Long-term ex vivo haematopoietic-stem-cell expansion transplantation

Nature

571, 117-121

DOI: 10.1038/s41586-019-1244-x

Citation Report

#	Article	IF	CITATIONS
1	Defining Adult Stem Cell Function at Its Simplest: The Ability to Replace Lost Cells through Mitosis. Cell Stem Cell, 2019, 25, 174-183.	5.2	124
2	Hematopoietic Stem Cell Intracellular Levels of Ca to the Rescue! What Next?. Cell Stem Cell, 2019, 25, 171-173.	5.2	5
3	Expansion processes for cell-based therapies. Biotechnology Advances, 2019, 37, 107455.	6.0	15
4	InÂVivo Selection for Gene-Corrected HSPCs Advances Gene Therapy for a Rare Stem Cell Disease. Cell Stem Cell, 2019, 25, 592-593.	5.2	6
5	Induction of human hemogenesis in adult fibroblasts by defined factors and hematopoietic coculture. FEBS Letters, 2019, 593, 3266-3287.	1.3	8
6	Applications of Hydrogels with Special Physical Properties in Biomedicine. Polymers, 2019, 11, 1420.	2.0	63
7	Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Nature Communications, 2019, 10, 4045.	5.8	88
8	"Hierarchy―and "Holacracy― A Paradigm of the Hematopoietic System. Cells, 2019, 8, 1138.	1.8	12
9	Blood stem cells produced in vast quantities in the lab. Nature, 2019, 570, 17-18.	13.7	1
10	Large-scale in vitro production of red blood cells from human peripheral blood mononuclear cells. Blood Advances, 2019, 3, 3337-3350.	2.5	70
11	Ex Vivo Expansion of Functional Hematopoietic Stem Cells, Facilitating Transplantation in the Absence of Conditioning. HemaSphere, 2019, 3, e306.	1.2	4
12	How children's glue fixes a decades old enigma. Annals of Translational Medicine, 2019, 7, S348-S348.	0.7	O
13	Haematopoietic stem cell reprogramming and the hope for a universal blood product. FEBS Letters, 2019, 593, 3253-3265.	1.3	4
14	Use of polyvinyl alcohol for chimeric antigen receptor T-cell expansion. Experimental Hematology, 2019, 80, 16-20.	0.2	13
15	MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature, 2019, 576, 281-286.	13.7	94
16	Successful ex vivo expansion of mouse hematopoietic stem cells. Blood Science, 2019, 1, 116-118.	0.4	O
17	Long-term ex vivo expansion of mouse hematopoietic stem cells. Nature Protocols, 2020, 15, 628-648.	5.5	55
18	Boronate sol–gel method for one-step fabrication of polyvinyl alcohol hydrogel coatings by simple cast- and dip-coating techniques. RSC Advances, 2020, 10, 86-94.	1.7	10

