Nano-enabled strategies to enhance crop nutrition and

Nature Nanotechnology 14, 532-540 DOI: 10.1038/s41565-019-0439-5

Citation Report

#	Article	IF	CITATIONS
1	Variety-dependent responses of rice plants with differential cadmium accumulating capacity to cadmium telluride quantum dots (CdTe QDs): Cadmium uptake, antioxidative enzyme activity, and gene expression. Science of the Total Environment, 2019, 697, 134083.	3.9	16
2	Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology, 2019, 14, 517-522.	15.6	572
3	Nanosensors and particles: a technology frontier with pitfalls. Journal of Nanobiotechnology, 2019, 17, 111.	4.2	8
4	Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environmental Science: Nano, 2019, 6, 3513-3524.	2.2	99
5	Facile green synthesis and applications of silver nanoparticles: a state-of-the-art review. RSC Advances, 2019, 9, 34926-34948.	1.7	195
6	An overview of the potential impacts of atrazine in aquatic environments: Perspectives for tailored solutions based on nanotechnology. Science of the Total Environment, 2020, 700, 134868.	3.9	106
7	Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chemical Engineering Journal, 2020, 384, 123802.	6.6	102
8	Photosynthetic response mechanisms in typical C3 and C4 plants upon La ₂ O ₃ nanoparticle exposure. Environmental Science: Nano, 2020, 7, 81-92.	2.2	39
9	Metalloid and Metal Oxide Nanoparticles Suppress Sudden Death Syndrome of Soybean. Journal of Agricultural and Food Chemistry, 2020, 68, 77-87.	2.4	34
10	Transport of Nano- and Microplastic through Unsaturated Porous Media from Sewage Sludge Application. Environmental Science & Technology, 2020, 54, 911-920.	4.6	121
11	Soybeans Grown with Carbonaceous Nanomaterials Maintain Nitrogen Stoichiometry by Assimilating Soil Nitrogen to Offset Impaired Dinitrogen Fixation. ACS Nano, 2020, 14, 585-594.	7.3	15
12	Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects. Journal of Fungi (Basel, Switzerland), 2020, 6, 222.	1.5	54
13	Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nature Nanotechnology, 2020, 15, 1033-1042.	15.6	98
14	Seed Biofortification by Engineered Nanomaterials: A Pathway To Alleviate Malnutrition?. Journal of Agricultural and Food Chemistry, 2020, 68, 12189-12202.	2.4	53
15	Antioxidant and defense genetic expressions in corn at early-developmental stage are differentially modulated by copper form exposure (nano, bulk, ionic): Nutrient and physiological effects. Ecotoxicology and Environmental Safety, 2020, 206, 111197.	2.9	11
16	Impacts of surface chemistry of functional carbon nanodots on the plant growth. Ecotoxicology and Environmental Safety, 2020, 206, 111220.	2.9	22
17	Super Moisture Absorbent Gels for Sustainable Agriculture via Atmospheric Water Irrigation. , 2020, 2, 1419-1422.		82
18	Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 2020, 1, 416-425.	6.2	239

ARTICLE IF CITATIONS Bioremediation and Biotechnology, Vol 3., 2020,,. 3 19 Metabolic profile and physiological response of cucumber foliar exposed to engineered MoS2 and 2.4 TiO2 nanoparticles. Nanólmpact, 2020, 20, 100271. Detection, occurrence, and fate of emerging contaminants in agricultural environments (2020). 21 1.3 12 Water Environment Research, 2020, 92, 1741-1750. Postharvest disease inhibition in fruit by synthesis and characterization of chitosan iron oxide nanoparticles. Biocatalysis and Agricultural Biotechnology, 2020, 28, 101729. Potential use of nanotechnology in sustainable and †smart' agriculture: advancements made in the 23 0.9 25 last decade. Plant Biotechnology Reports, 2020, 14, 505-513. Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environmental Science: Nano, 2.2 2020, 7, 3901-3913. Efficacy of an adhesive nanopesticide on insect pests of rice in field trials. Journal of Asia-Pacific 25 0.4 11 Entomology, 2020, 23, 1222-1227. Nanopesticides: Physico-chemical characterization by a combination of advanced analytical 1.8 26 14 techniques. Food and Chemical Toxicology, 2020, 146, 111816. Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems. Environmental 27 0.7 58 Chemistry, 2020, 17, 413. Alleviation of nitrogen stress in rice (<i>Oryza sativa</i>) by ceria nanoparticles. Environmental 2.2 Science: Nano, 2020, 7, 2930-2940 Gene Pyramiding for Sustainable Crop Improvement against Biotic and Abiotic Stresses. Agronomy, 29 1.3 50 2020, 10, 1255. Copper Nanomaterial Morphology and Composition Control Foliar Transfer through the Cuticle and Mediate Resistance to Root Fungal Disease in Tomato (<i>Solanum lycopersicum</i>). Journal of 2.4 Agricultural and Food Chemistry, 2020, 68, 11327-11338. Fabrication and Characterization of a Novel Herbicide Delivery System with Magnetic Collectability and Its Phytotoxic Effect on Photosystem II of Aquatic Macrophyte. Journal of Agricultural and Food $\mathbf{31}$ 2.4 12 Chemistry, 2020, 68, 11105-11113. Opportunities and challenges of phyto-nanotechnology. Environmental Science: Nano, 2020, 7, 2.2 2863-2874. Key principles and operational practices for improved nanotechnology environmental exposure 33 15.6 66 assessment. Nature Nanotechnology, 2020, 15, 731-742. Copper sulfide nanoparticles suppress <i>Gibberella fujikuroi</i> infection in rice (<i>Oryza sativa</i>) Tj ETQq1 1 0.784314 rgBT /O Environmental Science: Nano, 2020, 7, 2632-2643. Germination and Early Development of Three Spontaneous Plant Species Exposed to Nanoceria (nCeO2) 35 1.9 14 with Different Concentrations and Particle Sizes. Nanomaterials, 2020, 10, 2534. A Review on Heat Transfer of Nanofluids by Applied Electric Field or Magnetic Field. Nanomaterials, 2020, 10, 2386.

#	Article	IF	CITATIONS
37	Perspectives on plasma-assisted synthesis of N-doped nanoparticles as nanopesticides for pest control in crops. Reaction Chemistry and Engineering, 2020, 5, 1374-1396.	1.9	21
38	Carbon-based nanomaterials alter the composition of the fungal endophyte community in rice (<i>Oryza sativa</i> L.). Environmental Science: Nano, 2020, 7, 2047-2060.	2.2	12
39	Effect of copper oxide nanoparticles on two varieties of sweetpotato plants. Plant Physiology and Biochemistry, 2020, 154, 277-286.	2.8	15
40	Long-Term Effects of Copper Nanopesticides on Soil and Sediment Community Diversity in Two Outdoor Mesocosm Experiments. Environmental Science & Technology, 2020, 54, 8878-8889.	4.6	46
41	Nanotechnology in soil remediation â^' applications vs. implications. Ecotoxicology and Environmental Safety, 2020, 201, 110815.	2.9	68
42	Guiding the design space for nanotechnology to advance sustainable crop production. Nature Nanotechnology, 2020, 15, 801-810.	15.6	119
43	Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano, 2020, 7, 2214-2228.	2.2	97
44	Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. Small, 2020, 16, e2001246.	5.2	28
45	Enhancing Agrichemical Delivery and Seedling Development with Biodegradable, Tunable, Biopolymer-Based Nanofiber Seed Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 9537-9548.	3.2	59
46	Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. International Journal of Biological Macromolecules, 2020, 154, 683-697.	3.6	90
47	Chemical Speciation, Plant Uptake, and Toxicity of Heavy Metals in Agricultural Soils. Journal of Agricultural and Food Chemistry, 2020, 68, 12856-12869.	2.4	107
48	Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 2020, 721, 137778.	3.9	503
49	Uptake kinetics of silver nanoparticles by plant: relative importance of particles and dissolved ions. Nanotoxicology, 2020, 14, 654-666.	1.6	26
50	Omics to address the opportunities and challenges of nanotechnology in agriculture. Critical Reviews in Environmental Science and Technology, 2021, 51, 2595-2636.	6.6	50
51	Soil bacterial communities respond differently to graphene oxide and reduced graphene oxide after 90 days of exposure. Soil Ecology Letters, 2020, 2, 176-179.	2.4	4
53	Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles. ACS Nano, 2020, 14, 7970-7986.	7.3	204
54	Accumulation of metal-based nanoparticles in marine bivalve mollusks from offshore aquaculture as detected by single particle ICP-MS. Environmental Pollution, 2020, 260, 114043.	3.7	40
55	Monitoring Plant Health with Near-Infrared Fluorescent H ₂ O ₂ Nanosensors. Nano Letters, 2020, 20, 2432-2442.	4.5	142

