Ionogel-based, highly stretchable, transparent, durable energy harvesting and motion sensing over a wide temp

Nano Energy 63, 103847

DOI: 10.1016/j.nanoen.2019.06.043

Citation Report

#	Article	IF	CITATIONS
1	Bioinspired Dynamic Cross-Linking Hydrogel Sensors with Skin-like Strain and Pressure Sensing Behaviors. Chemistry of Materials, 2019, 31, 9522-9531.	3.2	195
2	Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Materials Horizons, 2020, 7, 912-918.	6.4	248
3	A review of electronic skin: soft electronics and sensors for human health. Journal of Materials Chemistry B, 2020, 8, 852-862.	2.9	125
4	High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy, 2020, 67, 104297.	8.2	64
5	Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technology, 2020, 25, 9-24.	1.0	106
6	Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today, 2020, 35, 168-194.	8.3	153
7	Progress in <scp>TENG</scp> technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat, 2020, 2, e12058.	6.8	194
8	Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy, 2020, 77, 105303.	8.2	206
9	Poly[(Butyl acrylate)- <i>co</i> -(butyl methacrylate)] as Transparent Tribopositive Material for High-Performance Hydrogel-Based Triboelectric Nanogenerators. ACS Applied Polymer Materials, 2020, 2, 5219-5227.	2.0	15
10	A facile and novel design of multifunctional electronic skin based on polydimethylsiloxane with micropillars for signal monitoring. Journal of Materials Chemistry B, 2020, 8, 8315-8322.	2.9	17
11	Manufacture of pH- and HAase-responsive hydrogels with on-demand and continuous antibacterial activity for full-thickness wound healing. International Journal of Biological Macromolecules, 2020, 164, 2418-2431.	3.6	25
12	Multimodal Smart Eyewear for Longitudinal Eye Movement Tracking. Matter, 2020, 3, 1275-1293.	5.0	30
13	Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing ability. Materials Horizons, 2020, 7, 2994-3004.	6.4	103
14	Enhancing the Performance of a Stretchable and Transparent Triboelectric Nanogenerator by Optimizing the Hydrogel Ionic Electrode Property. ACS Applied Materials & Interfaces, 2020, 12, 23474-23483.	4.0	76
15	Progress and challenges in fabrication of wearable sensors for health monitoring. Sensors and Actuators A: Physical, 2020, 312, 112105.	2.0	153
16	A flexible triboelectric nanogenerator based on a super-stretchable and self-healable hydrogel as the electrode. Nanoscale, 2020, 12, 12753-12759.	2.8	45
17	Cellulose Nanofiber-Reinforced Ionic Conductors for Multifunctional Sensors and Devices. ACS Applied Materials & amp; Interfaces, 2020, 12, 27545-27554.	4.0	54
18	A flexible semitransparent dual-electrode hydrogel based triboelectric nanogenerator with tough interfacial bonding and high energy output. Journal of Materials Chemistry C, 2020, 8, 5752-5760.	2.7	28