#	Article	IF	CITATIONS
19	Vast Self-Renewal Potential of Human AGM Region HSCs Dramatically Declines in the Umbilical Cord Blood. Stem Cell Reports, 2020, 15, 811-816.	2.3	9
20	A 3D engineered scaffold for hematopoietic progenitor/stem cell co-culture in vitro. Scientific Reports, 2020, 10, 11485.	1.6	17
21	Hematopoietic Stem Cell Metabolism during Development and Aging. Developmental Cell, 2020, 54, 239-255.	3.1	124
22	Tumor-initiating cells establish an IL-33–TGF-β niche signaling loop to promote cancer progression. Science, 2020, 369, .	6.0	134
23	Beyond "to divide or not to divide― Kinetics matters in hematopoietic stem cells. Experimental Hematology, 2020, 92, 1-10.e2.	0.2	7
24	Making a bet on RET for hematopoietic stem cell expansion. Blood, 2020, 136, 2484-2486.	0.6	0
25	Lemonade From Lemons: Recruiting Blood Stem Cells into Action. HemaSphere, 2020, 4, e416.	1.2	0
26	Memory of Divisional History Directs the Continuous Process of Primitive Hematopoietic Lineage Commitment. Stem Cell Reports, 2020, 14, 561-574.	2.3	11
27	In Vitro Modeling of Non-Solid Tumors: How Far Can Tissue Engineering Go?. International Journal of Molecular Sciences, 2020, 21, 5747.	1.8	16
28	Gene therapy for severe combined immunodeficiencies and beyond. Journal of Experimental Medicine, 2020, 217, .	4.2	63
29	Glioma progression and recurrence involving maintenance and expansion strategies of glioma stem cells by organizing self-advantageous niche microenvironments. Inflammation and Regeneration, 2020, 40, 33.	1.5	15
30	Hematopoietic Stem Cells and Mesenchymal Stromal Cells in Acute Radiation Syndrome. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	1.9	12
31	Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis. Nature Cell Biology, 2020, 22, 630-639.	4.6	65
32	Haematopoietic stem cell self-renewal in vivo and ex vivo. Nature Reviews Genetics, 2020, 21, 541-554.	7.7	118
33	Calcium regulation of stem cells. EMBO Reports, 2020, 21, e50028.	2.0	25
34	Prospects of the Use of Cell Therapy to Induce Immune Tolerance. Frontiers in Immunology, 2020, 11, 792.	2.2	18
35	In vivo and ex vivo haematopoietic stem cell expansion. Current Opinion in Hematology, 2020, 27, 273-278.	1.2	2
36	Crosstalk Between the Hepatic and Hematopoietic Systems During Embryonic Development. Frontiers in Cell and Developmental Biology, 2020, 8, 612.	1.8	23

#	ARTICLE	lF	Citations
37	Biomimetic fabrication of highly ordered laminae–trestle–laminae structured copper aero-sponge. Nanoscale, 2020, 12, 8982-8990.	2.8	8
38	Connecting secretome to hematopoietic stem cell phenotype shifts in an engineered bone marrow niche. Integrative Biology (United Kingdom), 2020, 12, 175-187.	0.6	12
39	Coinhibition of activated p38 MAPK $\hat{l}\pm$ and mTORC1 potentiates stemness maintenance of HSCs from SR1-expanded human cord blood CD34+ cells via inhibition of senescence. Stem Cells Translational Medicine, 2020, 9, 1604-1616.	1.6	7
40	Stabilizing hematopoietic stem cells in vitro. Current Opinion in Genetics and Development, 2020, 64, 1-5.	1.5	18
41	Unleashing the cure: Overcoming persistent obstacles in the translation and expanded use of hematopoietic stem cell-based therapies. Stem Cells Translational Medicine, 2020, 9, 420-426.	1.6	11
42	Dissecting the spatial bone marrow microenvironment of hematopoietic stem cells. Current Opinion in Oncology, 2020, 32, 154-161.	1.1	11
43	Enhanced Transduction of Human Hematopoietic Stem Cells by AAV6 Vectors: Implications in Gene Therapy and Genome Editing. Molecular Therapy - Nucleic Acids, 2020, 20, 451-458.	2.3	17
44	Antioxidant Small Molecule Compound Chrysin Promotes the Self-Renewal of Hematopoietic Stem Cells. Frontiers in Pharmacology, 2020, 11, 399.	1.6	10
45	Hope for hematological diseases. Science, 2020, 367, 1206-1206.	6.0	3
46	Granulocyte colony-stimulating factor directly acts on mouse lymphoid-biased but not myeloid-biased hematopoietic stem cells. Haematologica, 2021, 106, 1647-1658.	1.7	8
47	Advances in preclinical hematopoietic stem cell models and possible implications for improving therapeutic transplantation. Stem Cells Translational Medicine, 2021, 10, 337-345.	1.6	10
48	Systems analysis of hematopoiesis using single-cell lineage tracing. Current Opinion in Hematology, 2021, 28, 18-27.	1.2	12
49	Persistent expression of microRNA-125a targets is required to induce murine hematopoietic stem cell repopulating activity. Experimental Hematology, 2021, 94, 47-59.e5.	0.2	2
50	HIV Gene Therapy: An Update. Human Gene Therapy, 2021, 32, 52-65.	1.4	13
51	Cell Sources for Human In vitro Bone Models. Current Osteoporosis Reports, 2021, 19, 88-100.	1.5	14
52	Long-Term Human Hematopoietic Stem Cell Culture in Microdroplets. Micromachines, 2021, 12, 90.	1.4	5
53	Osteoblastic adherence regulates hematopoietic stem cell self-renewal and differentiation: a conceptional in vitro and in vivo study. Stem Cell Investigation, 2021, 8, 21-21.	1.3	5
54	Polyvinyl Alcohol Carbazate as a Polymer-Based Antitumoral Agent. Frontiers in Oncology, 2020, 10, 598394.	1.3	0

