Stromal Microenvironment Shapes the Intratumoral Ar

Cell 178, 160-175.e27

DOI: 10.1016/j.cell.2019.05.012

Citation Report

#	Article	IF	CITATIONS
1	EMT and Stemnessâ€"Key Players in Pancreatic Cancer Stem Cells. Cancers, 2019, 11, 1136.	1.7	88
2	Stroma-shaped pancreatic intratumoural tissue heterogeneity and architecture linked to clinical outcomes. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 453-453.	8.2	1
3	Fibroblasts in cancer: Defining target structures for therapeutic intervention. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 111-121.	3.3	14
4	CAF Subpopulations: A New Reservoir of Stromal Targets in Pancreatic Cancer. Trends in Cancer, 2019, 5, 724-741.	3.8	214
5	Evolving Treatment Paradigms for Pancreatic Cancer. Visceral Medicine, 2019, 35, 362-372.	0.5	6
6	Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers, 2019, 11, 1745.	1.7	6
7	Single-cell sequencing and its applications in head and neck cancer. Oral Oncology, 2019, 99, 104441.	0.8	65
8	Targeting <scp>TGF</scp> βR2â€mutant tumors exposes vulnerabilities to stromal <scp>TGF</scp> β blockade in pancreatic cancer. EMBO Molecular Medicine, 2019, 11, e10515.	3.3	56
9	Multiplexed quantitative phosphoproteomics of cell line and tissue samples. Methods in Enzymology, 2019, 626, 41-65.	0.4	12
10	Combined MEK inhibition and tumor-associated macrophages depletion suppresses tumor growth in a triple-negative breast cancer mouse model. International Immunopharmacology, 2019, 76, 105864.	1.7	13
11	Fibroblasts shape PDAC architecture. Nature Reviews Cancer, 2019, 19, 418-418.	12.8	3
12	Toward personalized TGFÎ ² inhibition for pancreatic cancer. EMBO Molecular Medicine, 2019, 11, e11414.	3.3	8
13	Bulk and Single-Cell Next-Generation Sequencing: Individualizing Treatment for Colorectal Cancer. Cancers, 2019, 11, 1809.	1.7	17
14	Epithelial to mesenchymal plasticity and differential response to therapies in pancreatic ductal adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26835-26845.	3.3	69
15	Nanomedicine for Imaging and Therapy of Pancreatic Adenocarcinoma. Frontiers in Bioengineering and Biotechnology, 2019, 7, 307.	2.0	27
16	The intricate relationship between diabetes, obesity and pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188326.	3.3	47
17	Stromal Features of the Primary Tumor Are Not Prognostic in Genetically Engineered Mice of Pancreatic Cancer. Cells, 2020, 9, 58.	1.8	11
18	Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. Journal of Hematology and Oncology, 2020, 13, 130.	6.9	166

#	Article	IF	CITATIONS
19	Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Medicine, 2020, 12, 80.	3.6	134
20	Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188444.	3.3	16
21	Identification of prognostic and immune-related gene signatures in the tumor microenvironment of endometrial cancer. International Immunopharmacology, 2020, 88, 106931.	1.7	21
22	Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications, 2020, 11, 5120.	5.8	1,004
23	Functional diversity of cancerâ€essociated fibroblasts in modulating drug resistance. Cancer Science, 2020, 111, 3468-3477.	1.7	59
24	Alignment of stroma fibers, microvessel density and immune cell populations determine overall survival in pancreatic cancer—An analysis of stromal morphology. PLoS ONE, 2020, 15, e0234568.	1.1	11
25	Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. Ca-A Cancer Journal for Clinicians, 2020, 70, 375-403.	157.7	237
26	Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells, 2020, 9, 2464.	1.8	31
27	Targets (Metabolic Mediators) of Therapeutic Importance in Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2020, 21, 8502.	1.8	8
28	Transportome Malfunctions and the Hallmarks of Pancreatic Cancer. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 105-127.	0.9	10
29	Intraductal Transplantation Models of Human Pancreatic Ductal Adenocarcinoma Reveal Progressive Transition of Molecular Subtypes. Cancer Discovery, 2020, 10, 1566-1589.	7.7	90
30	Identification of prognosis-related genes and construction of multi-regulatory networks in pancreatic cancer microenvironment by bioinformatics analysis. Cancer Cell International, 2020, 20, 341.	1.8	4
31	Crosstalk between Tumor and Stromal Cells in Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2020, 21, 5486.	1.8	62
32	Molecular mediators of peritoneal metastasis in pancreatic cancer. Cancer and Metastasis Reviews, 2020, 39, 1223-1243.	2.7	29
33	Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nature Cancer, 2020, 1, 1097-1112.	5.7	234
34	Beyond just a tight fortress: contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduction and Targeted Therapy, 2020, 5, 249.	7.1	88
35	Intra-tumour heterogeneity of diffuse large B-cell lymphoma involves the induction of diversified stroma-tumour interfaces. EBioMedicine, 2020, 61, 103055.	2.7	21
36	Neoplastic–Stromal Cell Cross-talk Regulates Matrisome Expression in Pancreatic Cancer. Molecular Cancer Research, 2020, 18, 1889-1902.	1.5	11