#	Article	IF	Citations
19	Ultra-Stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy, 2020, 76, 105035.	8.2	209
20	An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. Journal of Materials Chemistry A, 2020, 8, 13787-13794.	5.2	126
21	Stretchable, Transparent, and Thermally Stable Triboelectric Nanogenerators Based on Solventâ€Free Ionâ€Conducting Elastomer Electrodes. Advanced Functional Materials, 2020, 30, 1909252.	7.8	114
22	Hydrophobic Ionic Liquid Gel-Based Triboelectric Nanogenerator: Next Generation of Ultrastable, Flexible, and Transparent Power Sources for Sustainable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 15012-15022.	4.0	45
23	Recent progress on flexible nanogenerators toward selfâ€powered systems. InformaÄnÃ-Materiály, 2020, 2, 318-340.	8.5	85
24	Mechanically and Electronically Robust Transparent Organohydrogel Fibers. Advanced Materials, 2020, 32, e1906994.	11.1	207
25	Flourishing Selfâ€Healing Surface Materials: Recent Progresses and Challenges. Advanced Materials Interfaces, 2020, 7, 1901959.	1.9	30
26	Research Progress and Prospect of Triboelectric Nanogenerators as Self-Powered Human Body Sensors. ACS Applied Electronic Materials, 2020, 2, 863-878.	2.0	75
27	Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Applied Bio Materials, 2021, 4, 85-121.	2.3	169
28	Nanogenerator as self-powered sensing microsystems for safety monitoring. Nano Energy, 2021, 81, 105646.	8.2	27
29	Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy, 2021, 81, 105627.	8.2	86
30	Degradable and Fully Recyclable Dynamic Thermoset Elastomer for 3Dâ€Printed Wearable Electronics. Advanced Functional Materials, 2021, 31, 2009799.	7.8	109
31	Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease. Nano Energy, 2021, 82, 105705.	8.2	97
32	Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Materials Horizons, 2021, 8, 351-369.	6.4	250
33	Multiscale surface modified magneto-mechano-triboelectric nanogenerator enabled by eco-friendly NaCl imprinting stamp for self-powered IoT applications. Nanoscale, 2021, 13, 8418-8424.	2.8	21
34	High output achieved by sliding electrification of an electrospun nano-grating. Nanoscale, 2021, 13, 17417-17427.	2.8	12
35	Recent Advances in Wearable Devices for Non-Invasive Sensing. Applied Sciences (Switzerland), 2021, 11, 1235.	1.3	23
36	Flexible supercapacitors with high capacitance retention at temperatures from â^'20 to 100 °C based on DMSO-doped polymer hydrogel electrolytes. Journal of Materials Chemistry A, 2021, 9, 12051-12059.	5.2	78

#	Article	IF	CITATIONS
37	Energy Harvesting and Storage with Soft and Stretchable Materials. Advanced Materials, 2021, 33, e2004832.	11.1	91
38	3D Printable, Highly Stretchable, Superior Stable Ionogels Based on Poly(ionic liquid) with Hyperbranched Polymers as Macro-cross-linkers for High-Performance Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 5614-5624.	4.0	76
39	Electricâ€Fieldâ€Induced Gradient Ionogels for Highly Sensitive, Broadâ€Rangeâ€Response, and Freeze/Heatâ€Resistant Ionic Fingers. Advanced Materials, 2021, 33, e2008486.	11.1	134
40	A Dual-Responsive, Freezing-Tolerant Hydrogel Sensor and Related Thermal- and Strain-Sensitive Mechanisms. ACS Applied Polymer Materials, 2021, 3, 1479-1487.	2.0	29
41	Soft and Stretchable Optical Waveguide: Light Delivery and Manipulation at Complex Biointerfaces Creating Unique Windows for On-Body Sensing. ACS Sensors, 2021, 6, 1446-1460.	4.0	22
42	Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy, 2021, 82, 105724.	8.2	96
43	Environment Tolerant Conductive Nanocomposite Organohydrogels as Flexible Strain Sensors and Power Sources for Sustainable Electronics. Advanced Functional Materials, 2021, 31, 2101696.	7.8	179
44	Self-Healable, Recyclable, and Ultrastrong Adhesive Ionogel for Multifunctional Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 20653-20661.	4.0	62
45	Adaptive Ionogel Paint from Roomâ€Temperature Autonomous Polymerization of αâ€Thioctic Acid for Stretchable and Healable Electronics. Advanced Functional Materials, 2021, 31, 2101494.	7.8	110
46	Autonomously Adhesive, Stretchable, and Transparent Solidâ€State Polyionic Triboelectric Patch for Wearable Power Source and Tactile Sensor. Advanced Functional Materials, 2021, 31, 2104365.	7.8	59
47	Soft Human–Machine Interface with Triboelectric Patterns and Archimedes Spiral Electrodes for Enhanced Motion Detection. Advanced Functional Materials, 2021, 31, 2103075.	7.8	26
48	Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics. Advanced Fiber Materials, 2022, 4, 98-107.	7.9	83
49	Transparent, Robust, Nondrying, and Antifreezing Cellulose Organohydrogels for Energy Harvesting and Sensing Applications. ACS Applied Polymer Materials, 2021, 3, 3747-3754.	2.0	12
50	Selection of hydrogel electrolytes for flexible zinc–air batteries. Materials Today Chemistry, 2021, 21, 100538.	1.7	30
51	Ionogel-based flexible stress and strain sensors. International Journal of Smart and Nano Materials, 2021, 12, 307-336.	2.0	17
52	Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Carbohydrate Polymers, 2021, 265, 118078.	5.1	86
53	Recent developments in sensors for wearable device applications. Analytical and Bioanalytical Chemistry, 2021, 413, 6037-6057.	1.9	59
54	Biomechanical Energy Harvesters Based on Ionic Conductive Organohydrogels via the Hofmeister Effect and Electrostatic Interaction. ACS Nano, 2021, 15, 13427-13435.	7.3	56