#	Article	IF	CITATIONS
55	Isolation and & Description and Samp; It; Isamp; It; Is	0.5	1
56	Vinylboronic acid pinacol ester as a vinyl alcohol-precursor monomer in radical copolymerization with styrene. Chemical Communications, 2021, 57, 7410-7413.	2.2	13
57	The hemogenic endothelium: a critical source for the generation of PSC-derived hematopoietic stem and progenitor cells. Cellular and Molecular Life Sciences, 2021, 78, 4143-4160.	2.4	25
58	Hematopoietic Stem Cell- and Induced Pluripotent Stem Cell-Derived CAR-NK Cells as Reliable Cell-Based Therapy Solutions. Stem Cells Translational Medicine, 2021, 10, 987-995.	1.6	23
59	Engineering human hematopoietic environments through ossicle and bioreactor technologies exploitation. Experimental Hematology, 2021, 94, 20-25.	0.2	9
60	Fetal liver hematopoiesis: from development to delivery. Stem Cell Research and Therapy, 2021, 12, 139.	2.4	36
61	mTOR Signaling as a Regulator of Hematopoietic Stem Cell Fate. Stem Cell Reviews and Reports, 2021, 17, 1312-1322.	1.7	19
62	Polyvinyl alcohol scaffolds and supplementation support 3D and sphere culturing of human cancer cell lines by reducing apoptosis and promoting cellular proliferation. Genes To Cells, 2021, 26, 336-343.	0.5	6
63	Harnessing Mesenchymal Stromal Cells for the Engineering of Human Hematopoietic Niches. Frontiers in Immunology, 2021, 12, 631279.	2.2	6
64	Mito–managing ROS & redox to reboot the immune system: Tapping mitochondria & redox management to extend the reach of hematopoietic stem cell transplantation. Free Radical Biology and Medicine, 2021, 165, 38-53.	1.3	5
65	Comparative engraftment and clonality of macaque HSPCs expanded on human umbilical vein endothelial cells versus non-expanded cells. Molecular Therapy - Methods and Clinical Development, 2021, 20, 703-715.	1.8	1
66	A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
67	Bioengineering the Bone Marrow Vascular Niche. Frontiers in Cell and Developmental Biology, 2021, 9, 645496.	1.8	14
68	Comment on "Tumor-initiating cells establish an IL-33–TGF-β niche signaling loop to promote cancer progression― Science, 2021, 372, .	6.0	4
69	Mitochondria Turnover and Lysosomal Function in Hematopoietic Stem Cell Metabolism. International Journal of Molecular Sciences, 2021, 22, 4627.	1.8	8
70	Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. Journal of Experimental Medicine, 2021, 218, .	4.2	48
71	Towards manufactured red blood cells for the treatment of inherited anemia. Haematologica, 2021, 106, 2304-2311.	1.7	16
72	Extracellular Matrix Remodeling in Stem Cell Culture: A Potential Target for Regulating Stem Cell Function. Tissue Engineering - Part B: Reviews, 2022, 28, 542-554.	2.5	5