#	Article	IF	CITATIONS
37	Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment. Cancers, 2020, 12, 2652.	1.7	71
38	Cholesterol Pathway Inhibition Induces TGF- \hat{l}^2 Signaling to Promote Basal Differentiation in Pancreatic Cancer. Cancer Cell, 2020, 38, 567-583.e11.	7.7	91
39	Application of Single-Cell RNA Sequencing in Pancreatic Cancer and the Endocrine Pancreas. Advances in Experimental Medicine and Biology, 2020, 1255, 143-152.	0.8	7
40	Pros and Cons: High Proportion of Stromal Component Indicates Better Prognosis in Patients With Pancreatic Ductal Adenocarcinoma—A Research Based on the Evaluation of Whole-Mount Histological Slides. Frontiers in Oncology, 2020, 10, 1472.	1.3	18
41	LAMA4 upregulation is associated with high liver metastasis potential and poor survival outcome of Pancreatic Cancer. Theranostics, 2020, 10, 10274-10289.	4.6	17
42	Identification of Key Prognostic Biomarker and Its Correlation with Immune Infiltrates in Pancreatic Ductal Adenocarcinoma. Disease Markers, 2020, 2020, 1-12.	0.6	23
43	An engineered pancreatic cancer model with intra-tumoral heterogeneity of driver mutations. Lab on A Chip, 2020, 20, 3720-3732.	3.1	18
44	B lymphocytes contribute to stromal reaction in pancreatic ductal adenocarcinoma. Oncolmmunology, 2020, 9, 1794359.	2.1	25
45	Tumorâ€Activated Sizeâ€Enlargeable Bioinspired Lipoproteins Access Cancer Cells in Tumor to Elicit Antiâ€Tumor Immune Responses. Advanced Materials, 2020, 32, e2002380.	11.1	43
46	Extracellular Vesicle-Based Communication May Contribute to the Co-Evolution of Cancer Stem Cells and Cancer-Associated Fibroblasts in Anti-Cancer Therapy. Cancers, 2020, 12, 2324.	1.7	9
47	Characterization and oncolytic virus targeting of FAP-expressing tumor-associated pericytes in glioblastoma. Acta Neuropathologica Communications, 2020, 8, 221.	2.4	26
48	TGF \hat{l}^2 -blockade uncovers stromal plasticity in tumors by revealing the existence of a subset of interferon-licensed fibroblasts. Nature Communications, 2020, 11, 6315.	5. 8	106
49	The present and future of systemic and microenvironment-targeted therapy for pancreatic adenocarcinoma. Annals of Pancreatic Cancer, 2020, 3, 3-3.	1.2	2
50	Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines, 2020, 8, 401.	1.4	5
51	ASO Author Reflections: Does Adjuvant Therapy Confer a Survival Benefit in Patients Receiving Neoadjuvant Chemotherapy for Pancreatic Cancer? A CA19-9 Analysis. Annals of Surgical Oncology, 2020, 27, 3961-3962.	0.7	1
52	Prognostic significance of immune landscape in tumour microenvironment of endometrial cancer. Journal of Cellular and Molecular Medicine, 2020, 24, 7767-7777.	1.6	65
53	Shaping Up the Tumor Microenvironment With Cellular Fibronectin. Frontiers in Oncology, 2020, 10, 641.	1.3	85
54	Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 487-505.	8.2	458

#	ARTICLE	IF	CITATIONS
55	Fibroblasts from Distinct Pancreatic Pathologies Exhibit Disease-Specific Properties. Cancer Research, 2020, 80, 2861-2873.	0.4	19
56	An Immunological Glance on Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2020, 21, 3345.	1.8	14
57	Use of Single-Cell -Omic Technologies to Study the Gastrointestinal Tract and Diseases, From Single Cell Identities to Patient Features. Gastroenterology, 2020, 159, 453-466.e1.	0.6	17
58	UCP2 silencing in glioblastoma reduces cell proliferation and invasiveness by inhibiting p38ÂMAPK pathway. Experimental Cell Research, 2020, 394, 112110.	1.2	8
59	Pancreatic Cancer Associated Fibroblasts (CAF): Under-Explored Target for Pancreatic Cancer Treatment. Cancers, 2020, 12, 1347.	1.7	76
60	Integrative multi-omics analysis of a colon cancer cell line with heterogeneous Wnt activity revealed RUNX2 as an epigenetic regulator of EMT. Oncogene, 2020, 39, 5152-5164.	2.6	33
61	Recapitulating Pancreatic Tumor Microenvironment through Synergistic Use of Patient Organoids and Organâ€onâ€ohip Vasculature. Advanced Functional Materials, 2020, 30, 2000545.	7.8	62
62	Circular RNA and tumor microenvironment. Cancer Cell International, 2020, 20, 211.	1.8	22
63	MTFR2 Promotes the Proliferation, Migration, and Invasion of Oral Squamous Carcinoma by Switching OXPHOS to Glycolysis. Frontiers in Oncology, 2020, 10, 858.	1.3	9
64	Citron Rho-Interacting Serine/Threonine Kinase Promotes HIF1a-CypA Signaling and Growth of Human Pancreatic Adenocarcinoma. BioMed Research International, 2020, 2020, 1-11.	0.9	6
65	The Frequency of Ras Mutations in Cancer. Cancer Research, 2020, 80, 2969-2974.	0.4	515
66	Feedback activation of EGFR is the main cause for STAT3 inhibition-irresponsiveness in pancreatic cancer cells. Oncogene, 2020, 39, 3997-4013.	2.6	26
67	CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Molecular Cancer, 2020, 19, 43.	7.9	543
68	It Takes a Village to Overcome KRAS Dependence in Pancreatic Cancer. Cancer Discovery, 2020, 10, 910-912.	7.7	0
69	Positive feedback in Cavâ€1â€ROS signalling in PSCs mediates metabolic coupling between PSCs and tumour cells. Journal of Cellular and Molecular Medicine, 2020, 24, 9397-9408.	1.6	20
70	Neoantigen-based immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Cancer Letters, 2020, 490, 12-19.	3.2	10
71	Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. Lancet Oncology, The, 2020, 21, e135-e145.	5.1	155
72	Recent insights into the biology of pancreatic cancer. EBioMedicine, 2020, 53, 102655.	2.7	78

