Transient human thermophysiological and comfort resp summer commutes

Building and Environment 157, 257-267

DOI: 10.1016/j.buildenv.2019.04.023

Citation Report

#	Article	IF	Citations
1	Using personally controlled air movement to improve comfort after simulated summer commute. Building and Environment, 2019, 165, 106329.	3.0	26
2	Use of adaptive control and its effects on human comfort in a naturally ventilated office in Alameda, California. Energy and Buildings, 2019, 203, 109435.	3.1	9
3	Preferred temperatures with and without air movement during moderate exercise. Energy and Buildings, 2020, 207, 109565.	3.1	29
4	Acceptable temperature steps for occupants moving between air-conditioned main space and naturally ventilated transitional space of building. Building and Environment, 2020, 182, 107150.	3.0	10
5	The potential of the adaptive thermal comfort concept in long-term actively conditioned buildings for improved energy performance and user wellbeing. IOP Conference Series: Earth and Environmental Science, 2020, 588, 032069.	0.2	3
6	Sensory and physiological assessment of spatial transient thermal environment changes at a tropical university campus. Smart and Sustainable Built Environment, 2022, 11, 516-531.	2.2	4
7	Thermal Comfort of Workers in Hot-Humid Climate: An Early Consistency Study for Physiology and Psychology Measurements. Advances in Science and Technology, 2020, 103, 71-81.	0.2	2
8	Real-time quantification of human physiological state in high temperature environments based on variable weight theory. Journal of Thermal Biology, 2020, 89, 102531.	1.1	18
9	Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II. Energy and Buildings, 2020, 210, 109776.	3.1	109
10	Ceiling-fan-integrated air conditioning: Airflow and temperature characteristics of a sidewall-supply jet interacting with a ceiling fan. Building and Environment, 2020, 171, 106660.	3.0	20
11	Field investigation on thermal comfort of passengers in an airport terminal in the severe cold zone of China. Building and Environment, 2021, 189, 107514.	3.0	19
12	Spatial interpolation-based analysis method targeting visualization of the indoor thermal environment. Building and Environment, 2021, 188, 107484.	3.0	18
13	Evaluation of individual thermal sensation at raised indoor temperatures based on skin temperature. Building and Environment, 2021, 188, 107486.	3.0	39
14	Exercise Thermal Sensation: Physiological Response to Dynamic–Static Steps at Moderate Exercise. International Journal of Environmental Research and Public Health, 2021, 18, 4239.	1.2	7
15	The Effects of a Passive Exoskeleton on Human Thermal Responses in Temperate and Cold Environments. International Journal of Environmental Research and Public Health, 2021, 18, 3889.	1.2	18
16	Thermal comfort in naturally ventilated university classrooms: A seasonal field study in Xi'an, China. Energy and Buildings, 2021, 247, 111126.	3.1	31
17	Overall effects of temperature steps in hot summer on students' subjective perception, physiological response and learning performance. Energy and Buildings, 2021, 247, 111124.	3.1	8
18	Evaluating the dynamics of occupancy heat gains in a mid-sized airport terminal through agent-based modelling. Building and Environment, 2021, 204, 108147.	3.0	4

#	Article	IF	CITATIONS
19	Field studies on thermal comfort of passengers in airport terminals and high-speed railway stations in summer. Building and Environment, 2021, 206, 108319.	3.0	15
20	A climate chamber study on subjective and physiological responses of airport passengers from walking to a sedentary status in summer. Building and Environment, 2022, 207, 108547.	3.0	12
21	Thermal responses of people exhibiting high metabolic rates when exercising in piloti spaces in hot and humid areas. Journal of Building Engineering, 2022, 48, 103930.	1.6	3
22	Numerical Analysis of the Relationship Between Human Skin Temperature and Thermal Comfort in summer indoor airconditioning environment based on artificial laboratory. , 2021, , .		0
23	Human thermal comfort under lateral radiant asymmetries. Energy and Built Environment, 2022, , .	2.9	1
24	Experimental study on human comfort responses after simulated summer commutes with double transients of temperature and metabolic rate. Building and Environment, 2022, 221, 109253.	3.0	7
25	The influence of rest break frequency and duration on physical performance and psychophysiological responses: a mining simulation study. European Journal of Applied Physiology, 2022, 122, 2087-2097.	1.2	4
26	Climate chamber study on thermal comfort of walking passengers at different moving speeds. Building and Environment, 2022, 224, 109540.	3.0	7
27	Cooling effect of elevated ambient air velocity on thermal comfort when sitting after walking. Building and Environment, 2022, 225, 109664.	3.0	7
28	Field study on the effect of space type, exercise intensity, and wet bulb globe temperature on thermal responses of exercisers. Building and Environment, 2022, 225, 109555.	3.0	6
29	Thermal comfort characteristics and heating demand of people with different activity status during extremely cold exposure. Building and Environment, 2023, 228, 109798.	3.0	6
30	Physiological and perceptual responses of exposure to different thermal environments at low pressure (61.6ÅkPa). Building and Environment, 2022, 226, 109774.	3.0	5
31	Transient thermal comfort and physiological responses following a step change in activity status under summer indoor environments. Energy and Buildings, 2023, 285, 112918.	3.1	8
32	The effects of indoor temperature and exercise behavior on thermal comfort in cold region: A field study on Xi'an, China. Energy, 2023, 273, 127258.	4.5	4
33	Experimental study on the effects of exercise intensity and thermal environment on thermal responses. Building and Environment, 2023, 232, 110067.	3.0	7
34	Analysis of outlier detection rules based on the ASHRAE global thermal comfort database. Building and Environment, 2023, 234, 110155.	3.0	7