Facile preparation of layered melamine-phytate flame r self-assembly technology

Journal of Colloid and Interface Science 553, 364-371 DOI: 10.1016/j.jcis.2019.06.015

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of a novel phosphorus-nitrogen flame retardant and its application in epoxy resin. Polymer Degradation and Stability, 2019, 169, 108981.	2.7	112
2	Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene. Composites Part B: Engineering, 2019, 177, 107371.	5.9	71
3	Doping Carbon Nitride Quantum Dots into Melamine‣ilver Matrix: An Efficient Photocatalyst with Tunable Morphology and Photocatalysis for H ₂ O ₂ Evolution under Visible Light. ChemCatChem, 2020, 12, 1512-1518.	1.8	21
4	Supramolecular selfâ€assembly modification of ammonium polyphosphate and its flame retardant application in polypropylene. Polymers for Advanced Technologies, 2020, 31, 1099-1109.	1.6	23
5	Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Composites Part B: Engineering, 2020, 181, 107588.	5.9	106
6	Self-assembly followed by radical polymerization of ionic liquid for interfacial engineering of black phosphorus nanosheets: Enhancing flame retardancy, toxic gas suppression and mechanical performance of polyurethane. Journal of Colloid and Interface Science, 2020, 561, 32-45.	5.0	91
7	Modified alkaline lignin for ductile polylactide composites. Composites Communications, 2020, 22, 100501.	3.3	13
8	Exploration on the influence mechanism of heteroatom doped graphene on thermal oxidative stability and decomposition of polypropylene. Materials Today Communications, 2020, 25, 101446.	0.9	1
9	Synergistic effect of layered melamine-phytate and intumescent flame retardant on enhancing fire safety of polypropylene. Journal of Thermal Analysis and Calorimetry, 2022, 147, 285-295.	2.0	14
10	Synthesis of a Novel Spiro Phosphorus–Nitrogen Concerted Reactive Flame-Retardant Curing Agent and Its Application in Epoxy Resin. Frontiers in Materials, 2020, 7, .	1.2	12
11	Cross-Linking Modification of Ammonium Polyphosphate via Ionic Exchange and Self-Assembly for Enhancing the Fire Safety Properties of Polypropylene. Polymers, 2020, 12, 2761.	2.0	11
12	Inhibited combustion of graphene paper by in situ phosphorus doping and its application for fire early-warning sensor. Sensors and Actuators A: Physical, 2020, 312, 112111.	2.0	47
13	Functionalized graphene paper with the function of fuse and its flame-triggered self-cutting performance for fire-alarm sensor application. Materials Chemistry and Physics, 2020, 252, 123292.	2.0	24
14	Nacre-biomimetic graphene oxide paper intercalated by phytic acid and its ultrafast fire-alarm application. Journal of Colloid and Interface Science, 2020, 578, 412-421.	5.0	53
15	A Bio-Based Flame-Retardant Starch Based On Phytic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 10265-10274.	3.2	72
16	Hexafluoroisopropanol-alkanol based high-density supramolecular solvents: Fabrication, characterization and application potential as restricted access extractants. Analytica Chimica Acta, 2020, 1124, 20-31.	2.6	8
17	A green self-assembled organic supermolecule as an effective flame retardant for epoxy resin. RSC Advances, 2020, 10, 12492-12503.	1.7	25
18	Core-Shell Graphitic Carbon Nitride/Zinc Phytate as a Novel Efficient Flame Retardant for Fire Safety and Smoke Suppression in Froxy Resin Polymers, 2020, 12, 212	2.0	24

