuzzy Logic and Artificial Neural Network in Gangetic Plain, India. Lecture Notes in Civil Engineering, 2022, , 549-564.	0.4	0
30	Artificial intelligence models for suspended river sediment prediction: state-of-the art, modeling framework appraisal, and proposed future research directions. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1585-1612.	3.1	21
31	Capability assessment of conventional and data-driven models for prediction of suspended sediment load. Environmental Science and Pollution Research, 2022, 29, 50040-50058.	5. 3	3
32	Runoff Simulation Under Future Climate Change Conditions: Performance Comparison of Data-Mining Algorithms and Conceptual Models. Water Resources Management, 2022, 36, 1191-1215.	3.9	18
33	Scaling an Artificial Neural Network-Based Water Quality Index Model from Small to Large Catchments. Water (Switzerland), 2022, 14, 920.	2.7	5
34	Modeling stage–discharge–sediment using support vector machine and artificial neural network coupled with wavelet transform. Applied Water Science, 2022, 12, 1.	5.6	24
35	A physics-informed statistical learning framework for forecasting local suspended sediment concentrations in marine environment. Water Research, 2022, 218, 118518.	11.3	15
36	Pre- and post-dam river water temperature alteration prediction using advanced machine learning models. Environmental Science and Pollution Research, 2022, 29, 83321-83346.	5.3	29

3

#	Article	IF	CITATIONS
37	Forecasting Daily Flood Water Level Using Hybrid Advanced Machine Learning Based Time-Varying Filtered Empirical Mode Decomposition Approach. Water Resources Management, 2022, 36, 4637-4676.	3.9	16
38	Prediction of future groundwater levels under representative concentration pathway scenarios using an inclusive multiple model coupled with artificial neural networks. Journal of Water and Climate Change, 2022, 13, 3620-3643.	2.9	10
39	Developing a generic relation for predicting sediment pick-up rate using symbolic soft computing techniques. Environmental Science and Pollution Research, 2023, 30, 18509-18521.	5.3	1
40	Satellite-based estimation of daily suspended sediment load using hybrid intelligent models. Hydrological Sciences Journal, 2023, 68, 307-324.	2.6	4
41	Support vector regression model optimized with GWO versus GA algorithms: Estimating daily pan-evaporation., 2023,, 357-373.		1
42	Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini. DoÄŸal Afetler Ve A‡evre Dergisi, 2023, 9, 125-135.	0.9	0
43	Prediction of Sediment Yields Using a Data-Driven Radial M5 Tree Model. Water (Switzerland), 2023, 15, 1437.	2.7	6
44	Sediment load prediction in Johor river: deep learning versus machine learning models. Applied Water Science, 2023, 13, .	5.6	17
45	Storage Depletion of Surface Water Reservoirs Due to Sediment Deposition and Possible Management Options., 2023,, 131-144.		0
46	Ensemble and optimized hybrid algorithms through Runge Kutta optimizer for sewer sediment transport modeling using a data pre-processing approach. International Journal of Sediment Research, 2023, , .	3.5	0
47	Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study ofÂBino watershed, Uttarakhand. Theoretical and Applied Climatology, 2024, 155, 4023-4047.	2.8	0
48	Development of Suspended Sediment Rating Curve Model by Statistical Classification of River Discharge Data (Case Study: Ghareh-Sou Coastal Watershed). Iranian Journal of Science and Technology - Transactions of Civil Engineering, 0, , .	1.9	0