#	Article	IF	Citations
73	Non-conditioned bone marrow chimeric mouse generation using culture-based enrichment of hematopoietic stem and progenitor cells. Nature Communications, 2021, 12, 3568.	5.8	13
74	Fabrication of Cationic Poly(vinyl alcohol) Films Cross-Linked Using Copolymers Containing Quaternary Ammonium Cations, Benzoxaborole, and Carboxy Groups. ACS Omega, 2021, 6, 17531-17544.	1.6	9
75	Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell, 2021, 28, 993-1015.	5.2	36
76	Hematopoietic stem cells retain functional potential and molecular identity in hibernation cultures. Stem Cell Reports, 2021, 16, 1614-1628.	2.3	12
78	Trends and ideas in technology, regulation and public acceptance of cultured meat. Future Foods, 2021, 3, 100032.	2.4	57
79	GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death and Disease, 2021, 12, 706.	2.7	71
80	Understanding the "SMART―features of hematopoietic stem cells and beyond. Science China Life Sciences, 2021, 64, 2030-2044.	2.3	8
81	The Hematopoietic Bone Marrow Niche Ecosystem. Frontiers in Cell and Developmental Biology, 2021, 9, 705410.	1.8	34
82	Alternative Polyadenylation in Stem Cell Self-Renewal and Differentiation. Trends in Molecular Medicine, 2021, 27, 660-672.	3.5	27
83	Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to exÂvivo culture stress and aging. Cell Stem Cell, 2021, 28, 1950-1965.e6.	5.2	47
84	Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Research, 2022, 32, 38-53.	5.7	48
85	Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway. Cell, 2021, 184, 4495-4511.e19.	13.5	201
86	Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell, 2021, 28, 1473-1482.e7.	5.2	87
87	The combination of dextran sulphate and polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture. Cell Proliferation, 2021, 54, e13112.	2.4	6
88	Gene knockout in highly purified mouse hematopoietic stem cells by CRISPR/Cas9 technology. Journal of Immunological Methods, 2021, 495, 113070.	0.6	4
89	Membrane-bound SCF and VCAM-1 synergistically regulate the morphology of hematopoietic stem cells. Journal of Cell Biology, 2021, 220, .	2.3	13
90	Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration. Cell Stem Cell, 2021, 28, 1982-1999.e8.	5.2	38
91	Rebuilding the hematopoietic stem cell niche: Recent developments and future prospects. Acta Biomaterialia, 2021, 132, 129-148.	4.1	15

#	ARTICLE	IF	Citations
92	Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomaterialia, 2021, 132, 4-22.	4.1	27
93	Evaluation of a clinical-grade, cryopreserved, ex vivo-expanded stem cell product from cryopreserved primary umbilical cord blood demonstrates multilineage hematopoietic engraftment in mouse xenografts. Cytotherapy, 2021, 23, 841-851.	0.3	6
94	Hematopoietic Stem Cells in Wound Healing Response. Advances in Wound Care, 2022, 11, 598-621.	2.6	5
95	Polyvinyl alcohol hydrolysis rate and molecular weight influence human and murine HSC activity ex vivo. Stem Cell Research, 2021, 56, 102531.	0.3	11
96	Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice. Nature Communications, 2021, 12, 686.	5.8	67
97	Tuning MPL signaling to influence hematopoietic stem cell differentiation and inhibit essential thrombocythemia progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	24
100	Past, present, and future efforts to enhance the efficacy of cord blood hematopoietic cell transplantation. F1000Research, 2019, 8, 1833.	0.8	36
101	Mobilized peripheral blood: an updated perspective. F1000Research, 2019, 8, 2125.	0.8	26
102	Blood making: learning what to put into the dish. F1000Research, 2020, 9, 38.	0.8	6
103	Effects of signaling pathway inhibitors on hematopoietic stem cells. Molecular Medicine Reports, 2020, 23, 1-1.	1.1	9
104	Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. ELife, 2020, 9, .	2.8	21
105	Methylosystem for Cancer Sieging Strategy. Cancers, 2021, 13, 5088.	1.7	7
106	Loss of <l>Nupr1</l> promotes engraftment by tuning the quiescence threshold of hematopoietic stem cells via regulation of the p53-checkpoint pathway. Haematologica, 2022, 107, 154-166.	1.7	8
107	Regulatory mechanism of megakaryocyte-lineage differentiation in hematopoietic stem cells. Japanese Journal of Thrombosis and Hemostasis, 2020, 31, 479-484.	0.1	0
108	Avoid shocking your hematopoietic stem cells to keep them young and growing. Cell Stem Cell, 2021, 28, 1887-1889.	5.2	0
109	Hematopoietic Stem Cells and Regeneration. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040774.	2.3	3
110	Protocol to maintain single functional mouse hematopoietic stem cells in vitro without cell division. STAR Protocols, 2021, 2, 100927.	0.5	1
113	Method for the Generation of Induced Hematopoietic Stem Cells. Methods in Molecular Biology, 2021, 2185, 399-410.	0.4	0