#	Article	IF	CITATIONS
56	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
57	Assessing the Impacts of Cu(OH) ₂ Nanopesticide and Ionic Copper on the Soil Enzyme Activity and Bacterial Community. Journal of Agricultural and Food Chemistry, 2020, 68, 3372-3381.	2.4	29
58	The potential of nanobiopesticide based on zein nanoparticles and neem oil for enhanced control of agricultural pests. Journal of Pest Science, 2020, 93, 793-806.	1.9	31
59	Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Journal of Agricultural and Food Chemistry, 2020, 68, 1935-1947.	2.4	363
60	Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nature Communications, 2020, 11, 2045.	5.8	107
61	Advanced nanomaterials in agriculture under a changing climate: The way to the future?. Environmental and Experimental Botany, 2020, 176, 104048.	2.0	60
62	Nanomaterial Transformation in the Soil–Plant System: Implications for Food Safety and Application in Agriculture. Small, 2020, 16, e2000705.	5.2	71
63	Composite pesticide nanocarriers involving functionalized boron nitride nanoplatelets for pH-responsive release and enhanced UV stability. Chemical Engineering Journal, 2020, 396, 125233.	6.6	86
64	Physiological and biochemical response of wheat (Triticum aestivum) to TiO2 nanoparticles in phosphorous amended soil: A full life cycle study. Journal of Environmental Management, 2020, 263, 110365.	3.8	58
65	Trends and Impact of Nanotechnology in Agro-Food Sector. , 2021, , 523-531.		6
66	Exogenous application of chemicals for protecting plants against ambient ozone pollution: What should come next?. Current Opinion in Environmental Science and Health, 2021, 19, 100215.	2.1	11
66 67	Exogenous application of chemicals for protecting plants against ambient ozone pollution: What should come next?. Current Opinion in Environmental Science and Health, 2021, 19, 100215. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. Journal of Hazardous Materials, 2021, 404, 124148.	2.1 6.5	11 94
	should come next?. Current Opinion in Environmental Science and Health, 2021, 19, 100215. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. Journal		
67	should come next?. Current Opinion in Environmental Science and Health, 2021, 19, 100215. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. Journal of Hazardous Materials, 2021, 404, 124148. Enabling Transgenic Plant Cell–Derived Biomedicines with Nanotechnology. Advanced NanoBiomed	6.5	94
67 68	 should come next?. Current Opinion in Environmental Science and Health, 2021, 19, 100215. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. Journal of Hazardous Materials, 2021, 404, 124148. Enabling Transgenic Plant Cell–Derived Biomedicines with Nanotechnology. Advanced NanoBiomed Research, 2021, 1, 2000028. Control the Entire Journey of Pesticide Application on Superhydrophobic Plant Surface by Dynamic 	6.5 1.7	94 1
67 68 69	 should come next?. Current Opinion in Environmental Science and Health, 2021, 19, 100215. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. Journal of Hazardous Materials, 2021, 404, 124148. Enabling Transgenic Plant Cell–Derived Biomedicines with Nanotechnology. Advanced NanoBiomed Research, 2021, 1, 2000028. Control the Entire Journey of Pesticide Application on Superhydrophobic Plant Surface by Dynamic Covalent Trimeric Surfactant Coacervation. Advanced Functional Materials, 2021, 31, 2006606. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology, 2021, 	6.5 1.7 7.8	94 1 83
67 68 69 70	 should come next?. Current Opinion in Environmental Science and Health, 2021, 19, 100215. Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. Journal of Hazardous Materials, 2021, 404, 124148. Enabling Transgenic Plant Cell–Derived Biomedicines with Nanotechnology. Advanced NanoBiomed Research, 2021, 1, 2000028. Control the Entire Journey of Pesticide Application on Superhydrophobic Plant Surface by Dynamic Covalent Trimeric Surfactant Coacervation. Advanced Functional Materials, 2021, 31, 2006606. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nature Nanotechnology, 2021, 16, 344-353. Development of leaf-adhesive pesticide nanocapsules with pH-responsive release to enhance retention time on crop leaves and improve utilization efficiency. Journal of Materials Chemistry B, 2021, 9, 	6.5 1.7 7.8 15.6	94 1 83 172

#	Article	IF	CITATIONS
74	Emerging investigator series: prompt response of estuarine denitrifying bacterial communities to copper nanoparticles at relevant environmental concentrations. Environmental Science: Nano, 2021, 8, 913-926.	2.2	0
75	Comparison of foliar spray and soil irrigation of biogenic CuO nanoparticles (NPs) on elemental uptake and accumulation in lettuce. Environmental Science and Pollution Research, 2021, 28, 16350-16367.	2.7	24
76	Introducing reticular chemistry into agrochemistry. Chemical Society Reviews, 2021, 50, 1070-1110.	18.7	106
78	Graphene enhances photosynthesis and the antioxidative defense system and alleviates salinity and alkalinity stresses in alfalfa (<i>Medicago sativa</i> L.) by regulating gene expression. Environmental Science: Nano, 2021, 8, 2731-2748.	2.2	15
79	Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials. NanoImpact, 2021, 21, 100297.	2.4	113
80	Dinotefuran nano-pesticide with enhanced valid duration and controlled release properties based on a layered double hydroxide nano-carrier. Environmental Science: Nano, 2021, 8, 3202-3210.	2.2	11
81	Role of Nanomaterials in Regulating Reactive Species as a Signaling Molecule of Abiotic Stress in Plants. , 2021, , 291-304.		2
82	Peptide-mediated Targeting of Nanoparticles with Chemical Cargoes to Chloroplasts in Arabidopsis Plants. Bio-protocol, 2021, 11, e4060.	0.2	2
83	Nano-based soil conditioners eradicate micronutrient deficiency: soil physicochemical properties and plant molecular responses. Environmental Science: Nano, 2021, 8, 2824-2843.	2.2	5
84	Use of Nanomaterials in Plants to Coup with Abiotic Stress Conditions. , 2021, , 527-559.		1
85	Refractory Calcium Phosphate-Derived Phosphorus Fertilizer Based on Hydroxyapatite Nanoparticles for Nutrient Delivery. ACS Applied Nano Materials, 2021, 4, 1364-1376.	2.4	21
86	Nanobiotechnology for Agriculture: Smart Technology for Combating Nutrient Deficiencies with Nanotoxicity Challenges. Sustainability, 2021, 13, 1781.	1.6	46
87	Analysis of the Parameters Required to Properly Define Nanofluids for Heat Transfer Applications. Fluids, 2021, 6, 65.	0.8	8
88	Evaluation of the Effects of Nanomaterials on Rice (<i>Oryza sativa</i> L.) Responses: Underlining the Benefits of Nanotechnology for Agricultural Applications. ACS Agricultural Science and Technology, 2021, 1, 44-54.	1.0	31
89	Silica Nanoparticle Dissolution Rate Controls the Suppression of <i>Fusarium Wilt</i> of Watermelon (<i>Citrullus lanatus</i>). Environmental Science & Technology, 2021, 55, 13513-13522.	4.6	52
90	Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology, 2021, 19, 86.	4.2	230
91	Graphitic Carbon Nitride (C3N4) Reduces Cadmium and Arsenic Phytotoxicity and Accumulation in Rice (Oryza sativa L.). Nanomaterials, 2021, 11, 839.	1.9	13
92	Stress Response and Nutrient Homeostasis in Lettuce (<i>Lactuca sativa</i>) Exposed to Graphene Quantum Dots Are Modulated by Particle Surface Functionalization. Advanced Biology, 2021, 5, e2000778.	1.4	12

