How to accelerate antimicrobial susceptibility testing

Clinical Microbiology and Infection 25, 1347-1355

DOI: 10.1016/j.cmi.2019.04.025

Citation Report

#	Article	IF	CITATIONS
1	Adhesive Tape Microfluidics with an Autofocusing Module That Incorporates CRISPR Interference: Applications to Long-Term Bacterial Antibiotic Studies. ACS Sensors, 2019, 4, 2638-2645.	7.8	18
2	Bloodstream infections – Standard and progress in pathogen diagnostics. Clinical Microbiology and Infection, 2020, 26, 142-150.	6.0	102
3	Evaluation of EUCAST rapid antimicrobial susceptibility testing (RAST) for positive blood cultures in clinical practice using a total lab automation. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1305-1313.	2.9	22
4	Imipenem-Relebactam Susceptibility Testing of Gram-Negative Bacilli by Agar Dilution, Disk Diffusion, and Gradient Strip Methods Compared with Broth Microdilution. Journal of Clinical Microbiology, 2020, 58, .	3.9	12
5	Rapid Detection of Methicillin-Resistant Staphylococcus aureus Directly from Blood for the Diagnosis of Bloodstream Infections: A Mini-Review. Diagnostics, 2020, 10, 830.	2.6	9
6	Electrical antimicrobial susceptibility testing based on aptamer-functionalized capacitance sensor array for clinical isolates. Scientific Reports, 2020, 10, 13709.	3.3	11
7	Editorial: MALDI-TOF MS Application for Susceptibility Testing of Microorganisms. Frontiers in Microbiology, 2020, 11, 568891.	3.5	4
8	Antimicrobial susceptibility testing: currently used methods and devices and the near future in clinical practice. Journal of Applied Microbiology, 2020, 129, 806-822.	3.1	104
9	Combined Molecular and Phenotypic Antimicrobial Susceptibility Testing Is Beneficial in Detection of ESBL and AmpC Beta-Lactamase Producing Isolates of Enterobacteriaceae in Pediatric Patients with Bloodstream Infections. Microbial Drug Resistance, 2020, 26, 825-830.	2.0	1
10	Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 326.	3.9	70
11	Disc diffusion AST automation: one of the last pieces missing for full microbiology laboratory automation. Clinical Microbiology and Infection, 2020, 26, 539-541.	6.0	3
12	Detection of Methicillin Resistance in Staphylococcus aureus From Agar Cultures and Directly From Positive Blood Cultures Using MALDI-TOF Mass Spectrometry-Based Direct-on-Target Microdroplet Growth Assay. Frontiers in Microbiology, 2020, 11, 232.	3.5	29
13	Innovative and rapid antimicrobial susceptibility testing systems. Nature Reviews Microbiology, 2020, 18, 299-311.	28.6	204
14	Rapid identification and antimicrobial susceptibility testing of Gram-negative rod on positive blood cultures using MicroScan panels. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 151-157.	2.9	8
15	Digital electrical impedance analysis for single bacterium sensing and antimicrobial susceptibility testing. Lab on A Chip, 2021, 21, 1073-1083.	6.0	18
16	Emerging Options for the Diagnosis of Bacterial Infections and the Characterization of Antimicrobial Resistance. International Journal of Molecular Sciences, 2021, 22, 456.	4.1	27
17	The role of vaccines in combatting antimicrobial resistance. Nature Reviews Microbiology, 2021, 19, 287-302.	28.6	233
18	EUCAST rapid antimicrobial susceptibility testing (RAST): analytical performance and impact on patient management. Journal of Antimicrobial Chemotherapy, 2021, 76, 1332-1338.	3.0	19