#	Article	IF	Citations
55	Ultrastretchable, Highly Transparent, Self-Adhesive, and 3D-Printable Ionic Hydrogels for Multimode Tactical Sensing. Chemistry of Materials, 2021, 33, 6731-6742.	3.2	48
56	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	1.9	103
57	Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Research, 2022, 15, 2060-2068.	5.8	36
58	Zwitterionic dual-network strategy for highly stretchable and transparent ionic conductor. Polymer, 2021, 231, 124111.	1.8	26
59	Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors. ACS Applied Materials & Interfaces, 2021, 13, 44868-44877.	4.0	49
60	A General Crosslinker Strategy to Realize Intrinsic Frozen Resistance of Hydrogels. Advanced Materials, 2021, 33, e2104006.	11.1	82
61	Transparent, stretchable and high-performance triboelectric nanogenerator based on dehydration-free ionically conductive solid polymer electrode. Nano Energy, 2021, 88, 106289.	8.2	28
62	Stretchable strain and temperature sensor based on fibrous polyurethane film saturated with ionic liquid. Composites Communications, 2021, 27, 100845.	3.3	34
63	Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy, 2021, 88, 106304.	8.2	185
64	Flexible, anti-freezing self-charging power system composed of cellulose based supercapacitor and triboelectric nanogenerator. Carbohydrate Polymers, 2021, 274, 118667.	5.1	32
65	Integrated and shape-adaptable multifunctional flexible triboelectric nanogenerators using coaxial direct ink writing 3D printing. Nano Energy, 2021, 90, 106534.	8.2	17
66	Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting. Renewable Energy, 2021, 179, 1781-1792.	4.3	31
67	Fully self-healable, highly stretchable, and anti-freezing supramolecular gels for energy-harvesting triboelectric nanogenerator and self-powered wearable electronics. Nano Energy, 2021, 90, 106525.	8.2	36
68	A novel strategy for fabricating highly stretchable and highly conductive photoluminescent ionogels <i>via</i> an <i>in situ</i> self-catalytic cross-linking reaction in ionic liquids. Journal of Materials Chemistry C, 2021, 9, 5789-5799.	2.7	13
69	Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions. Journal of Materials Chemistry A, 2021, 9, 4890-4897.	5.2	70
70	Series to parallel structure of electrode fiber: an effective method to remarkably reduce inner resistance of triboelectric nanogenerator textiles. Journal of Materials Chemistry A, 2021, 9, 12331-12339.	5.2	24
71	An efficient flexible strain sensor based on anhydride-grafted styrene-butadiene-styrene triblock copolymer/carbon black: enhanced electrical conductivity, sensitivity and stability through solvent swelling. Smart Materials and Structures, 2020, 29, 125018.	1.8	10
72	Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. Small, 2022, 18, e2101518.	5.2	188