#	Article	IF	CITATIONS
93	Application of Core/Shell Nanoparticles in Smart Farming: A Paradigm Shift for Making the Agriculture Sector More Sustainable. Journal of Agricultural and Food Chemistry, 2021, 69, 3267-3283.	2.4	30
94	Mesotrione Conjugation Strategies to Create Proherbicides with Reduced Soil Mobility. ACS Sustainable Chemistry and Engineering, 2021, 9, 5776-5782.	3.2	5
95	Rhizobacteria and Acylated Homoserine Lactone-Based Nanobiofertilizer to Improve Growth and Pathogen Defense in <i>Cicer arietinum</i> and <i>Triticum aestivum</i> Plants. ACS Agricultural Science and Technology, 2021, 1, 240-252.	1.0	24
96	Response of Rice (Oryza sativa L.) to Silica Fertilization and Spraying with Nano-Potassium and Calcium. IOP Conference Series: Earth and Environmental Science, 2021, 735, 012068.	0.2	3
97	Plant Stimulant to Nanotoxicity: Recent Advancements and Opportunities. Current Nanotoxicity and Prevention, 2021, 1, 67-77.	0.0	0
98	Local development of nanotechnology-based diagnostics. Nature Nanotechnology, 2021, 16, 484-486.	15.6	12
99	Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today, 2021, 37, 101078.	6.2	77
100	Zinc oxide nanoparticles: potential effects on soil properties, crop production, food processing, and food quality. Environmental Science and Pollution Research, 2021, 28, 36942-36966.	2.7	35
101	Nanoparticles induced stress and toxicity in plants. Environmental Nanotechnology, Monitoring and Management, 2021, 15, 100457.	1.7	31
102	Improving the efficacy against crop foliage disease by regulating fungicide adhesion on leaves with soft microcapsules. Pest Management Science, 2021, 77, 4418-4424.	1.7	14
103	Foliar Application of Zn Agrichemicals Affects the Bioavailability of Arsenic, Cadmium and Micronutrients to Rice (Oryza sativa L.) in Flooded Paddy Soil. Agriculture (Switzerland), 2021, 11, 505.	1.4	11
104	Impact of the Microbial Origin and Active Microenvironment on the Shape of Biogenic Elemental Selenium Nanomaterials. Environmental Science & Technology, 2021, 55, 9161-9171.	4.6	1
105	Advantage of Nanotechnology-Based Genome Editing System and Its Application in Crop Improvement. Frontiers in Plant Science, 2021, 12, 663849.	1.7	71
106	A printed-circuit heat exchanger consideration by exploiting an Al2O3-water nanofluid: Effect of the nanoparticles interfacial layer on heat transfer. Thermal Science and Engineering Progress, 2021, 22, 100818.	1.3	35
107	The molecular mechanisms of silica nanomaterials enhancing the rice (Oryza sativa L.) resistance to planthoppers (Nilaparvata lugens Stal). Science of the Total Environment, 2021, 767, 144967.	3.9	23
108	Tools for Nano-Enabled Agriculture: Fertilizers Based on Calcium Phosphate, Silicon, and Chitosan Nanostructures. Agronomy, 2021, 11, 1239.	1.3	48
109	Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. Nature Plants, 2021, 7, 864-876.	4.7	150
110	Polymeric nanomaterials for the development of sustainable plant food value chains. Food Bioscience, 2021, 41, 100978.	2.0	5

#	Article	IF	CITATIONS
111	Effect of ZnO nanoparticles on the productivity, Zn biofortification, and nutritional quality of rice in a life cycle study. Plant Physiology and Biochemistry, 2021, 163, 87-94.	2.8	43
112	Waste-Derived NPK Nanofertilizer Enhances Growth and Productivity of Capsicum annuum L Plants, 2021, 10, 1144.	1.6	21
113	Role of Nanoscale Hydroxyapatite in Disease Suppression of <i>Fusarium</i> -Infected Tomato. Environmental Science & Technology, 2021, 55, 13465-13476.	4.6	33
114	Elemental Sulfur Nanoparticles Enhance Disease Resistance in Tomatoes. ACS Nano, 2021, 15, 11817-11827.	7.3	60
115	Nanocontaminants in soil: emerging concerns and risks. International Journal of Environmental Science and Technology, 2022, 19, 9129-9148.	1.8	6
116	Soil-aged nano titanium dioxide effects on full-grown carrot: Dose and surface-coating dependent improvements on growth and nutrient quality. Science of the Total Environment, 2021, 774, 145699.	3.9	15
117	Metabolomic analysis reveals dose-dependent alteration of maize (Zea mays L.) metabolites and mineral nutrient profiles upon exposure to zerovalent iron nanoparticles. NanoImpact, 2021, 23, 100336.	2.4	18
119	Copper Oxide Nanoparticle-Embedded Hydrogels Enhance Nutrient Supply and Growth of Lettuce (<i>Lactuca sativa</i>) Infected with <i>Fusarium oxysporum</i> f. sp. <i>lactucae</i> . Environmental Science & Technology, 2021, 55, 13432-13442.	4.6	46
120	Highly efficient Ti3+ self-doped TiO2 co-modified with carbon dots and palladium nanocomposites for disinfection of bacterial and fungi. Journal of Hazardous Materials, 2021, 413, 125318.	6.5	31
121	Unraveling Metabolic and Proteomic Features in Soybean Plants in Response to Copper Hydroxide Nanowires Compared to a Commercial Fertilizer. Environmental Science & Technology, 2021, 55, 13477-13489.	4.6	27
122	Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. Science of the Total Environment, 2021, 778, 146378.	3.9	28
123	Copper Oxide Nanomaterial Fate in Plant Tissue: Nanoscale Impacts on Reproductive Tissues. Environmental Science & Technology, 2021, 55, 10769-10783.	4.6	27
124	Research on food safety sampling inspection system based on deep learning. Food Science and Technology, 0, 42, .	0.8	3
125	Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials, 2021, 11, 2086.	1.9	69
126	Evolution of the Soil-Based Agriculture and Food System to Biologically-Based Indoor Systems. , 0, , .		0
127	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	5.4	27
128	Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: Trends, meta-analysis, and prospect. Science of the Total Environment, 2021, 780, 146578.	3.9	38
129	Preparation, characterization of PLGA/chitosan nanoparticles as a delivery system for controlled release of DHA. International Journal of Biological Macromolecules, 2021, 185, 782-791.	3.6	15

#	Article	IF	CITATIONS
130	One-Pot Facile Synthesis of Double-Shelled Mesoporous Silica Microcapsules with an Improved Soft-Template Method for Sustainable Pest Management. ACS Applied Materials & Interfaces, 2021, 13, 39066-39075.	4.0	25
131	In vitro exposed magnesium oxide nanoparticles enhanced the growth of legume Macrotyloma uniflorum. Environmental Science and Pollution Research, 2022, 29, 13635-13645.	2.7	14
132	The role of halophytic nanoparticles towards the remediation of degraded and saline agricultural lands. Environmental Science and Pollution Research, 2021, 28, 60383-60405.	2.7	15
133	Sustainable Agriculture through Multidisciplinary Seed Nanopriming: Prospects of Opportunities and Challenges. Cells, 2021, 10, 2428.	1.8	48
134	Current and emergent analytical methods for monitoring the behavior of agricultural functional nanoparticles in relevant matrices: a review. Current Opinion in Chemical Engineering, 2021, 33, 100706.	3.8	1
135	Nanomaterials for Targeted Delivery of Agrochemicals by an All-in-One Combination Strategy and Deep Learning. ACS Applied Materials & Interfaces, 2021, 13, 43374-43386.	4.0	29
136	Interaction of metal nanoparticles–plants–microorganisms in agriculture and soil remediation. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	15
137	Foliar Nourishment with Different Zinc-Containing Forms Effectively Sustains Carrot Performance in Zinc-Deficient Soil. Agronomy, 2021, 11, 1853.	1.3	11
138	Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. Planta, 2021, 254, 66.	1.6	35
139	Cross-examination of engineered nanomaterials in crop production: Application and related implications. Journal of Hazardous Materials, 2022, 424, 127374.	6.5	13
140	Biodegradable Polymer Nanocomposites Provide Effective Delivery and Reduce Phosphorus Loss during Plant Growth. ACS Agricultural Science and Technology, 2021, 1, 529-539.	1.0	12
141	Comprehensive framework for human health risk assessment of nanopesticides. Nature Nanotechnology, 2021, 16, 955-964.	15.6	48
142	Terrestrial organisms react differently to nano and non-nano Cu(OH)2 forms. Science of the Total Environment, 2022, 807, 150679.	3.9	8
143	Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Science of the Total Environment, 2021, 792, 148359.	3.9	92
144	Nano-biofortification of different crops to immune against COVID-19: A review. Ecotoxicology and Environmental Safety, 2021, 222, 112500.	2.9	26
145	Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth. Environmental Pollution, 2021, 289, 117912.	3.7	19
146	Interaction of different-sized ZnO nanoparticles with maize (Zea mays): Accumulation, biotransformation and phytotoxicity. Science of the Total Environment, 2021, 796, 148927.	3.9	24
147	A critical review of the environmental impacts of manufactured nano-objects on earthworm species. Environmental Pollution, 2021, 290, 118041.	3.7	23