#	Article	IF	CITATIONS
19	Intercalation of a novel containing nitrogen and sulfur anion into hydrotalcite and its highly efficient flame retardant performance for polypropylene. Applied Clay Science, 2020, 191, 105600.	2.6	33
20	Investigation on thermokinetic suppression of ammonium polyphosphate on sucrose dust deflagration: Based on flame propagation, thermal decomposition and residue analysis. Journal of Hazardous Materials, 2021, 403, 123653.	6.5	42
21	The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite. Combustion and Flame, 2021, 226, 108-116.	2.8	76
22	Carbonization mechanism of polypropylene catalyzed by Co compounds combined with phosphorus-doped graphene to improve its fire safety performance. Materials Today Communications, 2021, 26, 101792.	0.9	5
23	Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid. Polymers for Advanced Technologies, 2021, 32, 1548-1559.	1.6	38
24	Phosphate-based covalent adaptable networks with recyclability and flame retardancy from bioresources. European Polymer Journal, 2021, 144, 110236.	2.6	57
25	Nacre-like graphene oxide paper bonded with boric acid for fire early-warning sensor. Journal of Hazardous Materials, 2021, 403, 123645.	6.5	86
26	Combustion Behavior and Thermal Degradation Properties of Wood Impregnated with Intumescent Biomass Flame Retardants: Phytic Acid, Hydrolyzed Collagen, and Glycerol. ACS Omega, 2021, 6, 3921-3930.	1.6	45
27	Preferred zinc-modified melamine phytate for the flame retardant polylactide with limited smoke release. New Journal of Chemistry, 2021, 45, 13329-13339.	1.4	22
28	Simultaneously improving mechanical strength, hydrophobic property and flame retardancy of ethylene vinyl acetate copolymer/intumescent flame retardant/FeOOH by introducing modified fumed silica. Materials Today Communications, 2021, 26, 102114.	0.9	18
29	Preparation of phytic acidâ€based green intumescent flame retardant and its application in <scp>PLA</scp> nonwovens. Polymers for Advanced Technologies, 2021, 32, 3039-3049.	1.6	28
30	Renewable lignin-based surfactant modified layered double hydroxide and its application in polypropylene as flame retardant and smoke suppression. International Journal of Biological Macromolecules, 2021, 178, 580-590.	3.6	64
31	Nickel Ammonium Phosphate Nanowires Modified g-C3N4 for Improving the Fire Safety of Epoxy Resin. Fibers and Polymers, 2021, 22, 2664-2672.	1.1	7
32	Improving the Flame Retardancy of Bamboo Slices by Coating With Melamine–Phytate via Layer-by-Layer Assembly. Frontiers in Materials, 2021, 8, .	1.2	4
33	Synthesis of green nanomaterial and discussion on its suppression performance and mechanism to aluminum dust explosion. Chemical Engineering Research and Design, 2021, 151, 355-364.	2.7	16
34	Synthesis of melamine phenyl hypophosphite and its synergistic flame retardance with SiO2 on polypropylene. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6207-6217.	2.0	9
35	Surface modification of multi-scale cuprous oxide with tunable catalytic activity towards toxic fumes and smoke suppression of rigid polyurethane foam. Applied Surface Science, 2021, 556, 149792.	3.1	21
36	Innovative Polyelectrolyte Treatment to Flame-Retard Wood. Polymers, 2021, 13, 2884.	2.0	11