#	ARTICLE	IF	CITATIONS
73	Paracrine and cell autonomous signalling in pancreatic cancer progression and metastasis. EBioMedicine, 2020, 53, 102662.	2.7	33
74	Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nature Biotechnology, 2020, 38, 333-342.	9.4	517
75	Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution. Nature Genetics, 2020, 52, 231-240.	9.4	365
76	Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell, 2020, 181, 424-441.e21.	13.5	216
77	Natural products remodel cancer-associated fibroblasts in desmoplastic tumors. Acta Pharmaceutica Sinica B, 2020, 10, 2140-2155.	5.7	32
78	Microenvironmental Determinants of Pancreatic Cancer. Physiological Reviews, 2020, 100, 1707-1751.	13.1	156
79	NGF from pancreatic stellate cells induces pancreatic cancer proliferation and invasion by PI3K/AKT/GSK signal pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 5901-5910.	1.6	37
80	Molecular subtypes and precision treatment of triple-negative breast cancer. Annals of Translational Medicine, 2020, 8, 499-499.	0.7	64
81	iNOS Regulates the Therapeutic Response of Pancreatic Cancer Cells to Radiotherapy. Cancer Research, 2020, 80, 1681-1692.	0.4	31
82	Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188461.	3.3	68
83	Modulation of Cancer-Associated Fibrotic Stroma by An Integrin $\hat{l}\pm v\hat{l}^2$ 3 Targeting Protein for Pancreatic Cancer Treatment. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 161-179.	2.3	20
84	Three Distinct Stroma Types in Human Pancreatic Cancer Identified by Image Analysis of Fibroblast Subpopulations and Collagen. Clinical Cancer Research, 2021, 27, 107-119.	3.2	61
85	Targeting Aggressive Fibroblasts to Enhance the Treatment of Pancreatic Cancer. Expert Opinion on Therapeutic Targets, 2021, 25, 5-13.	1.5	5
86	Addressing the tumour microenvironment in early drug discovery: a strategy to overcome drug resistance and identify novel targets for cancer therapy. Drug Discovery Today, 2021, 26, 663-676.	3.2	22
87	Combined inhibition of Refâ€1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour coâ€culture models. Journal of Cellular and Molecular Medicine, 2021, 25, 784-800.	1.6	9
88	Integrated bioinformatics analysis identified COL11A1 as an immune infiltrates correlated prognosticator in pancreatic adenocarcinoma. International Immunopharmacology, 2021, 90, 106982.	1.7	18
89	Pancreatic Cancer Immuno-oncology in the Era of Precision Medicine. Indian Journal of Surgical Oncology, 2021, 12, 118-127.	0.3	0
90	Ex vivo culture of intact human patient derived pancreatic tumour tissue. Scientific Reports, 2021, 11, 1944.	1.6	27

#	Article	IF	CITATIONS
91	Tertiary Lymphoid Structures: Diversity in Their Development, Composition, and Role. Journal of Immunology, 2021, 206, 273-281.	0.4	72
92	Partial EMT in Squamous Cell Carcinoma: A Snapshot. International Journal of Biological Sciences, 2021, 17, 3036-3047.	2.6	26
93	Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-associated/Normal Fibroblasts. Cancer Genomics and Proteomics, 2021, 18, 221-243.	1.0	8
95	Minimal Residual Disease, Metastasis and Immunity. Biomolecules, 2021, 11, 130.	1.8	21
96	Morphological Heterogeneity in Pancreatic Cancer Reflects Structural and Functional Divergence. Cancers, 2021, 13, 895.	1.7	14
97	Leukemia Inhibitory Factor: A Potential Biomarker and Therapeutic Target in Pancreatic Cancer. Archivum Immunologiae Et Therapiae Experimentalis, 2021, 69, 2.	1.0	12
98	Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nature Medicine, 2021, 27, 212-224.	15.2	376
99	Tailorâ€Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Advanced Science, 2021, 8, 2002545.	5.6	22
100	CXCL10 is a Tumor Microenvironment and Immune Infiltration Related Prognostic Biomarker in Pancreatic Adenocarcinoma. Frontiers in Molecular Biosciences, 2021, 8, 611508.	1.6	19
102	Adipose-derived mesenchymal stem cells differentiate into heterogeneous cancer-associated fibroblasts in a stroma-rich xenograft model. Scientific Reports, 2021, 11, 4690.	1.6	31
104	Distinct Stromal and Immune Features Collectively Contribute to Long-Term Survival in Pancreatic Cancer. Frontiers in Immunology, 2021, 12, 643529.	2.2	19
105	Enhancing cancerâ€associated fibroblast fatty acid catabolism within a metabolically challenging tumor microenvironment drives colon cancer peritoneal metastasis. Molecular Oncology, 2021, 15, 1391-1411.	2.1	45
106	Refining the Molecular Framework for Pancreatic Cancer with Single-cell and Spatial Technologies. Clinical Cancer Research, 2021, 27, 3825-3833.	3.2	8
107	Epithelial plasticity, epithelial-mesenchymal transition, and the TGF- \hat{l}^2 family. Developmental Cell, 2021, 56, 726-746.	3.1	82
108	Tumor–Stromal Interactions in a Co-Culture Model of Human Pancreatic Adenocarcinoma Cells and Fibroblasts and Their Connection with Tumor Spread. Biomedicines, 2021, 9, 364.	1.4	7
109	Deciphering the Prognostic Implications of the Components and Signatures in the Immune Microenvironment of Pancreatic Ductal Adenocarcinoma. Frontiers in Immunology, 2021, 12, 648917.	2.2	33
110	Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment. Seminars in Cancer Biology, 2022, 82, 184-196.	4.3	39
112	Immunotherapy for pancreatic cancer: chasing the light at the end of the tunnel. Cellular Oncology (Dordrecht), 2021, 44, 261-278.	2.1	16

