Rational design, enantioselective synthesis and catalyti EBINOLs

Nature Catalysis 2, 504-513

DOI: 10.1038/s41929-019-0278-7

Citation Report

#	Article	IF	CITATIONS
1	Catalytic Three-Component Synthesis of Functionalized Naphtho[2,1- <i>b</i>)]oxecines via a Double Bond Cleavage–Rearrangement Cascade. Organic Letters, 2019, 21, 6494-6498.	2.4	32
2	Asymmetric Construction of Axially Chiral 2â€Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Angewandte Chemie - International Edition, 2019, 58, 13443-13447.	7.2	75
3	Organocatalytic Asymmetric Annulation of <i>ortho</i> â€Alkynylanilines: Synthesis of Axially Chiral Naphthylâ€C2â€indoles. Angewandte Chemie - International Edition, 2019, 58, 17199-17204.	7.2	128
4	Organocatalytic Asymmetric Annulation of ortho â€Alkynylanilines: Synthesis of Axially Chiral Naphthylâ€C2â€indoles. Angewandte Chemie, 2019, 131, 17359-17364.	1.6	38
5	Enantioselective organocatalytic activation of vinylidene–quinone methides (VQMs). Chemical Communications, 2019, 55, 11168-11170.	2.2	56
6	Asymmetric Construction of Axially Chiral 2â€Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Angewandte Chemie, 2019, 131, 13577-13581.	1.6	30
7	Chiral Phosphoric Acid-Catalyzed Enantioselective Direct Arylation of Iminoquinones: A Case Study of the Model Selectivity. Journal of Organic Chemistry, 2019, 84, 13473-13482.	1.7	7
8	Completely regioselective insertion of unsymmetrical alkynes into electron-deficient alkenes for the synthesis of new pentacyclic indoles. Chemical Communications, 2019, 55, 14757-14760.	2.2	21
9	Enantioenriched Methyleneâ€Bridged Benzazocanes Synthesis by Organocatalytic and Superacid Activations. Angewandte Chemie, 2020, 132, 1295-1301.	1.6	7
10	Enantioenriched Methyleneâ€Bridged Benzazocanes Synthesis by Organocatalytic and Superacid Activations. Angewandte Chemie - International Edition, 2020, 59, 1279-1285.	7.2	9
12	Design and Atroposelective Construction of IAN analogues by Organocatalytic Asymmetric Heteroannulation of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 23077-23082.	7.2	55
13	Brønsted Acid atalyzed Enantioselective Cycloisomerization of Arylalkynes. Chemistry - A European Journal, 2020, 26, 16266-16271.	1.7	13
15	Atroposelective Access to Oxindole-Based Axially Chiral Styrenes via the Strategy of Catalytic Kinetic Resolution. Journal of the American Chemical Society, 2020, 142, 15686-15696.	6.6	115
16	Design and Atroposelective Construction of IAN analogues by Organocatalytic Asymmetric Heteroannulation of Alkynes. Angewandte Chemie, 2020, 132, 23277-23282.	1.6	16
17	Synthesis of polycyclic indoles <i>via</i> organocatalytic bicyclization of \hat{l}_{\pm} -alkynylnaphthalen-2-ols with nitrones. Chemical Communications, 2020, 56, 11406-11409.	2.2	12
18	<i>N</i> -lodosuccinimide-Mediated Dimerization of 2-Alkynylnaphthols: A Highly Diastereoselective Construction of Bridged Polycyclic Compounds via Vinylidene <i>ortho</i> -Quinone Methide Intermediate. Organic Letters, 2020, 22, 4461-4466.	2.4	18
19	Atroposelective Synthesis of Axially Chiral 3-Arylindoles by Copper-Catalyzed Asymmetric Cross-Coupling of Indoles with Quinones and Naphthoquinones. Organic Letters, 2020, 22, 4995-5000.	2.4	49
20	Yb(OTf) ₃ -Catalyzed Alkyne–Carbonyl Metathesis–Oxa-Michael Addition Relay for Diastereoselective Synthesis of Functionalized Naphtho[2,1- <i>b</i>) furans. Organic Letters, 2020, 22, 2414-2418.	2.4	26