#	Article	IF	CITATIONS
114	Secreted factors from mouse embryonic fibroblasts maintain repopulating function of single cultured hematopoietic stem cells. Haematologica, 2021, 106, 2633-2640.	1.7	3
115	Efficient hepatic differentiation and regeneration potential under xeno-free conditions using mass-producible amnion-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2021, 12, 569.	2.4	6
116	Potential Applications and Perspectives of Humanized Mouse Models. Annual Review of Animal Biosciences, 2022, 10, 395-417.	3.6	18
117	Peritoneumâ€Inspired Janus Porous Hydrogel with Antiâ€Deformation, Antiâ€Adhesion, and Proâ€Healing Characteristics for Abdominal Wall Defect Treatment. Advanced Materials, 2022, 34, e2108992.	11.1	58
118	Closer to Nature: The Role of MSCs in Recreating the Microenvironment of the Hematopoietic Stem Cell Niche in vitro. Transfusion Medicine and Hemotherapy, 2022, 49, 258-267.	0.7	1
119	The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow. Cell Stem Cell, 2022, 29, 232-247.e7.	5. 2	41
120	CD244 expression represents functional decline of murine hematopoietic stem cells after inÂvitro culture. IScience, 2022, 25, 103603.	1.9	9
121	Engineering strategies to achieve efficient <i>in vitro</i> expansion of haematopoietic stem cells: development and improvement. Journal of Materials Chemistry B, 2022, 10, 1734-1753.	2.9	8
123	Encouraging the outcomes of children with beta-thalassaemia major who underwent fresh cord blood transplantation from an HLA-matched sibling donor. Hematology, 2022, 27, 310-317.	0.7	3
124	Update on preclinical and clinical efforts on ex-vivo expansion of hematopoietic stem and progenitor cells. Current Opinion in Hematology, 2022, Publish Ahead of Print, .	1.2	2
125	Deciphering the Heterogeneity of Mitochondrial Functions During Hematopoietic Lineage Differentiation. Stem Cell Reviews and Reports, 2022, 18, 2179-2194.	1.7	4
126	Treatment of a genetic brain disease by CNS-wide microglia replacement. Science Translational Medicine, 2022, 14, eabl9945.	5.8	45
127	Hematopoietic Stem Cell Factors: Their Functional Role in Self-Renewal and Clinical Aspects. Frontiers in Cell and Developmental Biology, 2022, 10, 664261.	1.8	16
128	Molecular regulation of hematopoietic stem cell quiescence. Cellular and Molecular Life Sciences, 2022, 79, 218.	2.4	16
129	Immunological barriers to haematopoietic stem cell gene therapy. Nature Reviews Immunology, 2022, 22, 719-733.	10.6	22
130	Efficient expansion of rare human circulating hematopoietic stem/progenitor cells in steady-state blood using a polypeptide-forming 3D culture. Protein and Cell, 2022, 13, 808-824.	4.8	2
131	Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers, 2022, 14, 1723.	1.7	8
133	Development of a novel and synthetic HematoMiR technology that broadly modulates quiescence of stem cells and enhances HSC expansion. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	2