#	ARTICLE	IF	CITATIONS
113	STARCH: copy number and clone inference from spatial transcriptomics data. Physical Biology, 2021, 18, 035001.	0.8	35
114	Cancer-associated fibroblasts-mediated ATF4 expression promotes malignancy and gemcitabine resistance in pancreatic cancer via the TGF- \hat{l}^2 1/SMAD2/3 pathway and ABCC1 transactivation. Cell Death and Disease, 2021, 12, 334.	2.7	45
115	Endocrine Pancreas Development and Dysfunction Through the Lens of Single-Cell RNA-Sequencing. Frontiers in Cell and Developmental Biology, 2021, 9, 629212.	1.8	8
116	Expressional and Prognostic Value of S100A16 in Pancreatic Cancer Via Integrated Bioinformatics Analyses. Frontiers in Cell and Developmental Biology, 2021, 9, 645641.	1.8	10
117	Role of stromal activin A in human pancreatic cancer and metastasis in mice. Scientific Reports, 2021, 11, 7986.	1.6	16
119	Oncogenesis, Microenvironment Modulation and Clinical Potentiality of FAP in Glioblastoma: Lessons Learned from Other Solid Tumors. Cells, 2021, 10, 1142.	1.8	12
120	Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discovery, 2021, 7, 36.	3.1	109
121	Characterization of the Immune Cell Infiltration Profile in Pancreatic Carcinoma to Aid in Immunotherapy. Frontiers in Oncology, 2021, 11, 677609.	1.3	7
122	The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes and Development, 2021, 35, 940-962.	2.7	51
123	Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study. The Lancet Digital Health, 2021, 3, e371-e382.	5.9	29
124	Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Therapeutic Opportunities and Clinical Challenges. Cancers, 2021, 13, 2860.	1.7	39
125	Molecular and Phenotypic Profiling for Precision Medicine in Pancreatic Cancer: Current Advances and Future Perspectives. Frontiers in Oncology, 2021, 11, 682872.	1.3	13
126	Delta HU is a potential marker to predict chemotherapy response for unresectable pancreatic ductal adenocarcinoma. Pancreatology, 2021, 21, 763-770.	0.5	3
127	Cancer: a mirrored room between tumor bulk and tumor microenvironment. Journal of Experimental and Clinical Cancer Research, 2021, 40, 217.	3.5	45
128	Single-cell RNA-sequencing atlas reveals an MDK-dependent immunosuppressive environment in ErbB pathway-mutated gallbladder cancer. Journal of Hepatology, 2021, 75, 1128-1141.	1.8	66
129	The Cellular and Biological Impact of Extracellular Vesicles in Pancreatic Cancer. Cancers, 2021, 13, 3040.	1.7	5
130	Cancer Immunotherapies: From Efficacy to Resistance Mechanisms – Not Only Checkpoint Matters. Frontiers in Immunology, 2021, 12, 690112.	2.2	42
131	Shedding Light on the Role of Neurotransmitters in the Microenvironment of Pancreatic Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 688953.	1.8	11

#	Article	IF	CITATIONS
132	$TGF\hat{l}^2$ Signaling Activated by Cancer-Associated Fibroblasts Determines the Histological Signature of Lung Adenocarcinoma. Cancer Research, 2021, 81, 4751-4765.	0.4	26
133	Recent Advances in Mass Spectrometry-Based Glycomic and Glycoproteomic Studies of Pancreatic Diseases. Frontiers in Chemistry, 2021, 9, 707387.	1.8	14
134	3D heterospecies spheroids of pancreatic stroma and cancer cells demonstrate key phenotypes of pancreatic ductal adenocarcinoma. Translational Oncology, 2021, 14, 101107.	1.7	8
135	Cancer-Associated Fibroblast (CAF) Heterogeneity and Targeting Therapy of CAFs in Pancreatic Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 655152.	1.8	85
136	Dynamic Stromal Alterations Influence Tumor-Stroma Crosstalk to Promote Pancreatic Cancer and Treatment Resistance. Cancers, 2021, 13, 3481.	1.7	13
137	Cancer biology deciphered by single-cell transcriptomic sequencing. Protein and Cell, 2022, 13, 167-179.	4.8	17
139	Immune-related genes <i>LAMA2</i> and <i>IL1R1</i> correlate with tumor sites and predict poor survival in pancreatic adenocarcinoma. Future Oncology, 2021, 17, 3061-3076.	1.1	7
140	Modeling pancreatic cancer in mice for experimental therapeutics. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188554.	3.3	33
141	Elucidation of Tumor-Stromal Heterogeneity and the Ligand-Receptor Interactome by Single-Cell Transcriptomics in Real-world Pancreatic Cancer Biopsies. Clinical Cancer Research, 2021, 27, 5912-5921.	3.2	57
142	Current Insights and Advancements in Head and Neck Cancer: Emerging Biomarkers and Therapeutics with Cues from Single Cell and 3D Model Omics Profiling. Frontiers in Oncology, 2021, 11, 676948.	1.3	5
143	Engineering stromal heterogeneity in cancer. Advanced Drug Delivery Reviews, 2021, 175, 113817.	6.6	7
144	Prognostic Relevance of Pancreatic Adenocarcinoma Whole-Tumor Transcriptomic Subtypes and Components. Clinical Cancer Research, 2021, 27, 6491-6499.	3.2	3
145	The tumor microenvironment in pancreatic ductal adenocarcinoma: current perspectives and future directions. Cancer and Metastasis Reviews, 2021, 40, 675-689.	2.7	29
146	Wogonoside inhibits TNF receptor-associated factor 6 (TRAF6) mediated-tumor microenvironment and prognosis of pancreatic cancer. Annals of Translational Medicine, 2021, 9, 1460-1460.	0.7	5
147	Mechanisms Involved in the Promoting Activity of Fibroblasts in HTLV-1-Mediated Lymphomagenesis: Insights into the Plasticity of Lymphomatous Cells. International Journal of Molecular Sciences, 2021, 22, 10562.	1.8	0
148	Targeting PI3K Pathway in Pancreatic Ductal Adenocarcinoma: Rationale and Progress. Cancers, 2021, 13, 4434.	1.7	38
149	Patients with mesenchymal tumours and high <i>Fusobacteriales</i> prevalence have worse prognosis in colorectal cancer (CRC). Gut, 2021, , gutjnl-2021-325193.	6.1	23
150	Clinical and therapeutic relevance of cancer-associated fibroblasts. Nature Reviews Clinical Oncology, 2021, 18, 792-804.	12.5	428