CITATION REPORT

#	Article	IF	CITATIONS
37	Fabrication of melamine trimetaphosphate 2D supermolecule and its superior performance on flame retardancy, mechanical and dielectric properties of epoxy resin. Composites Part B: Engineering, 2021, 225, 109269.	5.9	29
38	Enhancing the flame retardancy and UV resistance of polyamide 6 by introducing ternary supramolecular aggregates. Chemosphere, 2022, 287, 132100.	4.2	18
39	Sustainable, high-performance, flame-retardant waterborne wood coatings via phytic acid based green curing agent for melamine-urea-formaldehyde resin. Progress in Organic Coatings, 2022, 162, 106597.	1.9	24
40	A facile strategy to achieve efficient flame-retardant cotton fabric with durable and restorable fire resistance. Chemical Engineering Journal, 2022, 430, 132854.	6.6	44
41	Bio-based adenosine triphosphate pillared layered double hydroxide for enhancing flame retardancy of polypropylene. Applied Clay Science, 2022, 217, 106393.	2.6	15
42	Comprehensive Investigations on the Explosion Suppression of Biomass Fuels: ÂStarch as a Representative. SSRN Electronic Journal, 0, , .	0.4	0
43	Facile synthesis of melamine phytates and its application in rigid polyurethane foam composites targets for improving fire safety. Plastics, Rubber and Composites, 2023, 52, 145-159.	0.9	4
44	Fireâ€Retardant and Thermalâ€Insulating Cellulose Nanofibril Aerogel Modified by In Situ Supramolecular Assembly of Melamine and Phytic Acid. Advanced Engineering Materials, 2022, 24, .	1.6	20
45	Bio-Based Trivalent Phytate: A Novel Strategy for Enhancing Fire Performance of Rigid Polyurethane Foam Composites. Journal of Renewable Materials, 2022, 10, 1201-1220.	1.1	11
46	A novel nitrogen-rich phosphinic amide towards flame-retardant, smoke suppression and mechanically strengthened epoxy resins. Polymer Degradation and Stability, 2022, 196, 109840.	2.7	40
47	Comprehensive investigations on the explosion suppression of biomass fuels: Starch as a representative. Fuel, 2022, 315, 123276.	3.4	5
48	Green construction of melamine phytate nanosheets for enhancing anti-corrosive performance of water-borne epoxy coatings. Journal of Materials Science, 2022, 57, 4820-4833.	1.7	9
49	Ionic liquid modified boron nitride nanosheets for interface engineering of epoxy resin nanocomposites: Improving thermal stability, flame retardancy, and smoke suppression. Polymer Degradation and Stability, 2022, 199, 109899.	2.7	22
50	Flame retardancy efficacy of phytic acid: An overview. Journal of Applied Polymer Science, 2022, 139, .	1.3	24
51	Synthesis and characterization of bio-based "three sources in one" intumescent flame retardant monomer and the intrinsic flame retardant waterborne polyurethane. Journal of Polymer Research, 2022, 29, .	1.2	10
52	Flame retardancy of carboxylated polyhedral oligosilsesquioxane modified layered double hydroxide in the process of leather fatliquoring. Journal of Applied Polymer Science, 2022, 139, .	1.3	4
53	Synthesis of a Novel Inhibitor and Its Inhibition Mechanism on Aluminum Dust Explosions. Industrial & Engineering Chemistry Research, 2022, 61, 7020-7031.	1.8	2
54	Facile fabrication of starch-based, synergistic intumescent and halogen-free flame retardant strategy with expandable graphite in enhancing the fire safety of polypropylene. Industrial Crops and Products, 2022, 184, 115002.	2.5	15

#	Article	IF	CITATIONS
55	The influence of poorly-/well-dispersed organo-montmorillonite on interfacial compatibility, fire retardancy and smoke suppression of polypropylene/intumescent flame retardant composite system. Journal of Colloid and Interface Science, 2022, 622, 367-377.	5.0	21
56	An eco-friendly and pH response cerium-based melamine phytate (PM) nanosheets with active and passive anticorrosion ability in water-borne epoxy coating. Applied Surface Science, 2022, 597, 153726.	3.1	17
57	Effects of a composite flame retardant system on the flame retardancy and mechanical performance of epoxy resin adhesive. Journal of Vinyl and Additive Technology, 2022, 28, 775-787.	1.8	12
58	Oriented growth of LDH for constructing multifunctional cotton fabric with flame retardancy, smoke suppression, and filtering capability. Applied Clay Science, 2022, 226, 106588.	2.6	6
59	Overview on Classification of Flame-Retardant Additives for Polymeric Matrix. ACS Symposium Series, 0, , 59-82.	0.5	0
60	Fabrication of hierarchical core–shell carbon microspheres@ layered double hydroxide@ polyphosphazene architecture in flameâ€retarding polypropylene. European Polymer Journal, 2022, 177, 111405.	2.6	6
61	The fabrication of phytate and LDH-based hybrid nanosheet towards improved fire safety properties and superior smoke suppression of intumescent flame retardant LDPE. Thermochimica Acta, 2022, 714, 179271.	1.2	9
62	Novel bio-derived phytic acid and melamine interlayered/surface dual modified layered double hydroxide by one-pot method and its highly efficient flame retardant performance for polypropylene. Applied Clay Science, 2022, 228, 106620.	2.6	20
63	Covalent flame-retardant functionalization of wool fabric using ammonium phytate with improved washing durability. Industrial Crops and Products, 2022, 187, 115332.	2.5	7
64	Preparation of a multifunctional flame retardant epoxy resin containing phosphorus and nitrogen and study of its properties. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
65	Growth of biobased flakes on the surface and within interlayer of metakaolinite to enhance the fire safety and mechanical properties of intumescent flame-retardant polyurea composites. Chemical Engineering Journal, 2022, 450, 138350.	6.6	11
66	Synthesis of a novel prolonged action inhibitor with lotus leaf-like appearance and its suppression on methane/hydrogen/air explosion. Fuel, 2022, 329, 125401.	3.4	9
67	A facile method for synthesis of novel phenyl phosphates flame retardants and their application in epoxy resin. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
68	Bioinspired mono-component lignin endowing epoxy resin with simultaneously improving flame retardancy and mechanical properties. Composites Communications, 2022, 35, 101306.	3.3	7
69	A self-assembled bio-based coating with phytic acid and DL-arginine used for a flame-retardant and antibacterial cellulose fabric. Progress in Organic Coatings, 2022, 173, 107179.	1.9	6
70	Ethanol inducing self-assembly of poly-(thioctic acid)/graphene supramolecular ionomers for healable, flame-retardant, shape-memory electronic devices. Journal of Colloid and Interface Science, 2023, 629, 908-915.	5.0	18
71	Natural silk fibroin based flame retardant LbL-coating for Dongba paper. Cellulose, 2022, 29, 9393-9406.	2.4	3
72	Recent trends of phosphorus-containing flame retardants modified polypropylene composites processing. Helivon, 2022, 8, e11225.	1.4	12