#	ARTICLE	IF	Citations
134	Identification of the minimum requirements for successful haematopoietic stem cell transplantation. British Journal of Haematology, 2022, 196, 711-723.	1.2	1
135	Stem Cell-Based Disease Models for Inborn Errors of Immunity. Cells, 2022, 11, 108.	1.8	1
136	CAR-NK Cells: From Natural Basis to Design for Kill. Frontiers in Immunology, 2021, 12, 707542.	2.2	50
137	Bioprocessing technology of muscle stem cells: implications for cultured meat. Trends in Biotechnology, 2022, 40, 721-734.	4.9	40
138	Decoding Human Hematopoietic Stem Cell Self-Renewal. Current Stem Cell Reports, 2022, 8, 93-106.	0.7	3
140	Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Current Topics in Developmental Biology, 2022, , 203-261.	1.0	3
141	Expansion of Quiescent Hematopoietic Stem Cells under Stress and Nonstress Conditions in Mice. Stem Cell Reviews and Reports, 2022, 18, 2388-2402.	1.7	3
142	New Insights into Hematopoietic Stem Cell Expansion to Stimulate Repopulation of the Adult Blood System for Transplantation. Life, 2022, 12, 716.	1.1	0
143	Hydrogels: Properties and Applications in Biomedicine. Molecules, 2022, 27, 2902.	1.7	125
144	Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials, 2022, 286, 121568.	5.7	16
145	Developmental cues license megakaryocyte priming in murine hematopoietic stem cells. Blood Advances, 2022, 6, 6228-6241.	2.5	11
146	Embryonic Origins of the Hematopoietic System: Hierarchies and Heterogeneity. HemaSphere, 2022, 6, e737.	1.2	11
147	Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells. Cell, 2022, 185, 2248-2264.e21.	13.5	26
148	Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells, 2022, 11, 1843.	1.8	12
149	Efficient expansion of mouse hematopoietic stem cells exÂvivo by membrane anchored Angptl2. Biochemical and Biophysical Research Communications, 2022, 617, 42-47.	1.0	1
151	Preparation of citric acid-modified poly(vinyl alcohol) films for effectively precipitating calcium phosphate particles. CrystEngComm, 2022, 24, 5552-5556.	1.3	4
152	Inhibition of Canonical Wnt Signaling Promotes Ex Vivo Maintenance and Proliferation of Hematopoietic Stem Cells in Zebrafish. Stem Cells, 2022, 40, 831-842.	1.4	5
153	Metabolic Regulation of Hematopoietic Stem Cells. HemaSphere, 2022, 6, e740.	1.2	15