#	Article	IF	CITATIONS
151	Pancreatic Cancer Small Extracellular Vesicles (Exosomes): A Tale of Short- and Long-Distance Communication. Cancers, 2021, 13, 4844.	1.7	15
152	Genomic Heterogeneity of Pancreatic Ductal Adenocarcinoma and Its Clinical Impact. Cancers, 2021, 13, 4451.	1.7	15
153	Diverse and precision therapies open new horizons for patients with advanced pancreatic ductal adenocarcinoma. Hepatobiliary and Pancreatic Diseases International, 2021, 21, 10-10.	0.6	3
154	Cancer cell states and emergent properties of the dynamic tumor system. Genome Research, 2021, 31, 1719-1727.	2.4	12
155	Targeting cancer-associated fibroblasts in immunotherapy. , 2022, , 163-209.		2
156	The prognostic value of tumor-stromal ratio combined with TNM staging system in esophagus squamous cell carcinoma. Journal of Cancer, 2021, 12, 1105-1114.	1.2	14
157	Hedgehog signaling promotes angiogenesis directly and indirectly in pancreatic cancer. Angiogenesis, 2020, 23, 479-492.	3.7	36
158	Cancer associated fibroblast: Mediators of tumorigenesis. Matrix Biology, 2020, 91-92, 19-34.	1.5	31
159	The Interplay of the Extracellular Matrix and Stromal Cells as a Drug Target in Stroma-Rich Cancers. Trends in Pharmacological Sciences, 2020, 41, 183-198.	4.0	38
160	Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling. Journal of Cell Biology, 2020, 219, .	2.3	42
162	Natural killer cell and stroma abundance are independently prognostic and predict gastric cancer chemotherapy benefit. JCI Insight, 2020, 5, .	2.3	50
163	Systematic Analysis of Alternative Splicing Landscape in Pancreatic Adenocarcinoma Reveals Regulatory Network Associated with Tumorigenesis and Immune Response. Medical Science Monitor, 2020, 26, e925733.	0.5	6
164	Using ESTIMATE algorithm to establish an 8-mRNA signature prognosis prediction system and identify immunocyte infiltration-related genes in Pancreatic adenocarcinoma. Aging, 2020, 12, 5048-5070.	1.4	60
165	Emerging data supporting stromal cell therapeutic potential in cancer: reprogramming stromal cells of the tumor microenvironment for anti-cancer effects. Cancer Biology and Medicine, 2020, 17, 828-841.	1.4	6
166	Future perspectives from lung cancer pre-clinical models: new treatments are coming?. Translational Lung Cancer Research, 2020, 9, 2629-2644.	1.3	3
167	Extracellular Matrix Composition Modulates the Responsiveness of Differentiated and Stem Pancreatic Cancer Cells to Lipophilic Derivate of Gemcitabine. International Journal of Molecular Sciences, 2021, 22, 29.	1.8	14
168	Characterizing causality in cancer. ELife, 2019, 8, .	2.8	8
169	Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell, 2021, 184, 5577-5592.e18.	13.5	182

#	Article	IF	Citations
170	The PDAC Extracellular Matrix: A Review of the ECM Protein Composition, Tumor Cell Interaction, and Therapeutic Strategies. Frontiers in Oncology, 2021, 11, 751311.	1.3	48
171	Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy. Nature Communications, 2021, 12, 5826.	5.8	59
172	Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers, 2021, 13, 5028.	1.7	27
173	Heterogeneity in Pancreatic Cancer Fibroblasts—TGFβ as a Master Regulator?. Cancers, 2021, 13, 4984.	1.7	9
176	Targeting Endoglin Expressing Cells in the Tumor Microenvironment Does Not Inhibit Tumor Growth in a Pancreatic Cancer Mouse Model. OncoTargets and Therapy, 2021, Volume 14, 5205-5220.	1.0	5
177	Type-3 Hyaluronan Synthase Attenuates Tumor Cells Invasion in Human Mammary Parenchymal Tissues. Molecules, 2021, 26, 6548.	1.7	1
178	Clinical Impact of Molecular Subtyping of Pancreatic Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 743908.	1.8	29
179	Epithelial to Mesenchymal Transition: Key Regulator of Pancreatic Ductal Adenocarcinoma Progression and Chemoresistance. Cancers, 2021, 13, 5532.	1.7	25
180	Targeting Tumor-Stromal Interactions in Pancreatic Cancer: Impact of Collagens and Mechanical Traits. Frontiers in Cell and Developmental Biology, 2021, 9, 787485.	1.8	25
181	The Origins of Phenotypic Heterogeneity in Cancer. Cancer Research, 2022, 82, 3-11.	0.4	10
182	Pancreatic cancer evolution and heterogeneity: integrating omics and clinical data. Nature Reviews Cancer, 2022, 22, 131-142.	12.8	123
183	The Potential of Induced Pluripotent Stem Cells to Advance the Treatment of Pancreatic Ductal Adenocarcinoma. Cancers, 2021, 13, 5789.	1.7	2
185	M2 macrophage microvesicle-inspired nanovehicles improve accessibility to cancer cells and cancer stem cells in tumors. Journal of Nanobiotechnology, 2021, 19, 397.	4.2	17
186	CAF promotes chemoresistance through NRP2 in gastric cancer. Gastric Cancer, 2022, 25, 503-514.	2.7	21
187	Key promoters of tumor hallmarks. International Journal of Clinical Oncology, 2022, 27, 45-58.	1.0	26
188	Cell Lineage Infidelity in PDAC Progression and Therapy Resistance. Frontiers in Cell and Developmental Biology, 2021, 9, 795251.	1.8	14
189	Multiomics Analysis of Spatially Distinct Stromal Cells Reveals Tumor-Induced O-Glycosylation of the CDK4–pRB Axis in Fibroblasts at the Invasive Tumor Edge. Cancer Research, 2022, 82, 648-664.	0.4	9
190	Cancer associated-fibroblast-derived exosomes in cancer progression. Molecular Cancer, 2021, 20, 154.	7.9	116