#	Article	IF	CITATIONS
73	Self-assembled double core-shell structured zeolitic imidazole framework-8 as an effective flame retardant and smoke suppression agent for thermoplastic polyurethane. Applied Surface Science, 2023, 610, 155540.	3.1	15
74	Design of Hierarchically Tailored Hybrids Based on Nickle Nanocrystal-Decorated Manganese Dioxides for Enhanced Fire Safety of Epoxy Resin. International Journal of Molecular Sciences, 2022, 23, 13711.	1.8	1
75	Novel transition metal modified layered phosphate for reducing the fire hazards of PA6. Composites Communications, 2023, 37, 101442.	3.3	6
76	Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants. Polymers, 2022, 14, 5279.	2.0	7
77	Synthesis of phosphorusâ€nitrogen hybrid flame retardant and investigation of its efficient flameâ€retardant behavior in <scp>PA6</scp> / <scp>PA66</scp> . Journal of Applied Polymer Science, 2023, 140, .	1.3	7
78	Synergistic Effect of 4A Molecular Sieve on Intumescent Ternary H-Bonded Complex in Flame-Retarding of Polypropylene. Polymers, 2023, 15, 374.	2.0	2
79	Multifunctional Flame-Retardant, Thermal Insulation, and Antimicrobial Wood-Based Composites. Biomacromolecules, 2023, 24, 957-966.	2.6	15
80	Supper-low-addition flame retardant for the fully bio-based poly(lactic acid) composites. Polymer Degradation and Stability, 2023, 211, 110309.	2.7	9
81	Fabrication of highly hydrophobic layered double hydroxide decorated with tannic acid cross-linked phosphazene as a novel flame retardant for polypropylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131356.	2.3	4
82	Self-assembled biobased chitosan hybrid carrying N/P/B elements for polylactide with enhanced fire safety and mechanical properties. International Journal of Biological Macromolecules, 2023, 236, 123947.	3.6	5
83	Carbon Nanotube-Based Intumescent Flame Retardants Achieve High-Efficiency Flame Retardancy and Simultaneously Avoid Mechanical Property Loss. Polymers, 2023, 15, 1406.	2.0	2
84	Rigid polyurethane foam composites based on bivalent metal phytate: thermal stability, flame retardancy, and fire toxicity. Polymer-Plastics Technology and Materials, 2022, 61, 1204-1222.	0.6	2
85	Fabrication of Green and Scalable N/P/S/Mn Containing Biobased Layered Double Hydroxide as a Novel Flame Retardant and Efficient Char Forming Agent for Polypropylene. ACS Sustainable Chemistry and Engineering, 2023, 11, 5216-5228.	3.2	14
86	Preparation of acrylic emulsion coating with melamine polyphosphate, pentaerythritol and titanium dioxide for flame retardant cotton/polyethylene terephthalate blend fabrics. Polymer Degradation and Stability, 2023, 214, 110366.	2.7	8