#	ARTICLE	IF	CITATIONS
148	In vitro exposure of magnesium oxide nanoparticles adversely affects the vegetative growth and biochemical parameters of black gram. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100483.	1.7	8
149	Mobility of solid and porous hollow SiO2 nanoparticles in saturated porous media: Impacts of surface and particle structure. Journal of Colloid and Interface Science, 2022, 606, 480-490.	5.0	16
150	Explicating the cross-talks between nanoparticles, signaling pathways and nutrient homeostasis during environmental stresses and xenobiotic toxicity for sustainable cultivation of cereals. Chemosphere, 2022, 286, 131827.	4.2	22
151	Prenatal exposure to paraquat and nanoscaled TiO2 aerosols alters the gene expression of the developing brain. Chemosphere, 2022, 287, 132253.	4.2	9
152	Advanced applications and current status of green nanotechnology in the environmental industry. , 2022, , 303-340.		1
153	Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. Journal of Hazardous Materials, 2022, 423, 127021.	6.5	122
154	Plant Stress Enzymes Nanobiotechnology. , 2021, , 327-348.		8
155	Chitosan/tripolyphosphate nanoformulation carrying paraquat: insights on its enhanced herbicidal activity. Environmental Science: Nano, 2021, 8, 1336-1351.	2.2	14
156	Inhibition mechanism of green-synthesized copper oxide nanoparticles from <i>Cassia fistula</i> towards <i>Fusarium oxysporum</i> by boosting growth and defense response in tomatoes. Environmental Science: Nano, 2021, 8, 1729-1748.	2.2	28
157	Current Aspects of Nanotechnology: Applications in Agriculture. Nanotechnology in the Life Sciences, 2021, , 73-99.	0.4	0
158	Augmentation of Nutrition byÂNanotechnology. Contemporary Clinical Neuroscience, 2021, , 415-431.	0.3	0
159	Unlocking the potentials of using nanotechnology to stabilize agriculture and food production. AIP Conference Proceedings, 2021, , .	0.3	15
160	Smart nanocomposites of chitosan/alginate nanoparticles loaded with copper oxide as alternative nanofertilizers. Environmental Science: Nano, 2021, 8, 174-187.	2.2	41
161	Nanotechnology Potential in Seed Priming for Sustainable Agriculture. Nanomaterials, 2021, 11, 267.	1.9	162
162	Bacterial Inoculants: How Can These Microbes Sustain Soil Health and Crop Productivity?. Soil Biology, 2020, , 337-372.	0.6	5
163	Silver nanoparticle detection and accumulation in tomato (Lycopersicon esculentum). Journal of Nanoparticle Research, 2020, 22, 1.	0.8	33
164	Emerging investigator series: nanotechnology to develop novel agrochemicals: critical issues to consider in the global agricultural context. Environmental Science: Nano, 2020, 7, 1867-1873.	2.2	15
165	Promotion effect of nitrogen-doped functional carbon nanodots on the early growth stage of plants. Oxford Open Materials Science, 2020, 1, .	0.5	5

#	Article	IF	CITATIONS
166	Application of Nanoparticles Alleviates Heavy Metals Stress and Promotes Plant Growth: An Overview. Nanomaterials, 2021, 11, 26.	1.9	122
167	Nano-Fertilization as an Emerging Fertilization Technique: Why Can Modern Agriculture Benefit from Its Use?. Plants, 2021, 10, 2.	1.6	156
168	Nanomaterials. Effective tools for field and horticultural crops to cope with drought stress: A review. Spanish Journal of Agricultural Research, 2020, 18, e08R01.	0.3	12
169	Response of root development and nutrient uptake of two chinese cultivars of hybrid rice to nitrogen and phosphorus fertilization in Sichuan Province, China. Molecular Biology Reports, 2021, 48, 8009-8021.	1.0	9
170	Natural clay and biopolymer-based nanopesticides to control the environmental spread of a soluble herbicide. Science of the Total Environment, 2022, 806, 151199.	3.9	16
171	Earthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retention. Science of the Total Environment, 2022, 807, 151022.	3.9	62
172	Smart nanomaterial and nanocomposite with advanced agrochemical activities. Nanoscale Research Letters, 2021, 16, 156.	3.1	69
173	Advances in Controlled-Release Pesticide Formulations with Improved Efficacy and Targetability. Journal of Agricultural and Food Chemistry, 2021, 69, 12579-12597.	2.4	70
174	In vitro exposure of magnesium oxide nanoparticles negatively regulate the growth of Vigna radiata. International Journal of Environmental Science and Technology, 2022, 19, 10679-10690.	1.8	8
175	Large-Scale Preparation of Peanut-Bran-Derived Carbon Dots and Their Promoting Effect on Italian Lettuce. ACS Agricultural Science and Technology, 2022, 2, 215-221.	1.0	9
176	Overview of Nanopesticide Environmental Safety Aspects and Regulatory Issues: The Case of Nanoatrazine. , 2020, , 281-298.		3
178	A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere, 2022, 291, 132672.	4.2	36
179	Agri-food and environmental applications of bionanomaterials produced from agri-waste and microbes. , 2022, , 441-463.		2
180	The Reliability of Nanotechnology for Sustainable Industries. , 2020, , 195-226.		0
181	Nanoscale Agrochemicals for Crop Health: A Key Line of Attack in the Battle for Global Food Security. Environmental Science & Technology, 2021, 55, 13413-13416.	4.6	15
183	Bitki ve Hayvan Biyoteknolojisi; Hücresel Tarım ve Nano-Teknoloji. Journal of Agriculture, 2020, 3, 1-9.	0.4	1
184	Silica nanomaterials and earthworms synergistically regulate maize root metabolite profiles <i>>via</i> promoting soil Si bioavailability. Environmental Science: Nano, 2021, 8, 3865-3878.	2.2	2
185	Rhizosphere Modelling and Nanotechnology: New Outlooks in Sustainable Agriculture. , 2021, , 563-581.		0

		Citation Report	
#	Article	IF	CITATIONS
186	Protective and curative activity of biogenic copper oxide nanoparticles against Alternaria blight disease in oilseed crops: a review. Journal of Plant Diseases and Protection, 2022, 129, 215-229.	1.6	4
187	Recent Advances in Plant Nanoscience. Advanced Science, 2022, 9, e2103414.	5.6	45
188	Nitrogen-doped carbon dots alleviate the damage from tomato bacterial wilt syndrome: systemic acquired resistance activation and reactive oxygen species scavenging. Environmental Science: Nan 2021, 8, 3806-3819.	0, 2.2	12
189	U.S. Federal Agency interests and key considerations for new approach methodologies for nanomaterials. ALTEX: Alternatives To Animal Experimentation, 2021, , .	0.9	5
190	Fate of copper in soil: effect of agrochemical (nano)formulations and soil properties. Environmental Science: Nano, 0, , .	2.2	2
191	Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. Journal of Nanobiotechnology, 2022, 20, 11.	4.2	138
192	Nano-enabled improvements of growth and colonization rate in wheat inoculated with arbuscular mycorrhizal fungi. Environmental Pollution, 2022, 295, 118724.	3.7	22
193	Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere, 2022, 289, 133202.	4.2	91
194	Newly-synthesized iron-oxide nanoparticles showed synergetic effect with citric acid for alleviating arsenic phytotoxicity in soybean. Environmental Pollution, 2022, 295, 118693.	3.7	15
195	Physiological responses of pumpkin to zinc oxide quantum dots and nanoparticles. Environmental Pollution, 2022, 296, 118723.	3.7	9
196	Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains. Science of the Total Environment, 2022, 810, 152260.	3.9	33
197	A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environmental Pollution, 2022, 296, 118726.	3.7	22
198	Impact of engineered nanomaterials on rice (Oryza sativa L.): A critical review of current knowledge. Environmental Pollution, 2022, 297, 118738.	3.7	18
199	Influence of natural soil colloid's stability on transport of copper-based nanoparticles in saturate porous media. Environmental Nanotechnology, Monitoring and Management, 2022, 17, 100633.	ed 1.7	0
201	Fluorescent g-C3N4 nanosheets enhanced photosynthetic efficiency in maize. NanoImpact, 2021, 2 100363.	4, 2.4	7
202	Sustainable synthesis of microwave-assisted IONPs using Spinacia oleracea L. for control of fungal wilt by modulating the defense system in tomato plants. Journal of Nanobiotechnology, 2022, 20, 8	. 4.2	14
203	Applications of copper nanoparticles in plant protection and pollution sensing: Toward promoting sustainable agriculture. , 2022, , 393-413.		1
204	Engineered Nanomaterial Exposure Affects Organelle Genetic Material Replication in <i>Arabidopsis thaliana</i> . ACS Nano, 2022, 16, 2249-2260.	7.3	18

