Tackling the Challenges of Enzymatic (Bio)Fuel Cells

Chemical Reviews 119, 9509-9558

DOI: 10.1021/acs.chemrev.9b00115

Citation Report

#	Article	IF	CITATIONS
1	Challenges and Opportunities of Carbon Nanomaterials for Biofuel Cells and Supercapacitors: Personalized Energy for Futuristic Self-Sustainable Devices. Journal of Carbon Research, 2019, 5, 62.	1.4	19
2	Laser-induced Flexible Graphene Bioelectrodes for Enzymatic Biofuel Cell. , 2019, , .		2
3	Acceleration of cellodextrin phosphorolysis for bioelectricity generation from cellulosic biomass by integrating a synthetic two-enzyme complex into an in vitro synthetic enzymatic biosystem. Biotechnology for Biofuels, 2019, 12, 267.	6.2	11
4	Three-Dimensional Bioelectrodes Utilizing Graphene Based Bioink. Journal of the Electrochemical Society, 2019, 166, G170-G177.	1.3	8
5	Recent advances in high surface area electrodes for bioelectrochemical applications. Current Opinion in Electrochemistry, 2020, 19, 8-13.	2.5	24
6	Onâ€Body Bioelectronics: Wearable Biofuel Cells for Bioenergy Harvesting and Selfâ€Powered Biosensing. Advanced Functional Materials, 2020, 30, 1906243.	7.8	134
7	Enzymatic electrosynthesis as an emerging electrochemical synthesis platform. Current Opinion in Electrochemistry, 2020, 19, 1-7.	2.5	53
8	Development of Reasonably Stable Chitosan Based Proton Exchange Membranes for a Glucose Oxidase Based Enzymatic Biofuel Cell. Electroanalysis, 2020, 32, 536-545.	1.5	12
9	Non-enzymatic direct glucose fuel cells (DGFC): A novel principle towards autonomous electrochemical biosensors. International Journal of Hydrogen Energy, 2020, 45, 29749-29762.	3.8	16
10	Kinetics of Oxygen Reduction by a Beta Barrel Heme Protein on Hyrid Bioelectrodes. ChemElectroChem, 2020, 7, 1029-1037.	1.7	4
11	Advances in microbial production of medium-chain dicarboxylic acids for nylon materials. Reaction Chemistry and Engineering, 2020, 5, 221-238.	1.9	26
12	Electroenzymatic CO ₂ Fixation Using Redox Polymer/Enzyme-Modified Gas Diffusion Electrodes. ACS Energy Letters, 2020, 5, 321-327.	8.8	52
13	Bioelectrodes for evaluating molecular therapeutic and toxicity properties. Current Opinion in Electrochemistry, 2020, 19, 20-26.	2.5	14
14	Characterization of pyranose oxidase variants for bioelectrocatalytic applications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140335.	1.1	3
15	Series-Connected Flexible Biobatteries for Higher Voltage Electrical Skin Patches. ACS Applied Electronic Materials, 2020, 2, 170-176.	2.0	13
16	Bioelectrocatalysis as the basis for the design of enzyme-based biofuel cells and semi-artificial biophotoelectrodes. Nature Catalysis, 2020, 3, 214-224.	16.1	71
17	Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy, 2020, 68, 104308.	8.2	114
18	Nanostructured pencil graphite electrodes for application as high power biocathodes in miniaturized biofuel cells and bio-batteries. Scientific Reports, 2020, 10, 16535.	1.6	10

#	Article	IF	CITATIONS
19	Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chemical Reviews, 2020, 120, 12903-12993.	23.0	227
20	Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chemical Society Reviews, 2020, 49, 7671-7709.	18.7	460
21	Organic Bioelectronics: From Functional Materials to Nextâ€Generation Devices and Power Sources. Advanced Materials, 2020, 32, e2001439.	11.1	101
22	Anode-Driven Controlled Release of Cathodic Fuel via pH Response for Smart Enzymatic Biofuel Cell. IScience, 2020, 23, 101133.	1.9	9
23	Antimicrobial enzymatic biofuel cells. Chemical Communications, 2020, 56, 15589-15592.	2.2	9
24	Multi-Substrate Biofuel Cell Utilizing Glucose, Fructose and Sucrose as the Anode Fuels. Nanomaterials, 2020, 10, 1534.	1.9	23
25	An oxygen-reducing biocathode with "oxygen tanks― Chemical Communications, 2020, 56, 9767-9770.	2.2	9
26	Inhibition in multicopper oxidases: a critical review. Catalysis Science and Technology, 2020, 10, 5386-5410.	2.1	21
27	Bilirubin oxidase oriented on novel type three-dimensional biocathodes with reduced graphene aggregation for biocathode. Biosensors and Bioelectronics, 2020, 167, 112500.	5.3	20
28	Photoelectrochemically-assisted biofuel cell constructed by redox complex and g-C3N4 coated MWCNT bioanode. Biosensors and Bioelectronics, 2020, 169, 112601.	5.3	19
29	Recent Progress of Twoâ€Dimensional Metalâ€Organic Frameworks and Their Derivatives for Oxygen Evolution Electrocatalysis. ChemElectroChem, 2020, 7, 4695-4712.	1.7	21
30	Direct Urea Fuel Cells: Recent Progress and Critical Challenges of Urea Oxidation Electrocatalysis. Advanced Energy and Sustainability Research, 2020, 1, 2000015.	2.8	45
31	Facile Preparation of Homogeneous Copper Nanoclusters Exhibiting Excellent Tetraenzyme Mimetic Activities for Colorimetric Glutathione Sensing and Fluorimetric Ascorbic Acid Sensing. ACS Applied Materials & Interfaces, 2020, 12, 42521-42530.	4.0	119
32	Enzymatic biofuel cells based on protein engineering: recent advances and future prospects. Biomaterials Science, 2020, 8, 5230-5240.	2.6	22
33	A hydrogen/oxygen hybrid biofuel cell comprising an electrocatalytically active nanoflower/laccase-based biocathode. Catalysis Science and Technology, 2020, 10, 6235-6243.	2.1	8
34	Membrane Protein Modified Electrodes in Bioelectrocatalysis. Catalysts, 2020, 10, 1427.	1.6	7
35	Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers. Catalysts, 2020, 10, 1458.	1.6	28
36	Recent Progress in Applications of Enzymatic Bioelectrocatalysis. Catalysts, 2020, 10, 1413.	1.6	13