#	Article	IF	CITATIONS
21	Organocatalytic Enantioselective Construction of Heterocycle-Substituted Styrenes with Chiral Atropisomerism. Organic Letters, 2020, 22, 2448-2453.	2.4	43
22	Axially Chiral <scp>Arylâ€Alkeneâ€Indole</scp> Framework: A Nascent Member of the Atropisomeric Family and Its Catalytic Asymmetric Construction. Chinese Journal of Chemistry, 2020, 38, 543-552.	2.6	121
23	DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene. CheM, 2020, 6, 2046-2059.	5.8	83
24	A Bifunctional Ligand Enables Gold-Catalyzed Hydroarylation of Terminal Alkynes under Soft Reaction Conditions. Organic Letters, 2020, 22, 6045-6049.	2.4	19
25	Enantioselective Construction of Axially Chiral Amino Sulfide Vinyl Arenes by Chiral Sulfideâ€Catalyzed Electrophilic Carbothiolation of Alkynes. Angewandte Chemie, 2020, 132, 4989-4994.	1.6	22
26	Access to Chiral Bisphenol Ligands (BPOL) through Desymmetrizing Asymmetric Ortho-Selective Halogenation. CheM, 2020, 6, 919-932.	5.8	28
27	Chiral Phosphoric Acid Catalyzed Atroposelective Câ^H Amination of Arenes. Angewandte Chemie, 2020, 132, 6841-6845.	1.6	39
28	Enantioselective Construction of Axially Chiral Amino Sulfide Vinyl Arenes by Chiral Sulfideâ€Catalyzed Electrophilic Carbothiolation of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 4959-4964.	7.2	90
29	Chiral Spirocyclic Phosphoric Acids and Their Growing Applications. Chinese Journal of Chemistry, 2021, 39, 802-824.	2.6	46
30	Atropisomerism in Styrene: Synthesis, Stability, and Applications. SynOpen, 2021, 05, 68-85.	0.8	64
31	Combined Dynamic Kinetic Resolution and Câ^'H Functionalization for Facile Synthesis of Nonâ∈Biarylâ∈Atropisomerâ∈Type Axially Chiral Organosilanes. Chemistry - A European Journal, 2021, 27, 4336-4340.	1.7	19
32	Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chemical Reviews, 2021, 121, 4805-4902.	23.0	499
33	Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of Axially Chiral Compounds ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1787-1796.	2.6	111
34	Enantioselective reduction of prochiral ketones promoted by amino amide ruthenium complexes: A DFT study. Journal of Organometallic Chemistry, 2021, 939, 121765.	0.8	1
35	Highly Atroposelective Rhodium(II)-Catalyzed N–H Bond Insertion: Access to Axially Chiral <i>N</i> -Arylindolocarbazoles. ACS Catalysis, 2021, 11, 6135-6140.	5.5	48
36	Atroposelective Construction of Axially Chiral <scp>Alkeneâ€Indole</scp> Scaffolds <i>via</i> Catalytic Enantioselective Addition Reaction of <scp>3â€Alkynyl</scp> â€2â€Indolylmethanols ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2163-2171.	2.6	69
37	Enantioselective Synthesis of Axially Chiral Biaryls by Diels–Alder/Retro-Diels–Alder Reaction of 2-Pyrones with Alkynes. Journal of the American Chemical Society, 2021, 143, 8993-9001.	6.6	57
38	Binary-Acid Catalysis with Sc(OTf) < sub > 3 < /sub > /TfOH in the Alkenylation of Arenes with Alkynes. Organic Letters, 2021, 23, 5998-6003.	2.4	12

