A Survey of Game Theory in Unmanned Aerial Vehicles

IEEE Communications Surveys and Tutorials 21, 3386-3416 DOI: 10.1109/comst.2019.2919613

Citation Report

#	Article	IF	CITATIONS
1	A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimental advancements. Computer Networks, 2020, 182, 107451.	3.2	90
2	Gateway Selection in Millimeter Wave UAV Wireless Networks Using Multi-Player Multi-Armed Bandit. Sensors, 2020, 20, 3947.	2.1	23
3	Convert Harm Into Benefit: A Coordination-Learning Based Dynamic Spectrum Anti-Jamming Approach. IEEE Transactions on Vehicular Technology, 2020, 69, 13018-13032.	3.9	24
4	A Two-Stage Game Framework to Secure Transmission in Two-Tier UAV Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 13728-13740.	3.9	11
6	Softwarization of UAV Networks: A Survey of Applications and Future Trends. IEEE Access, 2020, 8, 98073-98125.	2.6	127
7	Routing in Flying Ad Hoc Networks: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2020, 22, 1071-1120.	24.8	202
8	On Connectivity of UAV-Assisted Data Acquisition for Underwater Internet of Things. IEEE Internet of Things Journal, 2020, 7, 5371-5385.	5.5	55
9	Employing Unmanned Aerial Vehicles for Improving Handoff Using Cooperative Game Theory. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57, 776-794.	2.6	13
10	Scheduling of emergency tasks for multiservice UAVs in post-disaster scenarios. Computer Networks, 2021, 184, 107644.	3.2	31
11	Fast, Reliable, and Secure Drone Communication: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2021, 23, 2802-2832.	24.8	84
12	Applications of Game Theory in Vehicular Networks: A Survey. IEEE Communications Surveys and Tutorials, 2021, 23, 2660-2710.	24.8	22
13	Distributed data-driven UAV formation control via evolutionary games: Experimental results. Journal of the Franklin Institute, 2021, 358, 5334-5352.	1.9	10
14	Utility maximization data scheduling in drone-assisted vehicular networks. Computer Communications, 2021, 175, 68-81.	3.1	13
15	Spectrum Allocation for Task-Driven UAV Communication Networks Exploiting Game Theory. IEEE Wireless Communications, 2021, 28, 174-181.	6.6	15
16	The Optimal and the Greedy: Drone Association and Positioning Schemes for Internet of UAVs. IEEE Internet of Things Journal, 2021, 8, 14066-14079.	5.5	20
17	3-D Deployment of UAV Swarm for Massive MIMO Communications. IEEE Journal on Selected Areas in Communications, 2021, 39, 3022-3034.	9.7	21
18	Efficient UAV Communications: Recent Trends and Challenges. Computers, Materials and Continua, 2021, 67, 463-476.	1.5	7
19	Continuous-Time Discounted Mirror Descent Dynamics in Monotone Concave Games. IEEE Transactions on Automatic Control, 2021, 66, 5451-5458.	3.6	14

CITATION REPORT

#	Article	IF	CITATIONS
20	A mean field game-theoretic cross-layer optimization for multi-hop swarm UAV communications. Journal of Communications and Networks, 2022, 24, 68-82.	1.8	15
21	Aircraft to Operations Communication Analysis and Architecture for the Future Aviation Environment. , 2021, , .		7
22	A Detailed Survey and Future Directions of Unmanned Aerial Vehicles (UAVs) with Potential Applications. Aerospace, 2021, 8, 363.	1.1	64
23	Enhanced Dynamic Spectrum Access in UAV Wireless Networks for Post-Disaster Area Surveillance System: A Multi-Player Multi-Armed Bandit Approach. Sensors, 2021, 21, 7855.	2.1	10
24	Optimization of UAV-Femtocell Systems Positioning via Game Theory to Geolocate Mobile Terminals in a Post-Earthquake Scenario. , 2021, , .		1
25	Distributed Nash equilibrium seeking strategy with incomplete information. ISA Transactions, 2022, 129, 372-379.	3.1	1
26	Teleoperation methods and enhancement techniques for mobile robots: A comprehensive survey. Robotics and Autonomous Systems, 2022, 150, 103973.	3.0	27
27	Resource optimization in UAVâ€assisted wireless networks—A comprehensive survey. Transactions on Emerging Telecommunications Technologies, 2022, 33, .	2.6	12
28	A Potential Game Approach for Decentralized Resource Coordination in Coexisting IWNs. IEEE Transactions on Cognitive Communications and Networking, 2022, 8, 1118-1130.	4.9	4
29	An Intelligent Cluster-Based Routing Scheme in 5G Flying Ad Hoc Networks. Applied Sciences (Switzerland), 2022, 12, 3665.	1.3	14
30	Game theoretic solution for an Unmanned Aerial Vehicle network host under DDoS attack. Computer Networks, 2022, 211, 108962.	3.2	3
31	A comprehensive survey on aerial mobile edge computing: Challenges, state-of-the-art, and future directions. Computer Communications, 2022, 191, 233-256.	3.1	14
32	An Efficient UAV Localization Technique Based on Particle Swarm Optimization. IEEE Transactions on Vehicular Technology, 2022, 71, 9544-9557.	3.9	19
33	基于安全自é€,应强化å¦ä¹çš"自主éŧ障控å^¶æ–¹æ³•. Scientia Sinica Informationis, 2022, , .	0.2	0
34	Game-Theoretic Power and Rate Control in IEEE 802.11p Wireless Networks. Electronics (Switzerland), 2022, 11, 1618.	1.8	1
35	Autonomous Non-Terrestrial Base Station Deployment for Non-Terrestrial Networks: A Reinforcement Learning Approach. IEEE Transactions on Vehicular Technology, 2022, 71, 10894-10909.	3.9	2
36	A survey on the role of UAVs in the communication process: A technological perspective. Computer Communications, 2022, 194, 86-123.	3.1	10
37	Dynamic computation offloading for ground and flying robots: Taxonomy, state of art, and future directions. Computer Science Review, 2022, 45, 100488.	10.2	4