#		IC	CITATIONS
# 37	Rational Surface Modification of Carbon Nanomaterials for Improved Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes. Catalysts, 2020, 10, 1447.	1.6	12
38	Proteins and peptides for functional nanomaterials: Current efforts and new opportunities. MRS Bulletin, 2020, 45, 1005-1016.	1.7	4
39	Enzymatic Bioreactors: An Electrochemical Perspective. Catalysts, 2020, 10, 1232.	1.6	20
40	Redoxâ€Polymerâ€Based Highâ€Currentâ€Density Gasâ€Diffusion H ₂ â€Oxidation Bioanode Using [Hydrogenase from <i>Desulfovibrio desulfuricans</i> in a Membraneâ€free Biofuel Cell. Angewandte Chemie - International Edition, 2020, 59, 16506-16510.	FeFe] 7.2	21
41	Photo-Tunable Azobenzene-Anthraquinone Schiff Base Copper Complexes as Mediators for Laccase in Biofuel Cell Cathode. Symmetry, 2020, 12, 797.	1.1	7
42	Electron Transfer via Helical Oligopeptide to Laccase Including Chiral Schiff Base Copper Mediators. Symmetry, 2020, 12, 808.	1.1	9
43	Challenges for the Implantation of Symbiotic Nanostructured Medical Devices. Applied Sciences (Switzerland), 2020, 10, 2923.	1.3	2
44	Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics. ACS Nano, 2020, 14, 6436-6448.	7.3	223
45	Proteins-Based Nanocatalysts for Energy Conversion Reactions. Topics in Current Chemistry, 2020, 378, 43.	3.0	3
46	Benign-by-design nature-inspired bionanoconjugates for energy conversion and storage applications. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100373.	3.2	5
47	Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications. Chinese Journal of Chemical Engineering, 2020, 28, 2037-2050.	1.7	10
48	Enzymatic Biofuel Cells for Self-Powered, Controlled Drug Release. Journal of the American Chemical Society, 2020, 142, 11602-11609.	6.6	55
49	Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: Mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications. Biosensors and Bioelectronics, 2020, 165, 112342.	5.3	111
50	Review—Flexible and Stretchable Electrochemical Sensing Systems: Materials, Energy Sources, and Integrations. Journal of the Electrochemical Society, 2020, 167, 037573.	1.3	74
51	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644
52	Recent Enzymatic Electrochemistry for Reductive Reactions. ChemElectroChem, 2020, 7, 1974-1986.	1.7	34
53	Applications of chitosan (CHI)-reduced graphene oxide (rGO)-polyaniline (PAni) conducting composite electrode for energy generation in glucose biofuel cell. Scientific Reports, 2020, 10, 10428.	1.6	61
54	Assessing electron transfer reactions and catalysis in multicopper oxidases with operando X-ray absorption spectroscopy. Nature Communications, 2020, 11, 316.	5.8	24

#	Article	IF	CITATIONS
55	Assessment of Glucose Oxidase Based Enzymatic Fuel Cells Integrated With Newly Developed Chitosan Membranes by Electrochemical Impedance Spectroscopy. Electroanalysis, 2020, 32, 1304-1314.	1.5	4
56	Power generation from cheese whey using enzymatic fuel cell. Journal of Cleaner Production, 2020, 254, 120181.	4.6	11
57	Improved operational stability of mediated glucose enzyme electrodes for operation in human physiological solutions. Bioelectrochemistry, 2020, 133, 107460.	2.4	21
58	Controllable Display of Sequential Enzymes on Yeast Surface with Enhanced Biocatalytic Activity toward Efficient Enzymatic Biofuel Cells. Journal of the American Chemical Society, 2020, 142, 3222-3230.	6.6	58
59	Bioelectrocatalytic Conversion from N ₂ to Chiral Amino Acids in a H ₂ /α-Keto Acid Enzymatic Fuel Cell. Journal of the American Chemical Society, 2020, 142, 4028-4036.	6.6	49
60	Platinum Group Metal-Free Catalysts for Oxygen Reduction Reaction: Applications in Microbial Fuel Cells. Catalysts, 2020, 10, 475.	1.6	34
61	A Skin-Mountable Bacteria-Powered Battery System for Self-Powered Medical Devices. , 2020, , .		2
62	Effects of Elimination of α Helix Regions on Direct Electron Transfer-type Bioelectrocatalytic Properties of Copper Efflux Oxidase. Electrochemistry, 2020, 88, 185-189.	0.6	9
63	Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Science Robotics, 2020, 5, .	9.9	385
64	Development of graphene-based enzymatic biofuel cells: A minireview. Bioelectrochemistry, 2020, 134, 107537.	2.4	36
65	Enzymatic Glucose-Oxygen Biofuel Cells for Highly Efficient Interfacial Corrosion Protection. ACS Applied Energy Materials, 2020, 3, 4441-4448.	2.5	9
66	High-power, non-enzymatic glucose biofuel cell based on a nano/micro hybrid-structured Au anode. Journal of Power Sources, 2020, 453, 227844.	4.0	29
67	Wireless <i>In Vivo</i> Biofuel Cell Monitoring. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2021, 5, 25-34.	2.3	7
68	Trends of biofuel cells for smart biomedical devices. International Journal of Hydrogen Energy, 2021, 46, 3220-3229.	3.8	32
69	Enzymatic regeneration and conservation of ATP: challenges and opportunities. Critical Reviews in Biotechnology, 2021, 41, 16-33.	5.1	40
70	Stabilization of bilirubin oxidase in a biogel matrix for high-performance gas diffusion electrodes. Journal of Power Sources, 2021, 482, 229035.	4.0	14
71	Immobilizing redox enzymes at mesoporous and nanostructured electrodes. Current Opinion in Electrochemistry, 2021, 26, 100658.	2.5	13
72	A self-powered skin-patch electrochromic biosensor. Biosensors and Bioelectronics, 2021, 175, 112879.	5.3	42