#	Article	IF	CITATIONS
205	Uptake, translocation, and transformation of silver nanoparticles in plants. Environmental Science: Nano, 2022, 9, 12-39.	2.2	29
206	Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. International Journal of Molecular Sciences, 2022, 23, 651.	1.8	7
207	Evaluation of metal nano-particles as growth promoters and fungi inhibitors for cereal crops. Chemical and Biological Technologies in Agriculture, 2022, 9, .	1.9	11
208	Nanoparticles-based sensors for agricultural application. , 2022, , 117-146.		1
209	Role of agrochemical-based nanomaterials in plants: biotic and abiotic stress with germination improvement of seeds. Plant Growth Regulation, 2022, 97, 375-418.	1.8	55
210	Impacts of typical engineering nanomaterials on the response of rhizobacteria communities and rice (Oryza sativa L.) growths in waterlogged antimony-contaminated soils. Journal of Hazardous Materials, 2022, 430, 128385.	6.5	13
211	Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. Nanomaterials, 2022, 12, 173.	1.9	103
212	Biodegradation of <scp>waterâ€soluble</scp> and <scp>waterâ€dispersible</scp> polymers for agricultural, consumer, and industrial applications—Challenges and opportunities for sustainable materials solutions. Journal of Polymer Science, 2022, 60, 1797-1813.	2.0	12
214	Nanoparticles as a potential protective agent for arsenic toxicity alleviation in plants. Environmental Pollution, 2022, 300, 118887.	3.7	23
215	Nanoporous materials for pesticide formulation and delivery in the agricultural sector. Journal of Controlled Release, 2022, 343, 187-206.	4.8	46
216	Interaction of hyperaccumulating plants with Zn and Cd nanoparticles. Science of the Total Environment, 2022, 817, 152741.	3.9	17
217	Environmental risks and the potential benefits ofÂnanopesticides:Âa review. Environmental Chemistry Letters, 2022, 20, 2097-2108.	8.3	31
218	Sensing beyond Senses: An Overview of Outstanding Strides in Architecting Nanopolymer-Enabled Sensors for Biomedical Applications. Polymers, 2022, 14, 601.	2.0	4
220	Nanostructured Mesoporous Silica Materials Induce Hormesis on Chili Pepper (Capsicum Annuum L.) Under Greenhouse Conditions. SSRN Electronic Journal, 0, , .	0.4	0
221	Nanomaterial-induced modulation of hormonal pathways enhances plant cell growth. Environmental Science: Nano, 2022, 9, 1578-1590.	2.2	8
222	Carbon dots improve the nutritional quality of coriander (<i>Coriandrum sativum</i> L.) by promoting photosynthesis and nutrient uptake. Environmental Science: Nano, 2022, 9, 1651-1661.	2.2	9
223	Impacts of a porous hollow silica nanoparticle-encapsulated pesticide applied to soils on plant growth and soil microbial community. Environmental Science: Nano, 2022, 9, 1476-1488.	2.2	13
224	The theory of relativity effect in nanoparticles: Deciphering of unknown effects with nano-puzzle and nano-domini. , 2022, , 35-48.		0

#	Article	IF	CITATIONS
225	A pH Dual-Responsive Multifunctional Nanoparticle Based on Mesoporous Silica with Metal-Polymethacrylic Acid Gatekeeper for Improving Plant Protection and Nutrition. Nanomaterials, 2022, 12, 687.	1.9	12
226	Carrier-Free Small Molecular Self-Assembly Based on Berberine and Curcumin Incorporated in Submicron Particles for Improving Antimicrobial Activity. ACS Applied Materials & Interfaces, 2022, 14, 10055-10067.	4.0	18
227	Revolutionizing Integrated Pest Management Using Nanobiotechnology: A Novel Approach to Curb Overuse of Synthetic Insecticides. , 0, , .		1
228	Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. Frontiers in Plant Science, 2022, 13, 843994.	1.7	22
229	Nanoparticles as potential hallmarks of drought stress tolerance in plants. Physiologia Plantarum, 2022, 174, e13665.	2.6	40
230	Iron Oxide and Silicon Nanoparticles Modulate Mineral Nutrient Homeostasis and Metabolism in Cadmium-Stressed Phaseolus vulgaris. Frontiers in Plant Science, 2022, 13, 806781.	1.7	28
231	Strategies for crop nutraceutical content enhancement, a review. JSFA Reports, 0, , .	0.2	0
232	Nanomaterial Doping: Chemistry and Strategies for Agricultural Applications. ACS Agricultural Science and Technology, 2022, 2, 240-257.	1.0	5
233	Nano-enabled pesticides for sustainable agriculture and global food security. Nature Nanotechnology, 2022, 17, 347-360.	15.6	219
234	Nanostructured mesoporous silica materials induce hormesis on chili pepper (Capsicum annuum L.) under greenhouse conditions. Heliyon, 2022, 8, e09049.	1.4	11
235	Comparative Toxicity Assessment of Eco-Friendly Synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Plants and Aquatic Model Organisms. Minerals (Basel, Switzerland), 2022, 12, 451.	0.8	7
236	Naturally-Sourced Antibacterial Polymeric Nanomaterials with Special Reference to Modified Polymer Variants. International Journal of Molecular Sciences, 2022, 23, 4101.	1.8	21
237	Molecular Mechanisms of Early Flowering in Tomatoes Induced by Manganese Ferrite (MnFe ₂ O ₄) Nanomaterials. ACS Nano, 2022, 16, 5636-5646.	7.3	26
238	Lignin nanoparticles: New insights for a sustainable agriculture. Journal of Cleaner Production, 2022, 345, 131145.	4.6	41
239	Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Advances in Colloid and Interface Science, 2022, 303, 102645.	7.0	36
240	Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. Chemosphere, 2022, 297, 134163.	4.2	57
241	CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system. Chemosphere, 2022, 299, 134474.	4.2	22
242	A comprehensive study of selenium and cerium oxide nanoparticles on mung bean: Individual and synergistic effect on photosynthesis pigments, antioxidants, and dry matter accumulation. Science of the Total Environment, 2022, 830, 154837.	3.9	12

#	Article	IF	CITATIONS
243	Plant development and crop protection using phytonanotechnology: A new window for sustainable agriculture. Chemosphere, 2022, 299, 134465.	4.2	33
244	Recent advances in nanomaterials based sustainable agriculture: An overview. Environmental Nanotechnology, Monitoring and Management, 2022, 18, 100687.	1.7	11
246	Nanotechnology for Food Safety and Security: A Comprehensive Review. Food Reviews International, 2023, 39, 3858-3878.	4.3	3
247	The Effect of Zinc Oxide Nanoparticles for Enhancing Rice (Oryza sativa L.) Yield and Quality. Agriculture (Switzerland), 2021, 11, 1247.	1.4	28
248	Nanoenabled Delivery of RNA Molecules for Prolonged Antiviral Protection in Crop Plants: A Review. ACS Applied Nano Materials, 2021, 4, 12891-12904.	2.4	9
250	Silicon and nano-silicon: New frontiers of biostimulants for plant growth and stress amelioration. , 2022, , 17-36.		5
251	Public Perceptions and Willingness-to-Pay for Nanopesticides. Nanomaterials, 2022, 12, 1292.	1.9	12
252	Foliar application of SiO2 and ZnO nanoparticles affected polycyclic aromatic hydrocarbons uptake of Amaranth (Amaranthus tricolor L.): A metabolomics and typical statistical analysis. Science of the Total Environment, 2022, 833, 155258.	3.9	6
253	Response of spinach plants to different doses of two commercial nanofertilizers. Scientia Horticulturae, 2022, 301, 111143.	1.7	6
254	Silica nanoparticles protect rice against biotic and abiotic stresses. Journal of Nanobiotechnology, 2022, 20, 197.	4.2	31
255	The potential of nanomaterials for sustainable modern agriculture: present findings and future perspectives. Environmental Science: Nano, 2022, 9, 1926-1951.	2.2	13
256	Metal stress removal and nanotechnology-driven solutions. , 2022, , 129-153.		0
257	Role of engineered nanomaterials in sustainable agriculture and crop production. , 2022, , 371-387.		0
258	Stability Phenomena Associated with the Development of Polymer-Based Nanopesticides. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	7
259	A Star Polyamine-Based Nanocarrier Delivery System for Enhanced Avermectin Contact and Stomach Toxicity against Green Peach Aphids. Nanomaterials, 2022, 12, 1445.	1.9	14
260	Recent Advances in Agronomic and Physio-Molecular Approaches for Improving Nitrogen Use Efficiency in Crop Plants. Frontiers in Plant Science, 2022, 13, 877544.	1.7	28
261	Soil and foliar exposure of soybean (Glycine max) to Cu: Nanoparticle coating-dependent plant responses. NanoImpact, 2022, 26, 100406.	2.4	22
262	Effect of wetting-drying cycles on the Cu bioavailability in the paddy soil amended with CuO nanoparticles. Journal of Hazardous Materials, 2022, 436, 129119.	6.5	3