#	Article	IF	CITATIONS
73	Highly Stretchable, Adhesive Ionic Liquid-Containing Nanocomposite Hydrogel for Self-Powered Multifunctional Strain Sensors with Temperature Tolerance. ACS Applied Materials & Interfaces, 2021, 13, 53055-53066.	4.0	41
74	Mechanically and environmentally stable triboelectric nanogenerator based on high-strength and anti-compression self-healing ionogel. Nano Energy, 2021, 90, 106645.	8.2	46
75	Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy, 2021, 90, 106619.	8.2	39
76	Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at â^`Â30°C. Nano Energy, 2021, 90, 106614.	8.2	74
77	Highly efficient self-healable and robust fluorinated polyurethane elastomer for wearable electronics. Chemical Engineering Journal, 2022, 430, 133081.	6.6	46
78	Nonvolatile, stretchable and adhesive ionogel fiber sensor designed for extreme environments. Chemical Engineering Journal, 2022, 433, 133500.	6.6	39
79	3D Printable, ultra-stretchable, Self-healable, and self-adhesive dual cross-linked nanocomposite ionogels as ultra-durable strain sensors for motion detection and wearable human-machine interface. Chemical Engineering Journal, 2022, 431, 133949.	6.6	55
80	Ultrahigh sensitivity wearable sensors enabled by electrophoretic deposition of carbon nanostructured composites onto everyday fabrics. Journal of Materials Chemistry C, 2022, 10, 1617-1624.	2.7	13
81	A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices. Electrochimica Acta, 2022, 404, 139730.	2.6	21
82	Self-healing, mechanically robust, 3D printable ionogel for highly sensitive and long-term reliable ionotronics. Journal of Materials Chemistry A, 2022, 10, 12005-12015.	5.2	43
83	Facile Fabrication of Highly Stretchable, Stable, and Self-Healing Ion-Conductive Sensors for Monitoring Human Motions. Chemistry of Materials, 2022, 34, 1110-1120.	3.2	25
84	Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Materials Horizons, 2022, 9, 1356-1386.	6.4	75
85	Adhesive Ionohydrogels Based on Ionic Liquid/Water Binary Solvents with Freezing Tolerance for Flexible Ionotronic Devices. Chemistry of Materials, 2022, 34, 1065-1077.	3.2	66
86	Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy, 2022, 95, 106967.	8.2	115
87	Colorâ€Customizable, Stretchable, Selfâ€Healable and Degradable Ionic Gel for Variable Humanâ€Motion Detection via Strain, Pressure, and Torsion. Advanced Materials Interfaces, 2022, 9, .	1.9	11
88	Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Research, 2022, 15, 5461-5468.	5.8	42
89	Hydrogels as Soft Ionic Conductors in Flexible and Wearable Triboelectric Nanogenerators. Advanced Science, 2022, 9, e2106008.	5.6	48
90	Biodegradable Elastomers and Gels for Elastic Electronics. Advanced Science, 2022, 9, e2105146.	5.6	45