#	Article	IF	CITATIONS
191	Stabilization of the classical phenotype upon integration of pancreatic cancer cells into the duodenal epithelium. Neoplasia, 2021, 23, 1300-1306.	2.3	2
192	Metabolic Interactions Between Tumor and Stromal Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1350, 101-121.	0.8	4
193	Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics, 2022, 12, 1030-1060.	4.6	49
194	Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Communications Biology, 2022, 5, 41.	2.0	8
195	Pancreatic fibrosis, acinar atrophy and chronic inflammation in surgical specimens associated with survival in patients with resectable pancreatic ductal adenocarcinoma. BMC Cancer, 2022, 22, 23.	1.1	6
196	Mesenchymal-to-epithelial transition of osteoblasts induced by Fam20c knockout. Genes and Genomics, 2022, 44, 155-164.	0.5	2
197	Selective multi-kinase inhibition sensitizes mesenchymal pancreatic cancer to immune checkpoint blockade by remodeling the tumor microenvironment. Nature Cancer, 2022, 3, 318-336.	5.7	42
198	Single-Cell Epigenomics Reveals Mechanisms of Cancer Progression. Annual Review of Cancer Biology, 2022, 6, 167-185.	2.3	9
199	Identification of potential core genes at single-cell level contributing to pathogenesis of pancreatic ductal adenocarcinoma through bioinformatics analysis. Cancer Biomarkers, 2022, , 1-12.	0.8	1
200	Discoveries in Pancreatic Physiology and Disease Biology Using Single-Cell RNA Sequencing. Frontiers in Cell and Developmental Biology, 2021, 9, 732776.	1.8	3
201	Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death and Disease, 2022, 13, 57.	2.7	80
202	The next wave of cellular immunotherapies in pancreatic cancer. Molecular Therapy - Oncolytics, 2022, 24, 561-576.	2.0	34
203	Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell, 2021, 184, 6119-6137.e26.	13.5	201
204	Colorectal cancer-associated fibroblasts promote metastasis by up-regulating LRG1 through stromal IL-6/STAT3 signaling. Cell Death and Disease, 2022, 13, 16.	2.7	36
205	KDM4B, a potential prognostic biomarker revealed by large-scale public databases and clinical samples in uterine corpus endometrial carcinoma. Molecular Omics, 2022, 18, 506-519.	1.4	4
206	Exosome-depleted MiR-148a-3p derived from Hepatic Stellate Cells Promotes Tumor Progression via ITGA5/PI3K/Akt Axis in Hepatocellular Carcinoma. International Journal of Biological Sciences, 2022, 18, 2249-2260.	2.6	27
207	A New Era: Tumor Microenvironment in Chemoresistance of Pancreatic Cancer. Journal of Cancer Science and Clinical Therapeutics, 2022, 06, 61-86.	0.2	3
209	Comparative Panel Sequencing of DNA Variants in cf-, ev- and tumorDNA for Pancreatic Ductal Adenocarcinoma Patients. Cancers, 2022, 14, 1074.	1.7	1

#	Article	IF	CITATIONS
210	circCUL2 induces an inflammatory CAF phenotype in pancreatic ductal adenocarcinoma via the activation of the MyD88-dependent NF-l ^o B signaling pathway. Journal of Experimental and Clinical Cancer Research, 2022, 41, 71.	3.5	25
211	STAT3 pathway in cancers: Past, present, and future. MedComm, 2022, 3, e124.	3.1	43
212	Tissue architecture in tumor initiation and progression. Trends in Cancer, 2022, 8, 494-505.	3.8	31
214	Transcriptomics and Metabolomics Identify Drug Resistance of Dormant Cell in Colorectal Cancer. Frontiers in Pharmacology, 2022, 13, 879751.	1.6	1
215	Heterocellular OSM-OSMR signalling reprograms fibroblasts to promote pancreatic cancer growth and metastasis. Nature Communications, 2021, 12, 7336.	5.8	40
216	Cancer-Homing CAR-T Cells and Endogenous Immune Population Dynamics. International Journal of Molecular Sciences, 2022, 23, 405.	1.8	11
217	Identification of Functional Heterogeneity of Carcinoma-Associated Fibroblasts with Distinct IL6-Mediated Therapy Resistance in Pancreatic Cancer. Cancer Discovery, 2022, 12, 1580-1597.	7.7	100
218	Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: Mechanisms of initiation, progression, and drug sensitivity. Journal of Cellular Physiology, 2022, 237, 2309-2344.	2.0	11
224	TGF-β-Induced FLRT3 Attenuation Is Essential for Cancer-Associated Fibroblast–Mediated Epithelial–Mesenchymal Transition in Colorectal Cancer. Molecular Cancer Research, 2022, 20, 1247-1259.	1.5	16
225	Cancerâ€associated fibroblasts in pancreatic cancer: new subtypes, new markers, new targets. Journal of Pathology, 2022, 257, 526-544.	2.1	27
226	Immunotherapy in Pancreatic Cancer: Why Do We Keep Failing? A Focus on Tumor Immune Microenvironment, Predictive Biomarkers and Treatment Outcomes. Cancers, 2022, 14, 2429.	1.7	25
227	Cancerâ€essociated fibroblasts in nonsmall cell lung cancer: From molecular mechanisms to clinical implications. International Journal of Cancer, 2022, 151, 1195-1215.	2.3	15
229	Homophilic ATP1A1 binding induces activin A secretion to promote EMT of tumor cells and myofibroblast activation. Nature Communications, 2022, 13 , .	5.8	14
230	Understanding Tricky Cellular and Molecular Interactions in Pancreatic Tumor Microenvironment: New Food for Thought. Frontiers in Immunology, 2022, 13, .	2.2	7
231	Smart hypoxia-responsive transformable and charge-reversible nanoparticles for the deep penetration and tumor microenvironment modulation of pancreatic cancer. Biomaterials, 2022, 287, 121599.	5.7	28
232	Nanoparticle-based therapeutic strategies targeting major clinical challenges in pancreatic cancer treatment. Advanced Drug Delivery Reviews, 2022, 187, 114357.	6.6	20
233	Bacteria and tumor: Understanding the roles of bacteria in tumor genesis and immunology. Microbiological Research, 2022, 261, 127082.	2.5	8
234	Interaction between tumor microenvironment, autophagy, and epithelial-mesenchymal transition in tumor progression. Cancer Treatment and Research Communications, 2022, 32, 100592.	0.7	1