CITATION REPORT

#	Article	IF	CITATIONS
38	Decentralized Trajectory and Power Control Based on Multi-Agent Deep Reinforcement Learning in UAV Networks. , 2022, , .		4
39	Blockchain Systems, Technologies, and Applications: A Methodology Perspective. IEEE Communications Surveys and Tutorials, 2023, 25, 353-385.	24.8	13
40	Coalition Game of Radar Network for Multitarget Tracking via Model-Based Multiagent Reinforcement Learning. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59, 2123-2140.	2.6	3
41	Pricing Based Scheme for UAV-Enabled Wireless Energy Transfer. IEEE Transactions on Vehicular Technology, 2022, 71, 13198-13209.	3.9	2
42	Network Slicing Resource Allocation Based on LSTM-D3QN with Dual Connectivity in Heterogeneous Cellular Networks. Applied Sciences (Switzerland), 2022, 12, 9315.	1.3	2
43	Path Planning for UAV Communication Networks: Related Technologies, Solutions, and Opportunities. ACM Computing Surveys, 2023, 55, 1-37.	16.1	6
44	Physical layer aspects of terahertz-enabled UAV communications: Challenges and opportunities. Vehicular Communications, 2022, 38, 100540.	2.7	3
45	A Systematic Survey: Security Threats to UAV-Aided IoT Applications, Taxonomy, Current Challenges and Requirements With Future Research Directions. IEEE Transactions on Intelligent Transportation Systems, 2022, , 1-19.	4.7	2
46	Unmanned-Aerial-Vehicle-Assisted Wireless Networks: Advancements, Challenges, and Solutions. IEEE Internet of Things Journal, 2023, 10, 4117-4147.	5.5	9
47	Energy Management optimization of UAV-Femtocell Geolocalization Systems based on Game Theory. , 2022, , .		Ο
48	Distribution of Multi MmWave UAV Mounted RIS Using Budget Constraint Multi-Player MAB. Electronics (Switzerland), 2023, 12, 12.	1.8	8
49	Reinforcement Learning in the Sky: A Survey on Enabling Intelligence in NTN-Based Communications. IEEE Access, 2023, 11, 19941-19968.	2.6	2
50	Backhaul-Aware User Association and Throughput Maximization in UAV-Aided Hybrid FSO/RF Network. Drones, 2023, 7, 74.	2.7	0
51	A Survey of Cyber-Physical Systems From a Game-Theoretic Perspective. IEEE Access, 2023, 11, 9799-9834.	2.6	11
52	Self-Evolving Integrated Vertical Heterogeneous Networks. IEEE Open Journal of the Communications Society, 2023, 4, 552-580.	4.4	2
53	Energy harvesting fueling the revival of self-powered unmanned aerial vehicles. Energy Conversion and Management, 2023, 283, 116863.	4.4	3
54	Game theory applications in traffic management: A review of authority-based travel modelling. Travel Behaviour & Society, 2023, 32, 100585.	2.4	3
55	Innovating Multi-Objective Optimal Message Routing for Unified High Mobility Networks. IEEE Transactions on Vehicular Technology, 2023, 72, 6571-6583.	3.9	4

CITATI	ON	DEDODT
CHAH	UN.	REPORT

#	Article	IF	CITATIONS
56	A Multi-UAVs' Provider Model forÂtheÂProvision ofÂ5G Service Chains: A Game Theoretic Approach. Lecture Notes in Computer Science, 2022, , 445-459.	1.0	0
57	Data Synchronization in Vehicular Digital Twin Network: A Game Theoretic Approach. IEEE Transactions on Wireless Communications, 2023, 22, 7635-7647.	6.1	4
65	Distributed Generalized Nash Equilibria Seeking for Aggregative Games with Community Structures. , 2023, , .		0
67	Using FANETs for 6G Cloud-Native Slice Provisioning: A Marketplace Approach. , 2023, , .		0