ARTICLE IF CITATIONS # Wearable Sensors Adapted to Extreme Environments Based on the Robust Ionogel Electrolytes with 4.0 14 91 Dual Hydrogen Networks. ACS Applied Materials & amp; Interfaces, 2022, 14, 12713-12721. Triboresistive Touch Sensing: Gridâ€Free Touchâ€Point Recognition Based on Monolayered Ionic Power 11.1 24 Generators. Advanced Materials, 2022, 34, e2108586. An Ionic Hydrogel-Based Antifreezing Triboelectric Nanogenerator. ACS Applied Electronic Materials, 93 2.0 21 2022, 4, 1930-1938. Transparent, stretchable and anti-freezing hybrid double-network organohydrogels. Science China 94 Materials, 2022, 65, 2207-2216. Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart 95 2.6 31 Homes and Health Care. ACS Materials Au, 2022, 2, 394-435. Flexible pressure sensors via engineering microstructures for wearable human-machine interaction and health monitoring applications. IScience, 2022, 25, 104148. Thermoresponsive Lignin-Reinforced Poly(Ionic Liquid) Hydrogel Wireless Strain Sensor. Research, 97 2.8 21 2021, 2021, 9845482. Hydrogelâ€based triboelectric nanogenerators: Properties, performance, and applications. 28 International Journal of Energy Research, 2022, 46, 5603-5624. Ultrastretchable, Adhesive, Fast Self-Healable, and Three-Dimensional Printable Photoluminescent 99 Ionic Skin Based on Hybrid Network Ionogels. ACS Applied Materials & amp; Interfaces, 2022, 14, 4.0 54 2029-2037. Coaxial Spring-Like Stretchable Triboelectric Nanogenerator Toward Personal Healthcare Monitoring. Frontiers in Bioengineering and Biotechnology, 2022, 10, 889364. Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for 101 8.2 60 energy harvesting and self-powered sensing. Nano Energy, 2022, 98, 107284. Dual Thermo-Responsive and Strain-Responsive Ionogels for Smart Windows and Temperature/Motion 4.0 Monitoring. ACS Applied Materials & amp; Interfaces, 2022, 14, 20083-20092. Transparent, Selfâ€Adhesive, Conductive Organohydrogels with Fast Gelation from Ligninâ€Based 103 Selfâ€Catalytic System for Extreme Environmentâ€Resistant Triboelectric Nanogenerators. Advanced 7.8 63 Functional Materials, 2022, 32, . Crystallization-Induced Shift in a Triboelectric Series and Even Polarity Reversal for Elastic 104 4.5 Triboelectric Materials. Nano Letters, 2022, 22, 4074-4082. A double-layered liquid metal-based electrochemical sensing system on fabric as a wearable detector 105 3.4 16 for glucose in sweat. Microsystems and Nanoengineering, 2022, 8, 48. Multi-dimensional, transparent and foldable cellulose-based triboelectric nanogenerator for touching password recognition. Nano Energy, 2022, 98, 107307. Reducible, recyclable and reusable (3R) hydrogel electrolyte membrane based on 107 Physical& Chemical Bi-networks and reversible sol-gel transition. Renewable Energy, 2022, 194, 4.3 7 80-88. Electronic skin based on cellulose/KCl/sorbitol organohydrogel. Carbohydrate Polymers, 2022, 292, 5.1 119645.

#	Article	IF	CITATIONS
109	Plasticized PVCâ€Gel Single Layerâ€Based Stretchable Triboelectric Nanogenerator for Harvesting Mechanical Energy and Tactile Sensing. Advanced Science, 2022, 9, .	5.6	23
110	Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy, 2022, 99, 107442.	8.2	39
111	Object recognition by a heat-resistant core-sheath triboelectric nanogenerator sensor. Journal of Materials Chemistry A, 2022, 10, 15080-15088.	5.2	22
112	Mechanically Robust Skin-like Poly(urethane-urea) Elastomers Cross-Linked with Hydrogen-Bond Arrays and Their Application as High-Performance Ultrastretchable Conductors. Macromolecules, 2022, 55, 5816-5825.	2.2	35
113	Ultra-stretchable ion gels based on physically cross-linked polymer networks. Journal of Materials Chemistry C, 2022, 10, 10926-10934.	2.7	4
114	Roles of Ionic Liquids in Adjusting Nature of Ionogels: A Mini Review. Advanced Functional Materials, 2022, 32, .	7.8	71
115	Rapid preparation of conductive and self-healing ionic gels with tunable mechanical properties via frontal polymerization of deep eutectic monomers. Colloid and Polymer Science, 2022, 300, 989-998.	1.0	6
116	Electron transfer dominated triboelectrification at the hydrophobic/slippery substrate—water interfaces. Friction, 0, , .	3.4	2
117	Stretchable Ionic Conductors for Soft Electronics. Macromolecular Rapid Communications, 2022, 43,	2.0	16
118	Highâ€₽erformance Liquid Crystalline Polymer for Intrinsic Fireâ€Resistant and Flexible Triboelectric Nanogenerators. Advanced Materials, 2022, 34, .	11.1	48
119	Intrinsic Flame Retardant Triboelectric Nanogenerators Based on Liquid-Crystalline Copolyesters. ACS Applied Polymer Materials, 2022, 4, 5813-5820.	2.0	4
120	Bioinspired Freezeâ€Tolerant Soft Materials: Design, Properties, and Applications. Small, 2022, 18, .	5.2	29
121	High power-output and highly stretchable protein-based biomechanical energy harvester. Chemical Engineering Journal, 2023, 451, 138714.	6.6	2
122	Poly(<i>N</i> , <i>N</i> -dimethyl)acrylamide-based ion-conductive gel with transparency, self-adhesion and rapid self-healing properties for human motion detection. Soft Matter, 2022, 18, 6115-6123.	1.2	7
123	Polymer-based hybrid materials and their application in personal health. Nano Research, 2023, 16, 3956-3975.	5.8	3
124	Bio-macromolecular design roadmap towards tough bioadhesives. Chemical Society Reviews, 2022, 51, 9127-9173.	18.7	31
125	Rapidly Photocurable Solid‣tate Poly(ionic liquid) Ionogels For Thermally Robust and Flexible Electrochromic Devices. Advanced Materials, 2022, 34, .	11.1	28
126	Recent Progress in Advanced Units of Triboelectric Electronic Skin. Advanced Materials Technologies, 2023, 8, .	3.0	8