#	ARTICLE	IF	CITATIONS
19	Diagnostic clinical microbiology. Journal of Veterinary Pharmacology and Therapeutics, 2021, 44, 250-269.	1.3	1
20	Recent Development of Rapid Antimicrobial Susceptibility Testing Methods through Metabolic Profiling of Bacteria. Antibiotics, 2021, 10, 311.	3.7	12
21	Evaluation of the European Committee on Antimicrobial Susceptibility Testing Guidelines for Rapid Antimicrobial Susceptibility Testing of Bacillus anthracis-, Yersinia pestis- and Francisella tularensis-Positive Blood Cultures. Microorganisms, 2021, 9, 1055.	3.6	8
22	A Rapid Antimicrobial Susceptibility Test for Klebsiella pneumoniae Using a Broth Micro-Dilution Combined with MALDI TOF MS. Infection and Drug Resistance, 2021, Volume 14, 1823-1831.	2.7	7
23	Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Antimicrobial Susceptibility Testing. Journal of Clinical Microbiology, 2021, 59, e0181419.	3.9	14
24	Multidrug-resistant, gram-negative infections in high-risk haematologic patients: an update on epidemiology, diagnosis and treatment. Current Opinion in Infectious Diseases, 2021, 34, 314-322.	3.1	7
25	Usefulness of BioFire FilmArray BCID2 for Blood Culture Processing in Clinical Practice. Journal of Clinical Microbiology, 2021, 59, e0054321.	3.9	42
27	Behind Every Great Infection Prevention Program is a Great Microbiology Laboratory. Infectious Disease Clinics of North America, 2021, 35, 789-802.	5.1	0
28	Rapid Simultaneous Testing of Multiple Antibiotics by the MALDI-TOF MS Direct-on-Target Microdroplet Growth Assay. Diagnostics, 2021, 11, 1803.	2.6	6
29	A Systematic Review of the Effect of Delayed Appropriate Antibiotic Treatment on the Outcomes of Patients With Severe Bacterial Infections. Chest, 2020, 158, 929-938.	0.8	46
30	The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. Journal of Antimicrobial Chemotherapy, 2020, 75, 968-978.	3.0	79
32	Concordance Between Antibiotic Resistance Genes and Susceptibility in Symptomatic Urinary Tract Infections. Infection and Drug Resistance, 2021, 14, 3275-3286.	2.7	0
34	Drug Release, Susceptıbılıty and Tıme-Kill Assays to Develop Novel Antı-Infectıve Drugs., 2021,,.		0
35	Innovations in infectious disease testing: Leveraging COVID-19 pandemic technologies for the future. Clinical Biochemistry, 2023, 117, 10-15.	1.9	8
36	A New Colorimetric Method for Rapid Detection of Antibiotic Resistance in Escherichia coli Isolates. Jundishapur Journal of Microbiology, 2022, 14, .	0.5	3
37	Direct microorganism species identification and antimicrobial susceptibility tests from positive blood culture bottles using rapid Sepsityper Kit. Journal of Infection and Chemotherapy, 2022, 28, 563-568.	1.7	6
38	Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. Small, 2022, 18, e2107902.	10.0	25
39	A Cascaded Droplet Microfluidic Platform Enables Highâ€Throughput Single Cell Antibiotic Susceptibility Testing at Scale. Small Methods, 2022, 6, e2101254.	8.6	17

3

#	Article	IF	CITATIONS
40	Combating Antimicrobial Resistance via Single-Cell Diagnostic Technologies Powered by Droplet Microfluidics. Accounts of Chemical Research, 2022, 55, 123-133.	15.6	19
41	Liquid Chromatography-Tandem Mass Spectrometry Analysis Demonstrates a Decrease in Porins and Increase in CMY-2 Î ² -Lactamases in Escherichia coli Exposed to Increasing Concentrations of Meropenem. Frontiers in Microbiology, 2022, 13, 793738.	3.5	3
42	Novel Microfluidics Device for Rapid Antibiotics Susceptibility Screening. Applied Sciences (Switzerland), 2022, 12, 2198.	2.5	3
43	Using Procalcitonin to Guide Antibiotic Escalation in Patients With Suspected Bacterial Infection: A New Application of Procalcitonin in the Intensive Care Unit. Frontiers in Cellular and Infection Microbiology, 2022, 12, 844134.	3.9	2
44	Direct Identification, Antimicrobial Susceptibility Testing, and Extended-Spectrum \hat{I}^2 -Lactamase and Carbapenemase Detection in Gram-Negative Bacteria Isolated from Blood Cultures. Infection and Drug Resistance, 2022, Volume 15, 1587-1599.	2.7	3
45	Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics, 2022, 11, 511.	3.7	16
48	Unraveling the Nature of Antibiotics: Is It a Cure or a New Hurdle to the Patient Treatment?. Cureus, 2022, 14, e23955.	0.5	0
49	A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. Nanomaterials, 2022, 12, 1841.	4.1	17
50	Rapid Antibiotic Susceptibility Testing by Deuterium Labeling of Bacterial Lipids in On-Target Microdroplet Cultures. Journal of the American Society for Mass Spectrometry, 0, , .	2.8	1
51	Miniaturised broth microdilution for simplified antibiotic susceptibility testing of Gram negative clinical isolates using microcapillary devices. Analyst, The, 2022, 147, 3558-3569.	3.5	5
52	MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS Measurement Science Au, 2022, 2, 385-404.	4.4	30
53	Real world clinical feasibility of direct-from-specimen antimicrobial susceptibility testing of clinical specimens with unknown microbial load or susceptibility. Scientific Reports, 2022, 12, .	3.3	0
54	Implémenter le système Alfred60AST dans un laboratoire clinique : impact clinique sur la prise en charge des patients septiques et analyse financière. Annales Pharmaceutiques Francaises, 2022, , .	1.0	0
55	Trends of Antimicrobial Consumption in Hospital: Tackling the Hidden Part of the Iceberg with an Electronic Personalised Prescription Software for Antimicrobial Stewardship. Advances in Experimental Medicine and Biology, 2022, , 113-123.	1.6	1
56	Recent studies on advance spectroscopic techniques for the identification of microorganisms: A review. Arabian Journal of Chemistry, 2023, 16, 104521.	4.9	5
57	QMAC-dRAST for the direct testing of antibiotic susceptibility for Enterobacterales in positive blood-culture broth: a comparison of the performances with the MicroScan system and direct disc diffusion testing methods. Journal of Antimicrobial Chemotherapy, 0, , .	3.0	1
58	Light Scattering Technology and MALDI-TOF MS in the microbiological fast-track of bloodstream infections: potential impact on antimicrobial treatment choices in a real-life setting. Journal of Medical Microbiology, 2023, 72, .	1.8	0
59	Single-cell pathogen diagnostics for combating antibiotic resistance. Nature Reviews Methods Primers, 2023, 3, .	21.2	9