#	Article	IF	Citations
74	Rational design of electroactive redox enzyme nanocapsules for high-performance biosensors and enzymatic biofuel cell. Biosensors and Bioelectronics, 2021, 174, 112805.	5.3	14
75	How Far Are We from Achieving Selfâ€Powered Flexible Health Monitoring Systems: An Energy Perspective. Advanced Energy Materials, 2021, 11, 2002646.	10.2	70
76	Voltammetry and Singleâ€Molecule In Situ Scanning Tunnelling Microscopy of the Redox Metalloenzyme Human Sulfite Oxidase. ChemElectroChem, 2021, 8, 164-171.	1.7	9
77	A DNA nanopillar as a scaffold to regulate the ratio and distance of mimic enzymes for an efficient cascade catalytic platform. Chemical Science, 2021, 12, 407-411.	3.7	20
78	Direct Electro-Chemistry and Electro-Catalytic Reduction on Hydrogen Peroxide of Horseradish Peroxidase Based Electrode on the Basis of Graphene Oxide-Magnetic Nano-Particle Composite. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 741-755.	1.9	3
79	Electrochemical Approaches for Preparation of Tailor-Made Amino Acids. Chinese Journal of Organic Chemistry, 2021, 41, 3034.	0.6	4
80	A membraneless microfluidic fuel cell with a hollow flow channel and porous flowâ€ŧhrough electrodes. International Journal of Energy Research, 2021, 45, 8536-8550.	2.2	10
81	Enzymes hosted in redox-active ionically cross-linked polyelectrolyte networks enable more efficient biofuel cells. Soft Matter, 2021, 17, 5240-5247.	1.2	10
82	Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage. Advanced Energy Materials, 2021, 11, 2002969.	10.2	16
83	Enzyme-modified electrodes for biofuel cells: A comprehensive review. Materials Today: Proceedings, 2021, 46, 3495-3501.	0.9	5
84	Clicked Bifunctional Dendrimeric and Cyclopeptidic Addressable Redox Scaffolds for the Functionalization of Carbon Nanotubes with Redox Molecules and Enzymes. Langmuir, 2021, 37, 1001-1011.	1.6	9
85	Biological and Microbial Fuel Cells. , 2021, , .		1
86	Stability of Proton Exchange Membranes in Phosphate Buffer for Enzymatic Fuel Cell Application: Hydration, Conductivity and Mechanical Properties. Polymers, 2021, 13, 475.	2.0	7
87	Rapid and Oriented Immobilization of Laccases on Electrodes via a Methionine-Rich Peptide. ACS Catalysis, 2021, 11, 2445-2453.	5.5	31
88	Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. Biosensors, 2021, 11, 41.	2.3	9
89	Enzymatic Biofuel Cells: A Review on Flow Designs. Energies, 2021, 14, 910.	1.6	22
90	Highly sensitive and stable fructose self-powered biosensor based on a self-charging biosupercapacitor. Biosensors and Bioelectronics, 2021, 176, 112909.	5.3	26
91	Paper-based lactate biofuel cell array with high power output. Journal of Power Sources, 2021, 489, 229533.	4.0	34

#	Article	IF	CITATIONS
92	Mutations in the coordination spheres of T1 Cu affect Cu2+-activation of the laccase from Thermus thermophilus. Biochimie, 2021, 182, 228-237.	1.3	8
93	Blood driven biopower cells: Acquiring energy from reverse electrodialysis using sodium concentrations from the flow of human blood. Journal of Power Sources, 2021, 488, 229440.	4.0	5
94	Polymer coating for improved redox-polymer-mediated enzyme electrodes: A mini-review. Electrochemistry Communications, 2021, 124, 106931.	2.3	15
95	A Biofuel-Cell-Based Energy Harvester With 86% Peak Efficiency and 0.25-V Minimum Input Voltage Using Source-Adaptive MPPT. IEEE Journal of Solid-State Circuits, 2021, 56, 715-728.	3.5	20
96	Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synthetic Biology, 2021, 10, 670-681.	1.9	22
97	Surface-confined redox-active monolayers of a multifunctional anthraquinone derivative on nanoporous and single-crystal gold electrodes. Electrochemistry Communications, 2021, 124, 106962.	2.3	4
98	Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances. Annual Review of Physical Chemistry, 2021, 72, 467-488.	4.8	21
99	From Enzyme Stability to Enzymatic Bioelectrode Stabilization Processes. Catalysts, 2021, 11, 497.	1.6	25
100	Enzyme Electrochemistry for Industrial Energy Applications—A Perspective on Future Areas of Focus. ACS Catalysis, 2021, 11, 5951-5967.	5.5	20
101	A self-powered glucose sensor based on BioCapacitor principle with micro-sized enzyme anode employing direct electron transfer type FADCDH. JPhys Energy, 2021, 3, 034009.	2.3	5
102	Immobilization of multicopper oxidase from Pyrobaculum aerophilum onto an electrospunâ€aligned singleâ€walled carbon nanotube surface via a carbonâ€nanotubeâ€binding peptide for biocathode. Journal of Applied Polymer Science, 2021, 138, 50937.	1.3	1
103	Carbon nanowalls functionalization for efficient O2 reduction catalyzed by laccase using design of experiment. Applied Surface Science, 2021, 547, 149112.	3.1	11
104	Rational Optimization of Tether Binding Length between the Redox Groups and the Polymer Backbone in Electroactive Redox Enzyme Nanocapsules for High-Performance Enzymatic Biofuel Cell. ACS Applied Energy Materials, 2021, 4, 5034-5042.	2.5	2
105	Enzymatic Biofuel Cell: Opportunities and Intrinsic Challenges in Futuristic Applications. Advanced Energy and Sustainability Research, 2021, 2, 2100031.	2.8	38
108	Effects of cathode gas diffusion layer type and membrane electrode assembly preparation on the performance of immobilized glucose oxidaseâ€based enzyme fuel cell. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2686.	0.8	1
110	Physical intelligence as a new paradigm. Extreme Mechanics Letters, 2021, 46, 101340.	2.0	114
111	Biosupercapacitor with an enzymatic cascade at the anode working in a sucrose solution. Biosensors and Bioelectronics, 2021, 186, 113248.	5.3	8
112	Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.	7.8	38