#	Article	IF	CITATIONS
263	Foliar nutrition: Potential and challenges under multifaceted agriculture. Environmental and Experimental Botany, 2022, 200, 104909.	2.0	34
264	Biological Barriers, Processes, and Transformations at the Soil–Plant–Atmosphere Interfaces Driving the Uptake, Translocation, and Bioavailability of Inorganic Nanoparticles to Plants. , 2022, , 123-152.		1
265	MgO nanoparticles mediated seed priming inhibits the growth of lentil (Lens culinaris). Vegetos, 2022, 35, 1128-1141.	0.8	8
266	Fungi-derived agriculturally important nanoparticles and their application in crop stress management – Prospects and environmental risks. Environmental Research, 2022, 212, 113543.	3.7	18
267	Facile synthesis of nanomaterials as nanofertilizers: a novel way for sustainable crop production. Environmental Science and Pollution Research, 2022, 29, 51281-51297.	2.7	17
269	Coupled impact of proteins with different molecular weights and surface charges on TiO ₂ mobility. Environmental Science: Nano, 2022, 9, 2773-2787.	2.2	1
270	Soil Enzyme Responses to Polymeric Nanopesticides: An Ecological Risk Analysis Approach to Promote Sustainable Agriculture. ACS Agricultural Science and Technology, 2022, 2, 443-452.	1.0	6
271	Zinc Fertilizers Modified the Formation and Properties of Iron Plaque and Arsenic Accumulation in Rice (<i>Oryza sativa L.</i>) in a Life Cycle Study. Environmental Science & Technology, 2022, 56, 8209-8220.	4.6	11
272	Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. Frontiers in Plant Science, 2022, 13, .	1.7	35
273	Opportunities for graphene, single-walled and multi-walled carbon nanotube applications in agriculture: A review. , 2022, 1, 100006.		14
274	Strategic applications of nano-fertilizers for sustainable agriculture: Benefits and bottlenecks. Nanotechnology Reviews, 2022, 11, 2123-2140.	2.6	40
275	Nanomaterials in plant systems: Smart advances related to water uptake and transport involving aquaporins. , 2022, 1, 100005.		12
276	Life History of <i>Chrysodeixis includens</i> (Lepidoptera: Noctuidae) on Positively Charged Zein Nanoparticles. Environmental Entomology, 0, , .	0.7	4
277	Nano-enabled agriculture: How do nanoparticles cross barriers in plants?. Plant Communications, 2022, 3, 100346.	3.6	54
278	Proteomic Analysis Unravels Response and Antioxidation Defense Mechanism of Rice Plants to Copper Oxide Nanoparticles: Comparison with Bulk Particles and Dissolved Cu Ions. ACS Agricultural Science and Technology, 2022, 2, 671-683.	1.0	8
279	Thermo-Responsive Quaternary Ammonium Chitosan Nanocapsules with On-Demand Controlled Pesticide Release and Maximally Synergistic Biological Activity. Journal of Agricultural and Food Chemistry, 2022, 70, 7653-7661.	2.4	13
280	Engineering plants with carbon nanotubes: a sustainable agriculture approach. Journal of Nanobiotechnology, 2022, 20, .	4.2	31
281	Impacts of a novel controlled-release TiO2-coated (nano-) formulation of carbendazim and its constituents on freshwater macroinvertebrate communities. Science of the Total Environment, 2022, 838, 156554.	3.9	4

#	Article	IF	CITATIONS
282	Application of nanotechnology in disaster prevention: An introduction. , 2022, , 3-17.		0
283	Bionanomaterials-mediated seed priming for sustainable agricultural production. , 2022, , 77-99.		1
284	Nanomaterials as a tool for soil remediation in sustainable agriculture. Comprehensive Analytical Chemistry, 2022, , .	0.7	0
285	Nanoparticles for sustainable agriculture: innovative potential with current and future perspectives. , 2022, , 131-148.		1
286	Nano-enabled weed management in agriculture: From strategic design to enhanced herbicidal activity. , 2022, 1, 100008.		16
287	Graphene as a nano-delivery vehicle in agriculture – current knowledge and future prospects. Critical Reviews in Biotechnology, 2023, 43, 851-869.	5.1	8
288	Hybridization of Chitosan and Biosynthesized Silver Nanoparticles to Enhance Antimicrobial Activity against Phytopathogens in Tomato (<i>Solanum lycopersicum</i>). ACS Agricultural Science and Technology, 2022, 2, 719-733.	1.0	6
289	Tomato Fruit Nutritional Quality Is Altered by the Foliar Application of Various Metal Oxide Nanomaterials. Nanomaterials, 2022, 12, 2349.	1.9	5
290	Therapeutic Delivery of Nanoscale Sulfur to Suppress Disease in Tomatoes: In Vitro Imaging and Orthogonal Mechanistic Investigation. ACS Nano, 2022, 16, 11204-11217.	7.3	28
291	Effects of trehalose and polyacrylate-based hydrogels on tomato growth under drought. AoB PLANTS, 2022, 14, .	1.2	1
292	Bioengineered chitosan-iron nanocomposite controls bacterial leaf blight disease by modulating plant defense response and nutritional status of rice (Oryza sativa L.). Nano Today, 2022, 45, 101547.	6.2	36
293	Nanotechnology in agriculture: Comparison of the toxicity between conventional and nano-based agrochemicals on non-target aquatic species. Journal of Hazardous Materials, 2022, 439, 129559.	6.5	9
294	Biopolymeric Nanocarriers for Nutrient Delivery and Crop Biofortification. ACS Omega, 2022, 7, 25909-25920.	1.6	20
295	Crosstalk of nanoparticles and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress, 2022, 6, 100107.	2.7	47
296	Physiological and molecular level understanding of advanced carbon dots to enhance maize drought tolerance: modulation of photosynthesis and signaling molecules. Environmental Science: Nano, 2022, 9, 3821-3832.	2.2	8
297	Integrating machine learning interpretation methods for investigating nanoparticle uptake during seed priming and its biological effects. Nanoscale, 2022, 14, 15305-15315.	2.8	6
298	Slow release of copper from jellyfish-based hydrogels for soil enrichment. NanoImpact, 2022, 27, 100417.	2.4	4
299	Nature-Based Nanocarrier System: An Eco-friendly Alternative for Improving Crop Resilience to Climate Changes. Anthropocene Science, 2022, 1, 396-403.	1.6	4

#	Article	IF	CITATIONS
300	Nanotechnological Interventions in Agriculture. Nanomaterials, 2022, 12, 2667.	1.9	11
301	Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles. Nature Catalysis, 2022, 5, 694-707.	16.1	27
302	Carbon Dots Improve Nitrogen Bioavailability to Promote the Growth and Nutritional Quality of Soybeans under Drought Stress. ACS Nano, 2022, 16, 12415-12424.	7.3	32
303	Nano-Microemulsions of CaCO3-Encapsulated Curcumin Ester Derivatives With High Antioxidant and Antimicrobial Activities and pH Sensitivity. Frontiers in Veterinary Science, 0, 9, .	0.9	1
304	Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts. ACS Nano, 2022, 16, 12156-12173.	7.3	29
305	Graphene-Delivered Insecticides against Cotton Bollworm. Nanomaterials, 2022, 12, 2731.	1.9	1
306	A review on recent advances in the applications of composite Fe ₃ O ₄ magnetic nanoparticles in the food industry. Critical Reviews in Food Science and Nutrition, 2024, 64, 1110-1138.	5.4	14
307	Effects of nanocarbon solution treatment on the nutrients and glucosinolate metabolism in broccoli. Food Chemistry: X, 2022, 15, 100429.	1.8	4
308	Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules. Environmental Pollution, 2022, 310, 119855.	3.7	41
309	The role of carbon dots in the life cycle of crops. Industrial Crops and Products, 2022, 187, 115427.	2.5	8
310	Silver and copper-oxide nanoparticles prepared with GA3 induced defense in rice plants and caused mortalities to the brown planthopper, Nilaparvata lugens (Stål). NanoImpact, 2022, 28, 100428.	2.4	3
311	Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem. Environmental Pollution, 2022, 314, 120224.	3.7	8
312	Metabolomics of soybean (Glycine max L.) response to co-exposure of pyrene and three metal oxide engineered nanomaterials. Journal of Hazardous Materials, 2023, 441, 129985.	6.5	4
313	Interpretable machine learning for investigating complex nanomaterial–plant–soil interactions. Environmental Science: Nano, 2022, 9, 4305-4316.	2.2	2
314	Are nanomaterials leading to more efficient agriculture? Outputs from 2009 to 2022 research metadata analysis. Environmental Science: Nano, 2022, 9, 3711-3724.	2.2	3
315	Redox, Enzyme and Alkaline Triple Stimuli-Responsive Polymer Nanoparticles as 'Trojan Horse' for Targeted Pesticide Delivery. SSRN Electronic Journal, 0, , .	0.4	0
316	Advances in Nanobiotechnology as Sustainable Solutions for Insect Pest Management. , 2022, , .		0
317	Uptake and bioaccumulation of nanoparticles by five higher plants using single-particle-inductively coupled plasma-mass spectrometry. Environmental Science: Nano, 2022, 9, 3066-3080.	2.2	4