#	ARTICLE	IF	CITATIONS
60	Comparison of Substance Sources in Experimental Antimicrobial Susceptibility Testing. Scientia Pharmaceutica, 2023, 91, 10.	2.0	2
61	Conventional methods and future trends in antimicrobial susceptibility testing. Saudi Journal of Biological Sciences, 2023, 30, 103582.	3.8	17
63	Evaluation of a sterile, filter-based, in-house method for rapid direct bacterial identification and antimicrobial susceptibility testing using positive blood culture. European Journal of Clinical Microbiology and Infectious Diseases, 2023, 42, 691-700.	2.9	1
65	Rapid Phenotypic Antimicrobial Susceptibility Testing Using a Coulter Counter and Proliferation Rate Discrepancy. ACS Omega, 2023, 8, 16298-16305.	3.5	1
66	Editorial: MALDI-TOF MS in microbiological diagnostics: future applications beyond identification. Frontiers in Microbiology, 0, 14, .	3.5	0
67	Metagenomic next-generation sequencing for the identification of infections caused by Gram-negative pathogens and the prediction of antimicrobial resistance. Laboratory Medicine, 2024, 55, 71-79.	1.2	1
68	Carbapenem prescriptions: Compliance with guidelines in a pediatric hospital. Archives De Pediatrie, 2023, 30, 302-306.	1.0	0
69	Application of tris-(4,7-Diphenyl-1,10 phenanthroline)ruthenium(II) Dichloride to Detection of Microorganisms in Pharmaceutical Products. Pharmaceuticals, 2023, 16, 856.	3.8	2
70	Rapid Antibiotic Susceptibility Testing of Gram-Negative Bacteria Directly from Urine Samples of UTI Patients Using MALDI-TOF MS. Antibiotics, 2023, 12, 1042.	3.7	1
71	Clinical impact of time to results from the microbiology laboratory in bloodstream infections caused by carbapenemase-producing Enterobacterales (TIME-CPE STUDY). Journal of Antimicrobial Chemotherapy, 2023, 78, 1948-1954.	3.0	0
72	Laser speckle imaging for visualization of hidden effects for early detection of antibacterial susceptibility in disc diffusion tests. Frontiers in Microbiology, $0,14,.$	3. 5	1
73	Rapid Molecular Phenotypic Antimicrobial Susceptibility Test for <i>Neisseria gonorrhoeae</i> Based on Propidium Monoazide Viability PCR. ACS Infectious Diseases, 2023, 9, 1160-1167.	3.8	1
74	All-electrical antibiotic susceptibility and resistance profiling of electrogenic <i>Pseudomonas aeruginosa</i> . Analyst, The, 2023, 148, 2501-2510.	3.5	1
75	Non-electrostatic interactions associated with aggregate formation between polyallylamine and Escherichia coli. Scientific Reports, 2023, 13, .	3.3	0
76	Has coronavirus disease 2019 changed clinical microbiology laboratories forever?. Future Microbiology, 0, , .	2.0	0
77	Biofilm antimicrobial susceptibility testing: where are we and where could we be going?. Clinical Microbiology Reviews, 2023, 36, .	13.6	5
79	Performance of targeted next-generation sequencing in the detection of respiratory pathogens and antimicrobial resistance genes for children. Journal of Medical Microbiology, 2023, 72, .	1.8	2
80	In-depth analysis of the treatment effect and synergistic mechanism of TanReQing injection on clinical multi-drug resistant <i>Pseudomonas aeruginosa</i> i>Nicrobiology Spectrum, 2024, 12, .	3.0	0

Article IF Citations