#	Article	IF	CITATIONS
113	Research Progress and Prospects of Nanozyme-Based Glucose Biofuel Cells. Nanomaterials, 2021, 11, 2116.	1.9	18
114	Electrochemical Sensing in Contact Lenses. Electroanalysis, 2022, 34, 227-236.	1.5	11
115	Nickel-copper oxide nanoflowers for highly efficient glucose electrooxidation. International Journal of Hydrogen Energy, 2021, 46, 28527-28536.	3.8	25
116	A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat. Nano Energy, 2021, 86, 106061.	8.2	63
117	Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Frontiers in Bioengineering and Biotechnology, 2021, 9, 710035.	2.0	13
118	Bioelectricity production from sweat-activated germination of bacterial endospores. Biosensors and Bioelectronics, 2021, 186, 113293.	5.3	16
119	Development of a new biocathode for a single enzyme biofuel cell fuelled by glucose. Scientific Reports, 2021, 11, 18568.	1.6	13
120	Use of selfâ€assembled monolayers for the sequential and independent immobilisation of enzymes. ChemElectroChem, 0, , .	1.7	2
121	Cobalt/nitrogen doped porous carbon as catalysts for efficient oxygen reduction reaction: Towards hybrid enzymatic biofuel cells. Electrochimica Acta, 2021, 389, 138791.	2.6	14
122	A MXene-based slurry bioanode with potential application in implantable enzymatic biofuel cells. Journal of Power Sources, 2021, 506, 230206.	4.0	10
123	Design of transition metal oxides nanosheets for the direct electrocatalytic oxidation of glucose. Materials Chemistry and Physics, 2021, 269, 124770.	2.0	11
124	Wearable Selfâ€Powered Electrochemical Devices for Continuous Health Management. Advanced Functional Materials, 2021, 31, 2107042.	7.8	58
125	Designing Porous Antifouling Interfaces for Highâ€₽ower Implantable Biofuel Cell. Advanced Functional Materials, 2021, 31, 2107160.	7.8	14
126	On the use of surface-confined molecular catalysts in fuel cell development. Current Opinion in Electrochemistry, 2021, 29, 100765.	2.5	1
127	Microfluidic non-enzymatic biofuel cell integrated with electrodeposited metallic catalysts on a paper based platform. Journal of Power Sources, 2021, 510, 230405.	4.0	6
128	Enhancing bio-catalytic performance of lipase immobilized on ionic liquids modified magnetic polydopamine. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111960.	2.5	21
129	Effect of the protection layer formed by cross-linked gelatin on the stability and performance of glucose and oxygen fuel cells. Journal of Energy Chemistry, 2021, 61, 155-162.	7.1	16
130	Enhanced dechlorination of an enzyme-catalyzed electrolysis system by ionic liquids: Electron transfer, enzyme activity and dichloromethane diffusion. Chemosphere, 2021, 281, 130913.	4.2	5