#	ARTICLE	IF	CITATIONS
40	Rational design and atroposelective synthesis of Nâ \in N axially chiral compounds. CheM, 2021, 7, 2743-2757.	5.8	87
41	Organocatalytic Enantioselective Construction of Chiral Azepine Skeleton Bearing Multipleâ€Stereogenic Elements. Angewandte Chemie - International Edition, 2021, 60, 21486-21493.	7.2	55
42	Urea group-directed organocatalytic asymmetric versatile dihalogenation of alkenes and alkynes. Nature Catalysis, 2021, 4, 692-702.	16.1	40
43	Enantioselective Cobalt-Catalyzed Cascade Hydrosilylation and Hydroboration of Alkynes to Access Enantioenriched 1,1-Silylboryl Alkanes. Journal of the American Chemical Society, 2021, 143, 13124-13134.	6.6	44
44	Organocatalytic Enantioselective Construction of Chiral Azepine Skeleton Bearing Multipleâ€Stereogenic Elements. Angewandte Chemie, 2021, 133, 21656-21663.	1.6	15
45	Atroposelective Synthesis of Conjugated Diene-Based Axially Chiral Styrenes via Pd(II)-Catalyzed Thioether-Directed Alkenyl C–H Olefination. Journal of the American Chemical Society, 2021, 143, 12335-12344.	6.6	97
46	Diversity-Oriented Enantioselective Construction of Atropisomeric Heterobiaryls and <i>N</i> -Aryl Indoles via Vinylidene <i>Ortho</i> -Quinone Methides. CCS Chemistry, 2022, 4, 2686-2697.	4.6	51
47	Chiral Phosphoric Acid Catalyzed Atroposelective Câ^'H Amination of Arenes. Angewandte Chemie - International Edition, 2020, 59, 6775-6779.	7.2	139
48	Asymmetric dearomatization catalysed by chiral Br \tilde{A} ,nsted acids via activation of ynamides. Nature Chemistry, 2021, 13, 1093-1100.	6.6	77
49	Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angewandte Chemie, 2021, 133, 24298-24308.	1.6	8
50	Rhodiumâ€Catalyzed Atroposelective Access to Axially Chiral Olefins via Câ^'H Bond Activation and Directing Group Migration. Angewandte Chemie, 2022, 134, .	1.6	15
51	Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angewandte Chemie - International Edition, 2021, 60, 24096-24106.	7.2	28
52	Development of Axially Chiral Styrene-Type Carboxylic Acid Ligands via Palladium-Catalyzed Asymmetric C–H Alkynylation. Organic Letters, 2021, 23, 8132-8137.	2.4	34
53	Rhodiumâ€Catalyzed Atroposelective Access to Axially Chiral Olefins via Câ°'H Bond Activation and Directing Group Migration. Angewandte Chemie - International Edition, 2022, 61, .	7.2	77
54	Synthesis of axially chiral compounds through catalytic asymmetric reactions of alkynes. Chem Catalysis, 2021, 1, 1378-1412.	2.9	48
55	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie, 0, , e202112226.	1.6	9
56	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie - International Edition, 2022, 61, e202112226.	7.2	49
57	Organocatalytic Atroposelective Synthesis of Nâ^'N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation. Angewandte Chemie, 2022, 134, .	1.6	13

#	ARTICLE	IF	CITATIONS
58	Construction of Axially Chiral Styrenes Linking an Indole Moiety by Chiral Phosphoric Acid. Journal of Organic Chemistry, 2022, 87, 2853-2863.	1.7	17
59	Construction of axially chiral styrene-type allylamines <i>via</i> chiral phosphoric acid-catalyzed asymmetric reductive amination. Organic Chemistry Frontiers, 2022, 9, 764-770.	2.3	12
60	Chiral Phosphoric Acid Catalyzed Conversion of Epoxides into Thiiranes: Mechanism, Stereochemical Model, and New Catalyst Design. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
61	Organocatalytic atroposelective construction of axially chiral nonsymmetric biaryltriols and their applications in asymmetric synthesis and heavy metal ion detection. Organic Chemistry Frontiers, 0, , .	2.3	7
62	Carbene-catalyzed atroposelective synthesis of axially chiral styrenes. Nature Communications, 2022, 13, 84.	5.8	46
63	Access to axially chiral styrenes via a photoinduced asymmetric radical reaction involving a sulfur dioxide insertion. Chem Catalysis, 2022, 2, 164-177.	2.9	53
64	Chiral Phosphoric Acid Catalyzed Conversion of Epoxides into Thiiranes: Mechanism, Stereochemical Model, and New Catalyst Design. Angewandte Chemie, 0, , .	1.6	6
65	Organocatalytic Atroposelective Synthesis of Nâ^'N Axially Chiral Indoles and Pyrroles by De Novo Ring Formation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	97
66	Divergent Synthesis of [3,4]-Fused 3-Alkenyl-Oxindoles via Propargyl Alcohol-Triggered C(sp ³)â€"H Functionalization. ACS Catalysis, 2022, 12, 943-952.	5.5	38
67	Design and Application of Axially Chiral Styrene-Based Thiourea-Tertiary Amine Catalysts. Chinese Journal of Organic Chemistry, 2022, 42, 654.	0.6	9
68	Organocatalytic enantioselective construction of axially chiral $(1 < i > H < /i >)$ -isochromen-1-imines. Organic and Biomolecular Chemistry, 2022, , .	1.5	2
69	Atroposelective construction of axially chiral enamides <i>via N</i> locallylic alkylation. Chemical Communications, 2022, 58, 4727-4730.	2.2	2
70	An Isolable Vinylidene <i>orthoâ€</i> Quinone Methide: Synthesis, Structure and Reactivity. Angewandte Chemie, 0, , .	1.6	5
71	Axially chiral alkenes: Atroposelective synthesis and applications., 2022, 1, 100009.		46
72	Chelation-Controlled Stereospecific Cross-Coupling Reaction between Alkenes for Atroposelective Synthesis of Axially Chiral Conjugated Dienes. Organic Letters, 2022, 24, 1979-1984.	2.4	19
73	An Isolable Vinylidene <i>orthoâ€</i> Quinone Methide: Synthesis, Structure and Reactivity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
74	Enantioselective Rh-Catalyzed Azide-Internal-Alkyne Cycloaddition for the Construction of Axially Chiral 1,2,3-Triazoles. Journal of the American Chemical Society, 2022, 144, 6981-6991.	6.6	36
75	Organocatalytic Enantioselective Construction of Spiroketal Lactones Bearing Axial and Central Chirality via an Asymmetric Domino Reaction. Organic Letters, 2022, 24, 2978-2982.	2.4	12