#	ARTICLE	IF	Citations
155	Temporal-spatial low shear stress induces heterogenous distribution of hematopoietic stem cell budding in zebrafish. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	0
157	Non-genotoxic Restoration of the Hematolymphoid System in Fanconi Anemia. Transplantation and Cellular Therapy, 2023, 29, 164.e1-164.e9.	0.6	0
159	Identification and characterization of <i>in vitro</i> expanded hematopoietic stem cells. EMBO Reports, 2022, 23, .	2.0	16
160	Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nature Communications, 2022, 13, .	5.8	13
161	Ex Vivo Expansion of Phenotypic and Transcriptomic Chronic Myeloid Leukemia Stem Cells. Experimental Hematology, 2022, 115, 1-13.	0.2	1
162	Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Frontiers in Physiology, 0, 13 , .	1.3	7
163	Catalaseâ€Mimetic Artificial Biocatalysts with Ru Catalytic Centers for ROS Elimination and Stemâ€Cell Protection. Advanced Materials, 2022, 34, .	11.1	31
164	Distinct Tumor Necrosis Factor Alpha Receptors Dictate Stem Cell Fitness versus Lineage Output in <i>Dnmt3a</i> Hutant Clonal Hematopoiesis. Cancer Discovery, 2022, 12, 2763-2773.	7.7	23
165	Murine foetal liver supports limited detectable expansion of life-long haematopoietic progenitors. Nature Cell Biology, 2022, 24, 1475-1486.	4.6	22
166	Lessons from early life: understanding development to expand stem cells and treat cancers. Development (Cambridge), 2022, 149, .	1.2	2
167	Inkjet printing of mechanochromic fluorenylidene-acridane. Scientific Reports, 2022, 12, .	1.6	1
168	Biomedical polymer scaffolds mimicking bone marrow niches to advance <i>in vitro</i> expansion of hematopoietic stem cells. Journal of Materials Chemistry B, 2022, 10, 9755-9769.	2.9	3
169	Translocations are induced in hematopoietic stem cells after irradiation of fetal mice. Journal of Radiation Research, 0 , , .	0.8	0
170	Viewing AML through a New Lens: Technological Advances in the Study of Epigenetic Regulation. Cancers, 2022, 14, 5989.	1.7	0
171	Bridging polymer chemistry and cryobiology. Polymer Journal, 2023, 55, 105-115.	1.3	3
172	A culture platform to study quiescent hematopoietic stem cells following genome editing. Cell Reports Methods, 2022, 2, 100354.	1.4	2
174	Human serum albumin promotes self-renewal and expansion of umbilical cord blood CD34+ hematopoietic stem/progenitor cells. Annals of Translational Medicine, 2023, .	0.7	0
175	Current status of producing autologous hematopoietic stem cells. Current Research in Translational Medicine, 2023, 71, 103377.	1.2	0

#	ARTICLE	IF	CITATIONS
176	Nonviral Ex Vivo Genome Editing in Mouse Bona Fide Hematopoietic Stem Cells with CRISPR/Cas9. Methods in Molecular Biology, 2023, , 213-221.	0.4	0
177	Temporal static and dynamic imaging of skeletal muscle in vivo. Experimental Cell Research, 2023, 424, 113484.	1.2	2
179	Ex vivo expansion of hematopoietic stem cells. Experimental Cell Research, 2023, 427, 113599.	1.2	2
180	Physioxia improves the selectivity of hematopoietic stem cell expansion cultures. Blood Advances, 2023, 7, 3366-3377.	2.5	6
181	Chemically defined cytokine-free expansion of human haematopoietic stem cells. Nature, 2023, 615, 127-133.	13.7	38
182	Hydrogels—A Promising Materials for 3D Printing Technology. Gels, 2023, 9, 260.	2.1	16
183	Temporal multimodal single-cell profiling of native hematopoiesis illuminates altered differentiation trajectories with age. Cell Reports, 2023, 42, 112304.	2.9	3
184	Human hematopoietic stem cells expand beyond cytokines. Cell Stem Cell, 2023, 30, 343-344.	5.2	0
185	Organization of the Immune System. , 2023, , 17-38.		0
186	Harnessing matrix stiffness to engineer a bone marrow niche for hematopoietic stem cell rejuvenation. Cell Stem Cell, 2023, 30, 378-395.e8.	5.2	15
187	Innovative Approaches and Advances for Hair Follicle Regeneration. ACS Biomaterials Science and Engineering, 2023, 9, 2251-2276.	2.6	5
188	Restoring bone marrow niche function rejuvenates aged hematopoietic stem cells by reactivating the DNA Damage Response. Nature Communications, 2023, 14 , .	5.8	3
189	Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche. Nature Communications, 2023, 14 , .	5.8	1
190	Long-term expansion of human hematopoietic stem cells. Cell Regeneration, 2023, 12, .	1.1	1
191	Biophysical cues of bone marrow-inspired scaffolds regulate hematopoiesis of hematopoietic stem and progenitor cells. Biomaterials, 2023, 298, 122111.	5.7	6
239	Ontogeny shapes the ability of ETV6::RUNX1 to enhance hematopoietic stem cell self-renewal and disrupt early lymphopoiesis. Leukemia, 2024, 38, 455-459.	3.3	0
240	Cell nutrition and growth media. , 2024, , 177-188.		0