#	Article	IF	CITATIONS
131	Direct electron transfer of fructose dehydrogenase immobilized on thiol-gold electrodes. Electrochimica Acta, 2021, 392, 138946.	2.6	16
132	Multiscale modelling of diffusion and enzymatic reaction in porous electrodes in Direct Electron Transfer mode. Chemical Engineering Science, 2022, 248, 117157.	1.9	2
133	CuxO nanorods with excellent regenerable NADH peroxidase mimics and its application for selective and sensitive fluorimetric ethanol sensing. Analytica Chimica Acta, 2021, 1186, 339126.	2.6	14
134	Ubiquitous Self-Powered Architecture for Fuel Cell-Based Point-of-Care Applications. IEEE Transactions on Industrial Electronics, 2021, 68, 11447-11457.	5.2	6
135	Self-encapsulated enzyme through in-situ growth of polypyrrole for high-performance enzymatic biofuel cell. Chemical Engineering Journal, 2022, 429, 132148.	6.6	15
136	Passive fuel delivery and efficient anoxic condition in anode improve performance of methanol biofuel cell. Applied Energy, 2022, 305, 117824.	5.1	3
137	Supercapacitive biofuel cells. Current Opinion in Biotechnology, 2022, 73, 179-187.	3.3	13
138	A photo-switch for enzymatic biofuel cells based on the photo-oxidization of electron acceptor in cathode by C-dots nanozyme. Chemical Engineering Journal, 2022, 428, 131258.	6.6	7
139	Electrocatalysis as an enabling technology for organic synthesis. Chemical Society Reviews, 2021, 50, 7941-8002.	18.7	534
140	Investigating the Electrochemical Performance of Smart Selfâ€Powered Bionic Skin Fragment Based on Bioelectricity Generation. Advanced Materials Technologies, 2021, 6, 2000848.	3.0	5
141	Evaluation of photoanode materials used in biophotovoltaic systems for renewable energy generation. Sustainable Energy and Fuels, 2021, 5, 4209-4232.	2.5	20
142	Cellulose to electricity conversion by an enzymatic biofuel cell. Sustainable Energy and Fuels, 2021, 5, 4580-4586.	2.5	4
143	Digitization and image-based structure-properties relationship evaluation of a porous gold micro-electrode. Materials and Design, 2020, 193, 108812.	3.3	10
144	The biocompatibility of biofuel cells operating inside the body. Biochemical Society Transactions, 2020, 48, 867-879.	1.6	2
145	Totally organic electrical skin patch powered by flexible biobattery. JPhys Energy, 2020, 2, 044004.	2.3	7
146	Engineering a diaphorase via directed evolution for enzymatic biofuel cell application. Bioresources and Bioprocessing, 2020, 7, .	2.0	7
147	Wearable chem-biosensing devices: from basic research to commercial market. Lab on A Chip, 2021, 21, 4285-4310.	3.1	29
148	Enhancing the catalytic current response of H 2 oxidation gas diffusion bioelectrodes using an optimized viologenâ€based redox polymer and [NiFe] hydrogenase. Electrochemical Science Advances, 0, , e2100100.	1.2	1

#	Article	IF	CITATIONS
149	Carbon Nanotube PtSn Nanoparticles for Enhanced Complete Biocatalytic Oxidation of Ethylene Glycol in Biofuel Cells. ACS Materials Au, 2022, 2, 94-102.	2.6	6
150	Eine Redoxpolymerâ€basierte Gasdiffusionsâ€H 2 â€Oxidationsbioanode mit hoher Stromdichte unter Verwendung von [FeFe]â€Hydrogenase aus Desulfovibrio desulfuricans integriert in einer membranfreien Biobrennstoffzelle. Angewandte Chemie, 2020, 132, 16649.	1.6	2
151	Di(Thioether Sulfonate)‣ubstituted Quinolinedione as a Rapidly Dissoluble and Stable Electron Mediator and Its Application in Sensitive Biosensors. Advanced Healthcare Materials, 2021, , 2101819.	3.9	3
152	Thermal annealingâ€enhanced bioelectrocatalysis in membraneâ€less glucose/O2 biofuel cell basedâ€on hydrophilic carbon fibresâ€. ChemElectroChem, 0, , .	1.7	1
153	Hybrid catalyst cascade for enhanced oxidation of glucose in glucose/air biofuel cell. Bioelectrochemistry, 2022, 143, 107983.	2.4	9
154	Charge regulation engineering to suppress Jahn-Teller distortion in low crystallinity In-doping MnCo2O4 for high activity pseudocapacitors and hydrogen evolution reaction. Chemical Engineering Journal, 2022, 430, 132886.	6.6	20
155	BIOTECHNOLOGICAL AND BIOMEDICAL APPLICATIONS OF FUNGAL CELLOBIOSE DEHYDROGENASE. Postepy Mikrobiologii, 2020, 59, 75-86.	0.1	0
156	Redox-active Polymers in Biofuel Cells. RSC Polymer Chemistry Series, 2020, , 332-382.	0.1	1
157	Fundamentals and applications of enzymatic bioelectrocatalysis. , 2023, , 456-491.		1
158	Engineered Nanoenzymes with Multifunctional Properties for Nextâ€Generation Biological and Environmental Applications. Advanced Functional Materials, 2022, 32, 2108650.	7.8	43
159	Complex singleâ€molecule and molecular scale entities in electrochemical environments: Mechanisms and challenges. Electrochemical Science Advances, 2022, 2, e2100157.	1.2	1
160	Effects of Designing and Operating Parameters on the Performance of Glucose Enzymatic Biofuel Cells. Advances in Intelligent Systems and Computing, 2021, , 256-267.	0.5	0
162	Enzyme immobilization: what have we learned in the past five years?. Biofuels, Bioproducts and Biorefining, 2022, 16, 587-608.	1.9	25
163	Fundamental insight into redox enzyme-based bioelectrocatalysis. Bioscience, Biotechnology and Biochemistry, 2022, 86, 141-156.	0.6	8
164	Enzymatic Bioelectrocatalysis. Catalysts, 2021, 11, 1373.	1.6	4
165	An enzyme-free monosaccharide fuel cell using bio-mimetically hemin-intercalated polydopamine as anode and cathode catalysts. Electrochimica Acta, 2022, 405, 139830.	2.6	1
166	Hierarchical porous MoS2 particles: excellent multi-enzyme-like activities, mechanism and its sensitive phenol sensing based on inhibition of sulfite oxidase mimics. Journal of Hazardous Materials, 2022, 425, 128053.	6.5	21
167	Electrochemistry of copper efflux oxidase-like multicopper oxidases involved in copper homeostasis. Current Opinion in Electrochemistry, 2022, 32, 100919.	2.5	2