#	Article	IF	CITATIONS
76	Palladiumâ€Catalyzed Enantioselective γâ€Arylation of β,γâ€Unsaturated Butenolides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
77	Palladiumâ€Catalyzed Enantioselective γâ€Arylation of β,γâ€Unsaturated Butenolides. Angewandte Chemie, 0, ,	.1.6	3
78	Asymmetric Azide–Alkyne Cycloaddition with Ir(I)/Squaramide Cooperative Catalysis: Atroposelective Synthesis of Axially Chiral Aryltriazoles. Journal of the American Chemical Society, 2022, 144, 6200-6207.	6.6	38
79	Atroposelective Construction of Nineâ€Membered Carbonateâ€Bridged Biaryls. Angewandte Chemie, 2022, 134, .	1.6	12
80	Atroposelective Construction of Nineâ€Membered Carbonateâ€Bridged Biaryls. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
82	Enantioselective Cu-catalyzed double hydroboration of alkynes to access chiral gem-diborylalkanes. Nature Communications, 2022, 13, .	5.8	17
83	Enantioselective Friedel–Crafts Reaction of 2-Alkynyphenols with Aromatic Ethers by Chiral Brønsted Acid Catalysis. Journal of Organic Chemistry, 0, , .	1.7	2
84	The Rational Design and Atroposelective Synthesis of Axially Chiral C2â€Arylpyrroleâ€Derived Amino Alcohols. Angewandte Chemie, 2022, 134, .	1.6	2
85	The Rational Design and Atroposelective Synthesis of Axially Chiral C2â€Arylpyrroleâ€Derived Amino Alcohols. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
86	Synthesis of aryl-fused 1,4-oxathiepines from pyridinium 1,4-zwitterionic thiolates and vinylidene <i>ortho</i> -quinone methides. Organic Chemistry Frontiers, 2022, 9, 4612-4618.	2.3	11
87	Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All arbon Tetrasubstituted VQMs. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
88	Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All arbon Tetrasubstituted VQMs. Angewandte Chemie, 0, , .	1.6	1
89	Asymmetric allylic substitution-isomerization for accessing axially chiral vinylindoles by intramolecular $i \in a \in l$ $i \in a$ stacking interactions. Cell Reports Physical Science, 2022, 3, 101005.	2.8	13
90	Synthesis of Biphenanthrol-Based Confined Chiral Phosphoric Acid. Chinese Journal of Organic Chemistry, 2022, 42, 2574.	0.6	O
91	An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective additions to Cî€O and Cî€N bonds. Organic Chemistry Frontiers, 2022, 9, 6331-6399.	2.3	16
92	Asymmetric functionalization of benzenes <i>via</i> an organocatalytic hetero-Diels–Alder reaction. Chemical Communications, 2022, 58, 9851-9854.	2.2	2
93	Enantioselective Synthesis of Atropisomers via Vinylidene <i>ortho</i> Quinone Methides (VQMs). Accounts of Chemical Research, 2022, 55, 2780-2795.	7.6	68
94	Palladium-catalyzed asymmetric hydrophosphination of internal alkynes: Atroposelective access to phosphine-functionalized olefins. CheM, 2022, 8, 3346-3362.	5.8	41