#	Article	IF	CITATIONS
318	Application of nano-agricultural technology for biotic stress management: mechanisms, optimization, and future perspectives. Environmental Science: Nano, 2022, 9, 4336-4353.	2.2	5
319	Future questions and approaches in plant–nanoparticle research. , 2022, , 239-251.		0
320	Spontaneous plant species responses to engineered nanoparticles. , 2022, , 83-118.		0
321	Biological activities of chitosan-based nanomaterials. , 2022, , 119-142.		0
322	Carbon dots promoted soybean photosynthesis and amino acid biosynthesis under drought stress: Reactive oxygen species scavenging and nitrogen metabolism. Science of the Total Environment, 2023, 856, 159125.	3.9	27
323	A Metagenomic and Gene Expression Analysis in Wheat (T. durum) and Maize (Z. mays) Biofertilized with PGPM and Biochar. International Journal of Molecular Sciences, 2022, 23, 10376.	1.8	8
324	Green Synthesis and Applications of Silver Nanoparticles: A Systematic Review. AATCC Journal of Research, 2022, 9, 272-285.	0.3	7
325	Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones. Frontiers in Plant Science, 0, 13, .	1.7	8
326	Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review. Foods, 2022, 11, 2685.	1.9	9
327	Seed Priming with Nanoparticles: An Emerging Technique for Improving Plant Growth, Development, and Abiotic Stress Tolerance. Journal of Soil Science and Plant Nutrition, 2022, 22, 4047-4062.	1.7	16
328	Self-Assembled Nanoparticles of a Prodrug Conjugate Based on Pyrimethanil for Efficient Plant Disease Management. Journal of Agricultural and Food Chemistry, 2022, 70, 11901-11910.	2.4	5
329	Applications of nanostructured materials in agriculture: A review. Materials Today: Proceedings, 2022, 69, 549-555.	0.9	1
330	Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties. Molecules, 2022, 27, 5758.	1.7	2
331	Application and mechanisms of metalâ€based nanoparticles in the control of bacterial and fungal crop diseases. Pest Management Science, 2023, 79, 21-36.	1.7	31
332	Warhorses in soil bioremediation: Seed biopriming with PGPF secretome to phytostimulate crop health under heavy metal stress. Environmental Research, 2023, 216, 114498.	3.7	5
333	Nanomaterials for Integrated Crop Disease Management. , 2022, , 295-314.		1
334	Molecular mechanisms of CeO ₂ nanomaterials improving tomato yield, fruit quality, and postharvest storage performance. Environmental Science: Nano, 2022, 9, 4382-4392.	2.2	2
335	Selenium nanomaterials induce flower enlargement and improve the nutritional quality of cherry tomatoes: pot and field experiments. Environmental Science: Nano, 2022, 9, 4190-4200.	2.2	1

ARTICLE IF CITATIONS Genomic Designing for Biotic Stress Resistance in Sugarcane., 2022, , 337-439. 336 2 Bidirectional Regulation of Calcium L-Aspartate Nanoparticles for Trifoliate Orange (Poncirus) Tj ETQq1 1 0.784314 rgBT /Overlock 10 2.8 42, 3515-3528. Discovery of Novel N-Pyridylpyrazole Thiazole Derivatives as Insecticide Leads. Agronomy, 2022, 12, 338 1.3 4 2472 Fabrication of a dual <scp>pHâ€responsive</scp> and photothermal microcapsule pesticide delivery system for controlled release of pesticides. Pest Management Science, 2023, 79, 969-979. Lighting Up Agricultural Sustainability in the New Era through Nanozymology: An Overview of Classifications and Their Agricultural Applications. Journal of Agricultural and Food Chemistry, 340 2.4 11 2022, 70, 13445-13463. Determining acceptance and rejection of nano-enabled agriculture: A case study of the New Zealand 2.4 wine industry. NanoImpact, 2022, 28, 100432. Nanomaterials as an alternative to increase plant resistance to abiotic stresses. Frontiers in Plant 342 1.7 9 Science, 0, 13, . Aggregation, Sedimentation and Dissolution of Cu(OH)2-Nanorods-Based Nanopesticide in Soil 343 1.9 Solutions. Nanomaterials, 2022, 12, 3844. Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. 344 4.8 22 Journal of Controlled Release, 2022, 352, 288-312. 345 Biophysicochemical transformations of ENMs in air., 2023, 143-173. Use of nanoparticles and fertilizers in alleviating heavy metals and improving nutrients uptake in 346 2 plants., 2023,, 153-178. Accumulation of engineered nanomaterials by plants., 2023, , 295-326. Nanotechnology $\hat{a} \in A$ new frontier of nano-farming in agricultural and food production and its 348 3.9 50 development. Science of the Total Environment, 2023, 857, 159639. Nanobiopesticides in sustainable agriculture: developments, challenges, and perspectives. 349 2.2 Environmental Science: Nano, 2023, 10, 41-61. Mitochondria-targeted pentacyclic triterpenoid carbon dots for selective cancer cell destruction via 350 2.0 8 inducing autophagy, apoptosis, as well as ferroptosis. Bioorganic Chemistry, 2023, 130, 106259. Improving Plant Photosynthesis through Light-Harvesting Upconversion Nanoparticles. ACS Nano, 2022, 16, 18027-18037. Physiological and transcriptomic study reveal SeNPs-mediated AsIII stress detoxification mechanisms 352 involved modulation of antioxidants, metal transporters, and transcription factors in Glycine max L. 3.7 11 (Merr.) roots. Environmental Pollution, 2023, 317, 120637. Production, Mechanisms, and Performance of Controlled-Release Fertilizers Encapsulated with Biodegradable-Based Coatings. ACS Agricultural Science and Technology, 2022, 2, 1101-1125.

#	Article	IF	CITATIONS
354	Bioâ€Functionalized Manganese Nanoparticles Suppress Fusarium Wilt in Watermelon (<i>Citrullus) Tj ETQq0 0 0 Community Modulation. Small, 2023, 19, .</i>	rgBT / 5.2	Overlock 10 Tf 22
355	Surface Coated Sulfur Nanoparticles Suppress <i>Fusarium</i> Disease in Field Grown Tomato: Increased Yield and Nutrient Biofortification. Journal of Agricultural and Food Chemistry, 2022, 70, 14377-14385.	2.4	9
356	Biosynthesized nanoparticles as a rescue aid for agricultural sustainability and development. International Nano Letters, 0, , .	2.3	0
357	Introduction and multiplex management strategies of postharvest fungal diseases of kiwifruit: A review. Biological Control, 2022, 176, 105096.	1.4	6
358	Suppression of dry root rot disease caused by Rhizoctonia bataticola (Taub.) Butler in chickpea plants by application of thiamine loaded chitosan nanoparticles. Microbial Pathogenesis, 2022, 173, 105893.	1.3	1
359	<i>In situ</i> construction of a magnesium foliar fertilizer with pH-controlled release and high adhesion capacity. Environmental Science: Nano, 2023, 10, 115-128.	2.2	1
360	Nanomaterials biotransformation: In planta mechanisms of action. Environmental Pollution, 2023, 318, 120834.	3.7	9
361	Nanotized form of indole acetic acid improve biochemical activities, the ultrastructure of glandular trichomes and essential oil production in Ocimum tenuiflorum L Industrial Crops and Products, 2023, 193, 116117.	2.5	4
362	Aspects of the Current and Prospective Sustainable Usage of Nanofertilizers in Agriculture and Their Effects on Health of the Soil: an Updated Review. Journal of Soil Science and Plant Nutrition, 0, , .	1.7	1
363	Fabrication, Characterization and <i>In Planta</i> Uptake of Engineered Surfactant Nanovesicles for the Delivery of the Biostimulant Sodium Copper Chlorophyllin. Journal of Agricultural and Food Chemistry, 2022, 70, 15028-15037.	2.4	2
364	Imaging tools for plant nanobiotechnology. Frontiers in Genome Editing, 0, 4, .	2.7	3
365	The life cycle study revealed distinct impact of foliar-applied nano-Cu on antioxidant traits of barley grain comparing with conventional agents. Food Research International, 2023, 164, 112303.	2.9	3
366	Nanomaterials in agricultural soils: Ecotoxicity and application. Current Opinion in Environmental Science and Health, 2023, 31, 100432.	2.1	5
367	Light-nutrition coupling effect of degradable fluorescent carbon dots on lettuce. Environmental Science: Nano, 2023, 10, 539-551.	2.2	2
368	Crop Microbiome for Sustainable Agriculture in Special Reference to Nanobiology. Microorganisms for Sustainability, 2023, , 81-97.	0.4	0
369	Interaction of Nanoparticles with Plant Macromolecules: Carbohydrates and Lipids. , 2023, , 213-230.		О
370	Nanotechnology and Omics Approach in Agrobiotechnology. , 2023, , 341-352.		0
371	Agronanobiotechnology: Present and Prospect. , 2023, , 43-80.		0