#	Article	IF	CITATIONS
168	Physically mixed Ni2Co/graphene catalyst for enhanced glucose oxidation in a glucose fuel cell. Biomass Conversion and Biorefinery, 2024, 14, 525-537.	2.9	3
169	Electrochemical and spectroelectrochemical characterization of bacteria and bacterial systems. Analyst, The, 2021, 147, 22-34.	1.7	10
170	A glucose/O ₂ biofuel cell integrated with an exonuclease-powered DNA walker for self-powered sensing of microRNA. Chemical Communications, 2022, 58, 2922-2925.	2.2	7
171	A perspective on development of fuel cell materials: Electrodes and electrolyte. International Journal of Energy Research, 2022, 46, 6953-6988.	2.2	47
172	Between Two Walls: Modeling the Adsorption Behavior of β-Glucosidase A on Bare and SAM-Functionalized Gold Surfaces. Langmuir, 2022, 38, 1313-1323.	1.6	2
173	Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis. ACS Catalysis, 2022, 12, 1886-1897.	5.5	16
174	Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. Materials, 2022, 15, 1037.	1.3	13
175	Understanding the local chemical environment of bioelectrocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	26
176	Organic β yclodextrin Nanoparticle: An Efficient Building Block Between Functionalized Poly(pyrrole) Electrodes and Enzymes. Small, 2022, 18, e2105880.	5.2	4
177	Applications of nanotechnology in smart textile industry: A critical review. Journal of Advanced Research, 2022, 38, 55-75.	4.4	98
178	A novel self-powered sensor based on Ni(OH)2/Fe2O3 photoanode for glucose detection by converting solar energy into electricity. Journal of Alloys and Compounds, 2022, 907, 164132.	2.8	16
179	Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. Small, 2022, 18, e2107902.	5.2	25
180	Investigating the role of metals loaded on nitrogen-doped carbon-nanotube electrodes in electroenzymatic alcohol dehydrogenation. Applied Catalysis B: Environmental, 2022, 307, 121195.	10.8	11
181	Recent Advances in Medicinal Chemistry of Ampicillin: Derivatives, Metal Complexes, and Sensing Approaches. SSRN Electronic Journal, 0, , .	0.4	0
182	Electrochemical Sensing of Glucose Using Glucose Oxidase/PEDOT:4-Sulfocalix [4]arene/MXene Composite Modified Electrode. Micromachines, 2022, 13, 304.	1.4	28
183	A Bidirectional Bioinspired [FeFe]-Hydrogenase Model. Journal of the American Chemical Society, 2022, 144, 3614-3625.	6.6	31
184	Assembling a Lowâ€volume Biofuel Cell on a Screenâ€printed Electrode for Glucose Sensing. Electroanalysis, 2022, 34, 1629-1637.	1.5	5
185	Immobilizing Enzymes on a Commercial Polymer: Performance Analysis of a GOx-Laccase Based Enzymatic Biofuel Cell Assembly. Energies, 2022, 15, 2182.	1.6	5

	CITATION R	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
186	An Antiâ€Biofouling Flexible Fiber Biofuel Cell Working in the Brain. Small Methods, 2022, 6, e2200142.	4.6	11
187	A sweat-activated, wearable microbial fuel cell for long-term, on-demand power generation. Biosensors and Bioelectronics, 2022, 205, 114128.	5.3	20
188	A membraneless starch/O2 biofuel cell based on bacterial surface regulable displayed sequential enzymes of glucoamylase and glucose dehydrogenase. Biosensors and Bioelectronics, 2022, 207, 114197.	5.3	6
189	Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel cell. Chemical Engineering Journal, 2022, 440, 135719.	6.6	13
190	Enhancement of bioelectrochemical dioxygen reduction with oxygen-enriching materials. Current Opinion in Electrochemistry, 2022, 34, 100966.	2.5	2
191	The direct use of enzymatic biofuel cells as functional bioelectronics. EScience, 2022, 2, 1-9.	25.0	34
193	A Short Overview of Biological Fuel Cells. Membranes, 2022, 12, 427.	1.4	8
194	Metal-organic framework-erythrocytic hybrid surfaces with enhanced oxygen reduction performance for enzymatic biofuel cells–An updated strategy. Journal of Power Sources, 2022, 535, 231411.	4.0	1
196	MOF based electrode platforms in the assembly of Biofuel cells and Selfâ€powered sensors. ChemElectroChem, 0, , .	1.7	1
197	Flexible self-charging power sources. Nature Reviews Materials, 2022, 7, 870-886.	23.3	159
198	Dehydrogenase-Functionalized Interfaced Materials in Electroenzymatic and Photoelectroenzymatic CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 6141-6156.	3.2	7
199	A hybrid bioelectrochemical device based on glucose/O2 enzymatic biofuel cell for energy conversion and storage. Electrochimica Acta, 2022, 420, 140440.	2.6	11
200	Engineering bio-interfaces for the direct electron transfer of Myriococcum thermophilum cellobiose dehydrogenase: Towards a mediator-less biosupercapacitor/biofuel cell hybrid. Biosensors and Bioelectronics, 2022, 210, 114337.	5.3	7
201	Physical intelligence as a new paradigm Extreme Mechanics Letters, 2021, 46, 101340.	2.0	8
202	Energy Harvesting by Mesoporous Reduced Graphene Oxide Enhanced the Mediator-Free Glucose-Powered Enzymatic Biofuel Cell for Biomedical Applications. ACS Applied Materials & Interfaces, 2022, 14, 24229-24244.	4.0	15
203	High-performance hybrid biofuel cells using amphiphilic assembly based enzyme electrodes. Applied Physics Reviews, 2022, 9, .	5.5	4
204	Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018. Energies, 2022, 15, 3787.	1.6	7
205	Molecular Modeling in Anion Exchange Membrane Research: A Brief Review of Recent Applications. Molecules, 2022, 27, 3574.	1.7	6