#	ARTICLE	IF	Citations
95	Organocatalytic Atroposelective Synthesis of Indole Derivatives Bearing Axial Chirality: Strategies and Applications. Accounts of Chemical Research, 2022, 55, 2562-2580.	7.6	156
96	Organocatalytic Enantioselective Synthesis of Axially Chiral Molecules: Development of Strategies and Skeletons. Accounts of Chemical Research, 2022, 55, 2920-2937.	7.6	96
97	Asymmetric Construction of an Arylâ€Alkene Axis by Palladiumâ€Catalyzed Suzuki–Miyaura Coupling Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
98	Synthesis of Benzofurans from Sulfur Ylides and <i>ortho</i> â€Hydroxyâ€Functionalized Alkynes. Advanced Synthesis and Catalysis, 0, , .	2.1	5
99	Asymmetric Construction of Arylâ€Alkene Axis by Palladiumâ€Catalyzed Suzuki–Miyaura Coupling Reaction. Angewandte Chemie, 0, , .	1.6	1
100	Enantioselective construction of axially chiral cyclohexylidene scaffolds via Pd-catalyzed asymmetric coupling reaction. Chem Catalysis, 2022, 2, 3196-3206.	2.9	5
101	The Application of 2-Naphthols in Asymmetric Synthesis of Atropisomers. Synlett, 2022, 33, 1991-2003.	1.0	3
102	Synthesis of polysubstituted phenols via [3+3] condensation reaction from tricarbonyl compounds and readily available enaminones, cinnamaldehydes or arylformyl trifluoroacetones. Tetrahedron, 2022, , 133124.	1.0	1
103	A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation. Angewandte Chemie, $2023,135,.$	1.6	4
104	Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styreneâ€Phosphines. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
105	Divergent Coupling of <i>ortho</i> -Alkynylnaphthols and Benzofurans: [4 + 2] Cycloaddition and Friedel–Crafts Reaction. Journal of Organic Chemistry, 0, , .	1.7	2
106	A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
107	Asymmetric Hydrophosphinylation of Alkynes: Facile Access to Axially Chiral Styreneâ€Phosphines. Angewandte Chemie, 2023, 135, .	1.6	0
108	Synthesis of axially chiral alkenylboronates through combined copper- and palladium-catalysed atroposelective arylboration of alkynes., 2023, 2, 140-151.		23
109	Role of Chiral Skeleton in Chiral Phosphoric Acids Catalyzed Asymmetric Transfer Hydrogenation: A DFT Study. Catalysts, 2023, 13, 98.	1.6	1
110	Protein engineering strategies for tailoring the physical and catalytic properties of enzymes for defined industrial applications. Current Protein and Peptide Science, 2023, 24, .	0.7	0
111	Synthetic strategies and mechanistic studies of axially chiral styrenes. Chem Catalysis, 2023, 3, 100594.	2.9	11
112	Enantioselective Access to Triaryl-2-pyrones with Monoaxial or Contiguous C–C Diaxes via Oxidative NHC Catalysis. ACS Catalysis, 2023, 13, 2565-2575.	5.5	18

#	Article	IF	CITATION
113	Mechanistic Features of Asymmetric Vinylidene <i>ortho</i> Subsequent Transformations. ACS Catalysis, 2023, 13, 2957-2967.	5.5	5
114	Control of Axial Chirality through NiH-Catalyzed Atroposelective Hydrofunctionalization of Alkynes. ACS Catalysis, 2023, 13, 3841-3846.	5.5	18
115	Synthesis of quinol-type heterobiaryls <i>via</i> an acid-catalyzed heteroannulation of alkynes and <i>o</i> -aminobenzaldehydes. Organic Chemistry Frontiers, 2023, 10, 1936-1941.	2.3	2
116	BrÃ,nsted acid–catalyzed asymmetric dearomatization for synthesis of chiral fused polycyclic enone and indoline scaffolds. Science Advances, 2023, 9, .	4.7	5
117	Atroposelective Synthesis of Axially Chiral Styrenes Connecting an Axially Chiral Naphthyl-indole Moiety Using Chiral Phosphoric Acid Catalysis. Organic Letters, 2023, 25, 2068-2072.	2.4	6
118	Chiral Boroâ€Phosphate Catalyzed Asymmetric Transfer Hydrogenation of 1â€Enal Substituted 2â€Naphthols: Access to Axially Chiral Styreneâ€Type Allylalcohols. Advanced Synthesis and Catalysis, 2023, 365, 1398-1404.	2.1	1
119	Nickel-Catalyzed Asymmetric Cross-Electrophile <i>trans</i> Propargylic Alcohols. ACS Catalysis, 2023, 13, 6795-6803.	5. 5	6