Probing the transition state in enzyme catalysis by high

Nature Catalysis 2, 726-734 DOI: 10.1038/s41929-019-0307-6

Citation Report

#	Article	IF	CITATIONS
1	Enzyme catalysis under pressure. Nature Catalysis, 2019, 2, 646-647.	34.4	1
2	The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ACS Catalysis, 2020, 10, 12666-12695.	11.2	54
3	Proteins-Based Nanocatalysts for Energy Conversion Reactions. Topics in Current Chemistry, 2020, 378, 43.	5.8	3
4	Benign-by-design nature-inspired bionanoconjugates for energy conversion and storage applications. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100373.	5.9	5
5	Lifestyle of bacteria in deep sea. Environmental Microbiology Reports, 2021, 13, 15-17.	2.4	2
6	Distinct conformational dynamics and allosteric networks in alpha tryptophan synthase during active catalysis. Protein Science, 2021, 30, 543-557.	7.6	7
7	On Catalytic Kinetics of Enzymes. Processes, 2021, 9, 271.	2.8	4
9	Challenges for machine learning force fields in reproducing potential energy surfaces of flexible molecules. Journal of Chemical Physics, 2021, 154, 094119.	3.0	24
10	From structure to mechanism: skiing the energy landscape. Nature Methods, 2021, 18, 435-436.	19.0	11
11	Validating the CHARMM36m protein force field with LJ-PME reveals altered hydrogen bonding dynamics under elevated pressures. Communications Chemistry, 2021, 4, .	4.5	5
12	Adaptations for Pressure and Temperature in Dihydrofolate Reductases. Microorganisms, 2021, 9, 1706.	3.6	3
13	Making the invisible visible: TowardÂstructural characterization of allosteric states, interaction networks, and allosteric regulatory mechanisms in protein kinases. Current Opinion in Structural Biology, 2021, 71, 71-78.	5.7	13
14	Local frustration determines loop opening during the catalytic cycle of an oxidoreductase. ELife, 2020, 9, .	6.0	13
17	Nuclear spin relaxation. Nuclear Magnetic Resonance, 2020, , 76-138.	0.2	0
18	Structure determination of high-energy states in a dynamic protein ensemble. Nature, 2022, 603, 528-535.	27.8	51
19	NMR spectroscopy, excited states and relevance to problems in cell biology – transient pre-nucleation tetramerization of huntingtin and insights into Huntington's disease. Journal of Cell Science, 2022, 135, .	2.0	5
20	Predicting <scp>DNA</scp> â€binding protein and coronavirus protein flexibility using protein dihedral angle and sequence feature. Proteins: Structure, Function and Bioinformatics, 2023, 91, 497-507.	2.6	2
21	High Pressure CPMG and CEST Reveal That Cavity Position Dictates Distinct Dynamic Disorder in the PP32 Repeat Protein. Journal of Physical Chemistry B, 2022, 126, 10597-10607.	2.6	1

ATION RED

#	Article	IF	CITATIONS
22	Effects of high pressure on protein stability, structure, and function—Theory and applications. , 2023, , 19-48.		0
23	Insights into the Structure of Invisible Conformations of Large Methyl Group Labeled Molecular Machines from High Pressure NMR. Journal of Molecular Biology, 2023, 435, 167922.	4.2	1
24	New Insights into the Cooperativity and Dynamics of Dimeric Enzymes. Chemical Reviews, 2023, 123, 9940-9981.	47.7	2
28	Harnessing generative AI to decode enzyme catalysis and evolution for enhanced engineering. National Science Review, 0, , .	9.5	1
29	Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS Omega, 0, , .	3.5	0
30	<i>Switching Go</i> أ <i>Martini</i> for Investigating Protein Conformational Transitions and Associated Protein–Lipid Interactions. Journal of Chemical Theory and Computation, 2024, 20, 2618-2629.	5.3	0