#		IF	CITATIONS
π	Recent advances in medicinal chemistry of ampicillin: Derivatives, metal complexes, and sensing		11
206	approaches. TrAC - Trends in Analytical Chemistry, 2022, 155, 116691.	5.8	11
207	Modulating the Adsorption Orientation of Methionine-rich Laccase by Tailoring the Surface Chemistry of Single-walled Carbon Nanotubes. Colloids and Surfaces B: Biointerfaces, 2022, , 112660.	2.5	5
208	Cellulose-acetate coating of carbon cloth diffusion layer for liquid-fed fuel cell applications. Journal of Power Sources, 2022, 542, 231739.	4.0	2
209	Nitro-oxidized carboxylated cellulose nanofiber based nanopapers and their PEM fuel cell performance. Sustainable Energy and Fuels, 2022, 6, 3669-3680.	2.5	11
210	Diazonium Salts and Related Compounds in Electrochemical Energy Storage and Conversion. Physical Chemistry in Action, 2022, , 427-451.	0.1	2
211	Hollow Bioelectrodes Based on Buckypaper Assembly. Application to the Electroenzymatic Reduction of O2. Nanomaterials, 2022, 12, 2399.	1.9	3
212	Stoichiometric Conversion of Maltose for Biomanufacturing by <i>In Vitro</i> Synthetic Enzymatic Biosystems. Biodesign Research, 2022, 2022, .	0.8	3
213	Electrochemical Immobilisation of Glucose Oxidase for the Controlled Production of H ₂ O ₂ in a Biocatalytic Flow Reactor. ChemElectroChem, 2022, 9, .	1.7	4
214	Site-directed capture of laccase at edge-rich graphene via an interfacial hydrophobicity effect for direct electrochemistry study. Journal of Electroanalytical Chemistry, 2022, 919, 116562.	1.9	1
215	Sensitive electrochemical sequential enzyme biosensor for glucose and starch based on glucoamylase- and glucose oxidase-controllably co-displayed yeast recombinant. Analytica Chimica Acta, 2022, 1221, 340173.	2.6	5
216	Effects of interactions between SPEEK or Nafion ionomers and bilirubin oxidase on O2 enzymatic reduction. Electrochimica Acta, 2022, 426, 140787.	2.6	0
217	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
218	Advances in Microfluidic Technologies for Energy Storage and Release Systems. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	2
219	Evaluation of TEMPOâ€NH2Âand Oxalate Oxidase Enzyme for Complete Ethylene Glycol Oxidation. ChemElectroChem, 0, , .	1.7	0
220	Engineering Selfâ€Powered Electrochemical Sensors Using Analyzed Liquid Sample as the Sole Energy Source. Advanced Science, 2022, 9, .	5.6	12
221	Flexible dibutyl phthalate aptasensor based on self-powered CNTs-rGO enzymatic biofuel cells. Sensors and Actuators B: Chemical, 2022, 371, 132468.	4.0	10
222	Carbon based-nanomaterials used in biofuel cells – A review. Fuel, 2023, 331, 125634.	3.4	23
223	A glucose/O2 biofuel cell as self-powered sensor for ultrasensitive microRNA detection based on CRISPR-Cas12a cleavage and duplex-specific nuclease-assisted target recycling. Sensors and Actuators B: Chemical, 2022, 373, 132700.	4.0	3

#	Article	IF	CITATIONS
224	A novel membraneless β-glucan/O2 enzymatic fuel cell based on β-glucosidase (RmBgl3B)/pyranose dehydrogenase (AmPDH) co-immobilized onto buckypaper electrode. Bioelectrochemistry, 2022, 148, 108254.	2.4	3
225	Microbial Electrochemical Systems: Recent Advancements and Future Prospects. Clean Energy Production Technologies, 2022, , 107-117.	0.3	0
226	Biorefinery of galacturonic acid using a biofuel cell as a reactor. Reaction Chemistry and Engineering, 0, , .	1.9	0
227	Biocatalysis in ionic liquids for a low carbon future. , 2022, , 299-316.		0
228	Enzymatic and Microbial Electrochemistry: Approaches and Methods. ACS Measurement Science Au, 2022, 2, 517-541.	1.9	11
229	Bioelectrodes with Enzyme Cascade Reactions. , 2023, , 157-179.		0
230	Conformational triggering in voltammetry and single-molecule conductivity of two-centre redox metalloproteins: Cytochrome c4 and copper nitrite reductase. Current Opinion in Electrochemistry, 2022, 36, 101137.	2.5	2
231	Flexible Biofuel Cellâ€Inâ€Aâ€Tube (i <i>ez</i> Tube): An Entirely Selfâ€Contained Biofuel Cell for Wearable Green Bioâ€energy Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	14
232	Modeling of the Electrostatic Interaction and Catalytic Activity of [NiFe] Hydrogenases on a Planar Electrode. Journal of Physical Chemistry B, 2022, 126, 8777-8790.	1.2	3
233	Development of an Integrated Salt Cartridge-Reverse Electrodialysis (Red) Device to Increase Electrolyte Concentrations to Biomedical Devices. Membranes, 2022, 12, 990.	1.4	1
234	Bimetallic Electrocatalyst of Hyaluronate-Au@Pt for Durable Oxygen Reduction in Biofuel Cells. ACS Applied Energy Materials, 2022, 5, 12475-12484.	2.5	1
235	Challenges in Biomaterials Science for Electrochemical Biosensing and Bioenergy. Chemistry of Materials, 2022, 34, 10211-10222.	3.2	5
236	Hierarchical Porous Carbon Fibers for Enhanced Interfacial Electron Transfer of Electroactive Biofilm Electrode. Catalysts, 2022, 12, 1187.	1.6	1
237	Tailoring Nanostructured Supports to Achieve High Performance in Enzymatic Biofuel Cells. ACS Applied Energy Materials, 2022, 5, 13113-13127.	2.5	4
238	One-step electrochemical approach of enzyme immobilization for bioelectrochemical applications. Synthetic Metals, 2022, 291, 117205.	2.1	12
239	Structural design of anthraquinone bridges in direct electron transfer of fructose dehydrogenase. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112941.	2.5	2
240	Tailoring enzymatic loading capacity on 3D macroporous gold by catalytic hairpin assembly and hybridization chain reaction: Application for ultrasensitive self-powered microRNA detection. Biosensors and Bioelectronics, 2023, 219, 114813.	5.3	11
241	Bioinspired and Bioderived Aqueous Electrocatalysis. Chemical Reviews, 2023, 123, 2311-2348.	23.0	22