#	Article	IF	CITATIONS
372	Integration of Eco-Friendly Biological and Nanotechnological Strategies for Better Agriculture: A Sustainable Approach. , 2023, , 647-674.		1
373	Proactive attenuation of arsenic-stress by nano-priming: Zinc Oxide Nanoparticles in Vigna mungo (L.) Hepper trigger antioxidant defense response and reduce root-shoot arsenic translocation. Journal of Hazardous Materials, 2023, 446, 130735.	6.5	20
374	Rational design of multi-stimuli-responsive polymeric nanoparticles as a â€~Trojan horse' for targeted pesticide delivery. Industrial Crops and Products, 2023, 193, 116182.	2.5	4
375	Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies. Plants, 2023, 12, 160.	1.6	9
376	Application of microbial nanotechnology in sustainable agriculture through soil remediation. , 2023, , 253-274.		0
377	Microbial nanotechnology: a potential tool for a sustainable environment. , 2023, , 217-230.		0
378	Influence of pre-sowing treatment of seeds with sapropel and biohumus on the yield of oats and barley and the content of basic nutrients in grain. Agrarian Science, 2023, , 104-109.	0.1	0
379	Advancement in mitigating the effects of heavy metal toxicity in wheat. , 2023, , 313-327.		1
380	Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. Nanomaterials, 2023, 13, 424.	1.9	24
381	Impact of iron oxide nanoparticles on a lead-polluted water–soil–plant system under alternating periods of water stress. Environmental Science Advances, 2023, 2, 767-779.	1.0	2
382	Nanoparticles as a Promising Strategy to Mitigate Biotic Stress in Agriculture. Antibiotics, 2023, 12, 338.	1.5	14
384	Impact of nanopesticide CuO-NPs and nanofertilizer CeO2-NPs on wheat Triticum aestivum under global warming scenarios. Chemosphere, 2023, 328, 138576.	4.2	3
385	Nanomaterials in agriculture for plant health and food safety: a comprehensive review on the current state of agro-nanoscience. 3 Biotech, 2023, 13, .	1.1	6
386	Opportunities and Challenges for Lignin Valorization in Food Packaging, Antimicrobial, and Agricultural Applications. Biomacromolecules, 2023, 24, 1065-1077.	2.6	24
387	Toxicological impacts of nanomaterials on the agricultural soil and enzymes associated with complex sugar degradation. , 2023, , 407-421.		0
388	Exploring the nano-fungicidal efficacy of green synthesized magnesium oxide nanoparticles (MgO NPs) on the development, physiology, and infection of carrot (Daucus carota L.) with Alternaria leaf blight (ALB): Molecular docking. Journal of Integrative Agriculture, 2023, 22, 3069-3080.	1.7	1
389	Nanomaterial Size and Surface Modification Mediate Disease Resistance Activation in Cucumber (<i>Cucumis sativus</i>). ACS Nano, 2023, 17, 4871-4885.	7.3	8
390	Preparation of nitrogen-doped carbon dots and their enhancement on lettuce yield and quality. Journal of Materials Chemistry B, 2023, 11, 3113-3123.	2.9	3

#	Article	IF	CITATIONS
391	Interactions of Metalâ€Based Engineered Nanoparticles with Plants: An Overview of the State of Current Knowledge, Research Progress, and Prospects. Journal of Plant Growth Regulation, 2023, 42, 5396-5416.	2.8	16
392	Modelling of inactivation of microorganisms in the process of sterilization using high pressure supercritical fluids. Food Science and Technology, 0, 43, .	0.8	0
393	Effective control of the tomato wilt pathogen using TiO ₂ nanoparticles as a green nanopesticide. Environmental Science: Nano, 2023, 10, 1441-1452.	2.2	4
394	Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root. Materials, 2023, 16, 3097.	1.3	39
395	Amphiphilicity-Driven Small Alcohols Regulate the Flexibility of Pesticide-Loaded Microcapsules for Better Foliar Adhesion and Utilization. ACS Applied Materials & Interfaces, 2023, 15, 21444-21456.	4.0	1
396	Challenges, constraints, and opportunities in sustainable agriculture and environment. , 2023, , 487-501.		0
397	Development and commercialization of pheromone-based biopesticides. , 2023, , 37-56.		0
398	Preparation of enzyme-responsive composite nanocapsules with sodium carboxymethyl cellulose to improve the control effect of root-knot nematode disease. International Journal of Biological Macromolecules, 2023, 241, 124561.	3.6	3
408	Phytotoxicity Responses and Defence Mechanisms of Heavy Metal and Metal-Based Nanoparticles. , 2023, , 59-96.		0
409	Interaction Between Metal Nanoparticles and PGPR on the Plant Growth and Development. , 2023, , 327-351.		0
413	Wearable Sensor: An Emerging Data Collection Tool for Plant Phenotyping. Plant Phenomics, 2023, 5, .	2.5	5
415	Applications of nanomaterials to build a sustainable agriculture system. , 2023, , 427-453.		0
419	Application of nanomaterials in agriculture. , 2023, , 259-283.		0
424	Nanotechnology and the Application of Information Technology for Sustainable Innovation in Agriculture. Smart Innovation, Systems and Technologies, 2023, , 503-521.	0.5	0
430	Genomic Designing for Nutraceuticals in Brassica juncea: Advances and Future Prospects. , 2023, , 1-52.		0
439	Overview of recent advances in photosynthesis and nanotechnology. , 2023, , 3-8.		1
440	Myconanotechnologies: an approach towards sustainable agriculture. , 2023, , 139-157.		1
441	Deciphering of mycogenic nanoparticles by spectroscopic methods. , 2023, , 93-117.		2

#	Article	IF	CITATIONS
445	Seed Nanopriming. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 290-313.	0.3	2
446	Nanopriming for Crop Management for Sustainable Agriculture. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 110-141.	0.3	0
447	The Potential of Nano-Based Seed Priming for Sustainable Agriculture. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 43-88.	0.3	0
448	Nanopriming Revolutionizing Agribiotechnology for Sustainable Food Security. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 352-362.	0.3	0
450	Nanopriming Technology for Sustainable Agriculture. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 21-42.	0.3	1
453	Nanoinformatics and artificial intelligence for nano-enabled sustainable agriculture. , 2023, , 503-531.		1
454	Nanopesticidesâ \in "modes of action and impacts. , 2023, , 79-103.		1
455	Plant–nano interactions: lessons learned from 15 years of nanophytotoxicity studies. , 2023, , 275-292.		0
456	A brief history of nanotechnology in agriculture and current status. , 2023, , 3-14.		0
457	Nanofertilizers—synthesis, advantages, and the current status. , 2023, , 43-77.		0
458	Food chain transfer of nanomaterials in agriculture. , 2023, , 493-502.		0
464	Silica nanoparticle accumulation in plants: current state and future perspectives. Nanoscale, 2023, 15, 15079-15091.	2.8	2
469	Prospects of 2D graphene nanomaterials in plant-based agriculture and their fate in terrestrial soil: a critical review. Environmental Science: Nano, 0, , .	2.2	0
472	Storage Pest Management with Nanopesticides Incorporating Silicon Nanoparticles: a Novel Approach for Sustainable Crop Preservation and Food Security. Silicon, 2024, 16, 471-483.	1.8	3
477	Nano-Biofortification: An Environmental Health Overview. , 2023, , 77-98.		0
486	Nano-agro-biotechnology Prospects. Nanotechnology in the Life Sciences, 2023, , 179-187.	0.4	0
503	Black scurf of potato: Insights into biology, diagnosis, detection, host-pathogen interaction, and management strategies. Tropical Plant Pathology, 0, , .	0.8	1
509	Genomic Designing for Nutraceuticals in Brassica juncea: Advances and Future Prospects. , 2023, , 419-469.		0

#	Article	IF	CITATIONS
517	Uncertainties, phototoxicity, health impacts, and agricultural and environmental concerns of nanomaterials in the food industry. , 2024, , 361-390.		0
524	Applications of Nanotechnology for Improving Food Safety and Security. Advances in Environmental Engineering and Green Technologies Book Series, 2024, , 151-174.	0.3	0
527	Vertical Farms for Future Cities. , 2024, , 179-197.		0
529	Nanofertilizers versus traditional fertilizers for a sustainable environment. , 2024, , 387-402.		0
534	Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis. Nanoscale, 2024, 16, 4484-4513.	2.8	0
544	Nano-biofertilizers: plant growth promotions and protections. , 2024, , 37-54.		0
545	Mode of action of nanofertilizers and their role in nutrient budgeting: quality and attribute perspectives. , 2024, , 375-398.		0
547	Exploring the potential of nanozyme-assisted abiotic stress resilience in crop plants as an emerging technique for sustainable agriculture. , 2024, , 203-214.		0
548	Role of nanotechnology in crop management. , 2024, , 61-76.		0
549	Role of nanomaterials for alleviating heavy metal(oid) toxicity in plants. , 2024, , 289-306.		0