#	Article	IF	CITATIONS
235	Endothelin-axis antagonism enhances tumor perfusion in pancreatic cancer. Cancer Letters, 2022, 544, 215801.	3.2	3
236	A Comprehensive Pan-Cancer Analysis of the Tumorigenic Role of Matrix Metallopeptidase 7 (MMP7) Across Human Cancers. Frontiers in Oncology, 0, 12, .	1.3	6
238	Identification, discrimination and heterogeneity of fibroblasts. Nature Communications, 2022, 13, .	5.8	43
239	GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature, 2022, 607, 163-168.	13.7	31
240	Co-dependencies in the tumor immune microenvironment. Oncogene, 2022, 41, 3821-3829.	2.6	8
242	The Desmoplastic Stroma of Pancreatic Cancer: Multilayered Levels of Heterogeneity, Clinical Significance, and Therapeutic Opportunities. Cancers, 2022, 14, 3293.	1.7	18
243	Orthotopic and Heterotopic Murine Models of Pancreatic Cancer Exhibit Different Immunological Microenvironments and Different Responses to Immunotherapy. Frontiers in Immunology, 0, 13 , .	2.2	10
244	Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nature Genetics, 2022, 54, 1178-1191.	9.4	107
245	<scp>IGF2BP2</scp> promotes pancreatic carcinoma progression by enhancing the stability of <scp>B3GNT6 mRNA</scp> via <scp>m6A</scp> methylation. Cancer Medicine, 2023, 12, 4405-4420.	1.3	5
246	Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Frontiers in Endocrinology, $0,13,\ldots$	1.5	27
247	Bacteria-mediated metformin-loaded peptide hydrogel reprograms the tumor immune microenvironment in glioblastoma. Biomaterials, 2022, 288, 121711.	5.7	9
248	Combined MEK and STAT3 Inhibition Uncovers Stromal Plasticity by Enriching for Cancer-Associated Fibroblasts With Mesenchymal Stem Cell-Like Features to Overcome Immunotherapy Resistance in Pancreatic Cancer. Gastroenterology, 2022, 163, 1593-1612.	0.6	42
249	Construction of a novel model based on cell-in-cell-related genes and validation of KRT7 as a biomarker for predicting survival and immune microenvironment in pancreatic cancer. BMC Cancer, 2022, 22, .	1.1	9
250	Mesenchymal stem cells derived from adipose tissue accelerate the progression of colon cancer by inducing a MTCAF phenotype via ICAM1/STAT3/AKT axis. Frontiers in Oncology, 0, 12, .	1.3	6
251	Untangling the web of intratumour heterogeneity. Nature Cell Biology, 2022, 24, 1192-1201.	4.6	39
253	CAFs/tumor cells co-targeting DNA vaccine in combination with low-dose gemcitabine for the treatment of Panc02 murine pancreatic cancer. Molecular Therapy - Oncolytics, 2022, 26, 304-313.	2.0	6
254	Modulating cancer-stroma crosstalk by a nanoparticle-based photodynamic method to pave the way for subsequent therapies. Biomaterials, 2022, 289, 121813.	5.7	7
255	The Tumor Immune Microenvironment in Pancreatic Ductal Adenocarcinoma: Neither Hot nor Cold. Cancers, 2022, 14, 4236.	1.7	14

#	Article	IF	CITATIONS
256	Posttranslational control of lipogenesis in the tumor microenvironment. Journal of Hematology and Oncology, 2022, 15, .	6.9	7
257	The Role of the Microbiome in Pancreatic Cancer. Cancers, 2022, 14, 4479.	1.7	12
258	Neoadjuvant Chemotherapy Is Associated with Altered Immune Cell Infiltration and an Anti-Tumorigenic Microenvironment in Resected Pancreatic Cancer. Clinical Cancer Research, 2022, 28, 5167-5179.	3.2	26
259	Management of Advanced Pancreatic Cancer through Stromal Depletion and Immune Modulation. Medicina (Lithuania), 2022, 58, 1298.	0.8	0
260	SK2 channels set a signalling hub bolstering CAF-triggered tumourigenic processes in pancreatic cancer. Gut, 2023, 72, 722-735.	6.1	5
261	A novel genomic instability-derived lncRNA signature to predict prognosis and immune characteristics of pancreatic ductal adenocarcinoma. Frontiers in Immunology, 0, 13, .	2.2	4
262	Identification of Molecular Targets and Underlying Mechanisms of Xiaoji Recipe against Pancreatic Cancer Based on Network Pharmacology. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-17.	0.7	1
263	Glioblastoma microenvironment and its reprogramming by oncolytic virotherapy. Frontiers in Cellular Neuroscience, $0,16,\ldots$	1.8	7
264	Hsa_circ_0081069 facilitates tongue squamous cell carcinoma progression by modulating MAP2K4 expression via miR-634. Odontology / the Society of the Nippon Dental University, 2023, 111, 474-486.	0.9	1
265	Patient-specific modeling of stroma-mediated chemoresistance of pancreatic cancer using a three-dimensional organoid-fibroblast co-culture system. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	29
266	The prognostic marker elastin correlates with <scp>epithelial–mesenchymal</scp> transition and <scp>vimentinâ€positive</scp> fibroblasts in gastric cancer. Journal of Pathology: Clinical Research, 2023, 9, 56-72.	1.3	8
267	Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell Death and Disease, 2022, 13, .	2.7	31
268	Probiotic Spore-Based Oral Drug Delivery System for Enhancing Pancreatic Cancer Chemotherapy by Gutâ€"Pancreas-Axis-Guided Delivery. Nano Letters, 2022, 22, 8608-8617.	4.5	14
269	Exploring the Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers, 2022, 14, 5302.	1.7	6
270	Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. Journal of Hematology and Oncology, 2022, 15, .	6.9	59
271	ldentifying cancer cellâ€secreted proteins that activate cancerâ€nssociated fibroblasts as prognostic factors for patients with pancreatic cancer. Journal of Cellular and Molecular Medicine, 2022, 26, 5657-5669.	1.6	1
272	Exosomal DNAJB11 promotes the development of pancreatic cancer by modulating the EGFR/MAPK pathway. Cellular and Molecular Biology Letters, 2022, 27, .	2.7	7
273	An Engineered Paperâ€Based 3D Coculture Model of Pancreatic Cancer to Study the Impact of Tissue Architecture and Microenvironmental Gradients on Cell Phenotype. Advanced Healthcare Materials, 2023, 12, .	3.9	5