#	Article	IF	CITATIONS
242	Mechanochemistry-guided reticular assembly for stabilizing enzymes with covalent organic frameworks. Cell Reports Physical Science, 2022, 3, 101153.	2.8	14
243	Challenges in Elucidating the Free Energy Scheme of the Laccase Catalyzed Reduction of Oxygen. ChemCatChem, 2023, 15, .	1.8	6
244	Performance evaluation and mechanism study of a dual-electrolyte self-pumping microfluidic fuel cell. Energy Conversion and Management, 2023, 276, 116542.	4.4	6
245	Nanostructured electrodes based on multiwalled carbon nanotube/glyconanoparticles for the specific immobilization of bilirubin oxidase: Application to the electrocatalytic O2 reduction. Bioelectrochemistry, 2023, 150, 108328.	2.4	3
246	Enzymatic biofuel cell-powered iontophoretic facial mask for enhanced transdermal drug delivery. Biosensors and Bioelectronics, 2023, 223, 115019.	5.3	7
247	Review of Progress and Prospects in Research on Enzymatic and Non- Enzymatic Biofuel Cells; Specific Emphasis on 2D Nanomaterials. Current Biotechnology, 2022, 11, 212-229.	0.2	1
248	Optimizing Covalent Immobilization of Glucose Oxidase and Laccase on PV15 Fluoropolymer-Based Bioelectrodes. Journal of Functional Biomaterials, 2022, 13, 270.	1.8	1
249	Producing Micro-Power with Microfluidic Enzymatic Biofuel Cells: A Comprehensive Review. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 587-609.	2.7	1
250	Facile Functionalization of Carbon Electrodes for Efficient Electroenzymatic Hydrogen Production. Jacs Au, 2023, 3, 124-130.	3.6	2
251	Emerging applications of nano-modified bio-fuel cells. , 2023, , 213-242.		0
252	Recent advances in the role of biocatalyst in biofuel cells and its application: An overview. Biotechnology and Genetic Engineering Reviews, 0, , 1-39.	2.4	1
253	Chlorhexidine digluconate exerts bactericidal activity vs. gram positive Staphylococci with bioelectrocatalytic compatibility: High level disinfection for implantable biofuel cells. Bioelectrochemistry, 2023, , 108435.	2.4	0
254	Electro-enzyme coupling systems for selective reduction of CO2. Journal of Energy Chemistry, 2023, 80, 140-162.	7.1	10
255	Influence of distal glycan mimics on direct electron transfer performance for bilirubin oxidase bioelectrocatalysts. Bioelectrochemistry, 2023, 152, 108413.	2.4	1
256	Biofuel Cells and Biobatteries: Misconceptions, Opportunities, and Challenges. Batteries, 2023, 9, 119.	2.1	9
257	Glucose Oxidase-like Rhodium Single-Atom Nanozymes: A Mimic Platform for Biometabolism and Electrometabolism of Glucose Oxidation at Neutral pH. ACS Energy Letters, 2023, 8, 1697-1704.	8.8	5
258	Polyaniline combining with ultrathin manganese dioxide nanosheets on carbon nanofibers as effective binder-free supercapacitor electrode. Electrochimica Acta, 2023, 450, 142275.	2.6	12
259	Availability of Biomass and Potential of Nanotechnologies for Bioenergy Production in Jordan. Processes, 2023, 11, 992.	1.3	6

IF ARTICLE CITATIONS Electricity generation., 2023, , 273-299. 260 0 Shield, Anchor, and Adhesive Roles of Methylene Blue in Tyrosinase Adsorbed on Carbon Felt for a Flow Injection Amperometric Enzyme Biosensor for Phenolic Substrates and Inhibitors. Langmuir, 1.6 2023, 39, 4676-4691. Molecular Insights of Cellobiose Dehydrogenase Adsorption on Self-Assembled Monolayers. 262 4 1.6 Langmuir, 2023, 39, 5880-5890. Carbon nanostructures for energy generation and storage., 2023,, 57-94. Advances and prospects of biodegradable polymer nanocomposites for fuel cell applications., 2023,, 264 0 599-637. Carbon-Based Nanostructured Bio-Assemblies for Bioelectrochemical Applications. , 2024, 2, 208-224. 279 Electrode manufacturing based on printing: a mini review. International Journal of Advanced 286 1.5 1 Manufacturing Technology, 0, , . Fuel cell technology for green energy generation., 2023, , 555-573. Engineering carbon nanomaterials toward high-efficiency bioelectrocatalysis for enzymatic biofuel 289 3.2 2 cells: a review. Materials Chemistry Frontiers, 2023, 7, 5806-5825. Recent advances of biosensors on microneedles. Analytical Methods, 2023, 15, 5711-5730. 1.3

CITATION REPORT