#	Article	IF	CITATIONS
274	BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling. Nature Communications, $2022, 13, \ldots$	5.8	22
275	Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell, 2022, 40, 1392-1406.e7.	7.7	54
276	Identification of CKS1B as a prognostic indicator and a predictive marker for immunotherapy in pancreatic cancer. Frontiers in Immunology, 0, 13 , .	2.2	2
277	Emerging roles of long noncoding and circular RNAs in pancreatic ductal adenocarcinoma. Frontiers in Physiology, 0, 13 , .	1.3	2
278	Assessment of stromal SCD-induced drug resistance of PDAC using 3D-printed zPDX model chips. IScience, 2023, 26, 105723.	1.9	3
279	The Tumor Microenvironment in Pancreatic Cancer and Challenges to Immunotherapy., 2022,, 381-401.		0
280	Epithelial to Mesenchymal Transition as Mechanism of Progression of Pancreatic Cancer: From Mice to Men. Cancers, 2022, 14, 5797.	1.7	6
281	Signaling pathways in cancerâ€associated fibroblasts: recent advances and future perspectives. Cancer Communications, 2023, 43, 3-41.	3.7	43
282	Proteogenomic characterization of MiT family translocation renal cell carcinoma. Nature Communications, 2022, 13, .	5.8	13
283	Repeat Element Activation-Driven Inflammation: Role of NFκB and Implications in Normal Development and Cancer?. Biomedicines, 2022, 10, 3101.	1.4	3
284	Cancer Genomics. Archives of Medical Research, 2022, 53, 723-731.	1.5	5
285	Multidrug resistance genes screening of pancreatic ductal adenocarcinoma based on sensitivity profile to chemotherapeutic drugs. Cancer Cell International, 2022, 22, .	1.8	2
286	The novel subclusters based on cancer-associated fibroblast for pancreatic adenocarcinoma. Frontiers in Oncology, 0, 12, .	1.3	1
287	Muc4 loss mitigates epidermal growth factor receptor activity essential for PDAC tumorigenesis. Oncogene, 2023, 42, 759-770.	2.6	4
288	Induction of pancreatic neoplasia in the $<$ i>KRAS $<$ i>i>TP53 Oncopig. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	5
289	USP51/ZEB1/ACTA2 axis promotes mesenchymal phenotype in gastric cancer and is associated with low cohesion characteristics. Pharmacological Research, 2023, 188, 106644.	3.1	5
291	Microphysiological systems to study colorectal cancer: state-of-the-art. Biofabrication, 2023, 15, 032001.	3.7	4
292	Single-cell transcriptome analysis for cancer and biology of the pancreas: A review on recent progress. Frontiers in Genetics, 0, 14, .	1.1	0

#	Article	IF	CITATIONS
293	Morphology-guided transcriptomic analysis of human pancreatic cancer organoids reveals microenvironmental signals that enhance invasion. Journal of Clinical Investigation, 2023, 133, .	3.9	4
294	Nattokinase-Mediated Regulation of Tumor Physical Microenvironment to Enhance Chemotherapy, Radiotherapy, and CAR-T Therapy of Solid Tumor. ACS Nano, 2023, 17, 7475-7486.	7.3	7
295	Primary Human Pancreatic Cancer Cells Cultivation in Microfluidic Hydrogel Microcapsules for Drug Evaluation. Advanced Science, 2023, 10 , .	5.6	8
296	S100 family proteins are linked to organoid morphology and EMT in pancreatic cancer. Cell Death and Differentiation, 2023, 30, 1155-1165.	5.0	4
297	Synergistic therapeutic combination with a CAF inhibitor enhances CAR-NK-mediated cytotoxicity via reduction of CAF-released IL-6., 2023, 11, e006130.		5
298	Identification and verification of eight cancer-associated fibroblasts related genes as a prognostic signature for head and neck squamous cell carcinoma. Heliyon, 2023, 9, e14003.	1.4	4
299	Activated fibroblasts in cancer: Perspectives and challenges. Cancer Cell, 2023, 41, 434-449.	7.7	38
300	HMGA1 induces FGF19 to drive pancreatic carcinogenesis and stroma formation. Journal of Clinical Investigation, 2023, 133, .	3.9	9
301	Circulating tumour cells in gastrointestinal cancers: food for thought?. British Journal of Cancer, 2023, 128, 1981-1990.	2.9	3
302	Mesoporous nanodrug delivery system: a powerful tool for a new paradigm of remodeling of the tumor microenvironment. Journal of Nanobiotechnology, 2023, 21, .	4.2	2
303	Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy. Nature Cancer, 2023, 4, 454-467.	5.7	15
304	A new approach: Evaluation of necroptosis and immune status enables prediction of the tumor microenvironment and treatment targets in pancreatic cancer. Computational and Structural Biotechnology Journal, 2023, 21, 2419-2433.	1.9	1
305	Fibroblasts as Turned Agents in Cancer Progression. Cancers, 2023, 15, 2014.	1.7	13
306	An Analysis Regarding the Association Between Proteasome (PSM) and Hepatocellular Carcinoma (HCC). Journal of Hepatocellular Carcinoma, 0, Volume 10, 497-515.	1.8	1
307	Overcoming the Limitations of Therapeutic Strategies to Combat Pancreatic Cancer Using Nanotechnology. Current Cancer Drug Targets, 2023, 23, .	0.8	1
308	Fibroblasts in cancer: Unity in heterogeneity. Cell, 2023, 186, 1580-1609.	13.5	44
309	Cancer-Associated Fibroblasts and Extracellular Matrix: Therapeutical Strategies for Modulating the Cholangiocarcinoma Microenvironment. Current Oncology, 2023, 30, 4185-4196.	0.9	2
310	A systematic pan-cancer analysis reveals the clinical prognosis and immunotherapy value of C-X3-C motif ligand $1\ (\text{CX3CL1})$. Frontiers in Genetics, $0,14,.$	1.1	0

#	Article	IF	CITATIONS
311	Association between Expression of Connective Tissue Genes and Prostate Cancer Growth and Progression. International Journal of Molecular Sciences, 2023, 24, 7520.	1.8	2
312	An Automation Workflow for Highâ€Throughput Manufacturing and Analysis of Scaffoldâ€Supported 3D Tissue Arrays. Advanced Healthcare Materials, 2023, 12, .	3.9	3
326	Cancer-associated fibroblasts: from basic science to anticancer therapy. Experimental and Molecular Medicine, 2023, 55, 1322-1332.	3.2	20
348	Aptamer-mediated nano-therapy for pancreatic cancer. , 2024, , 375-399.		0
350	Improving the prognosis of pancreatic cancer: insights from epidemiology, genomic alterations, and therapeutic challenges. Frontiers of Medicine, 2023, 17, 1135-1169.	1.5	0