#	Article	IF	CITATIONS
127	Zirconium metal-organic framework and hybridized Co-NPC@MXene nanocomposite-coated fabric for stretchable, humidity-resistant triboelectric nanogenerators and self-powered tactile sensors. Nano Energy, 2022, 104, 107931.	8.2	22
128	Nanocatalysts induced self-triggering leather skin for human–machine interaction. Chemical Engineering Journal, 2023, 454, 140269.	6.6	4
129	Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials, 2023, 13, .	10.2	79
130	Rarely negative-thermovoltage cellulose ionogel with simultaneously boosted mechanical strength and ionic conductivity <i>via</i> ion-molecular engineering. Journal of Materials Chemistry A, 2023, 11, 2145-2154.	5.2	16
131	Achieving highly strength and stretchable deep eutectic iontronic elastomer by directly photopolymerizing HEA with ChCl. Polymer, 2023, 265, 125600.	1.8	1
132	Continuous fabrication of robust ionogel fibers for ultrastable sensors via dynamic reactive spinning. Chemical Engineering Journal, 2023, 455, 140796.	6.6	6
133	Mechanically Robust and Highly Conductive Ionogels for Soft Ionotronics. Advanced Functional Materials, 2023, 33, .	7.8	35
134	An Environmentalâ€Inert and Highly Selfâ€Healable Elastomer Obtained via Doubleâ€Terminal Aromatic Disulfide Design and Zwitterionic Crosslinked Network for Use as a Triboelectric Nanogenerator. Advanced Science, 2023, 10, .	5.6	8
135	NIR light-induced rapid self-healing hydrogel toward multifunctional applications in sensing. Nano Energy, 2023, 107, 108119.	8.2	43
136	Microelectronic fibers for multiplexed sweat sensing. Analytical and Bioanalytical Chemistry, 2023, 415, 4307-4318.	1.9	5
137	Interfacial Roughness Enhanced Gel/Elastomer Interfacial Bonding Enables Robust and Stretchable Triboelectric Nanogenerator for Reliable Energy Harvesting. Small, 2023, 19, .	5.2	5
138	Triboelectric Nanogenerators for Electronic and Robotic Skins. , 2023, , 1-52.		0
139	Rationally designed micropixelation-free tactile sensors via contour profile of triboelectric field propagation. Nano Energy, 2023, 109, 108255.	8.2	5
140	3D Printed Ionogels In Sensors. Polymer-Plastics Technology and Materials, 2023, 62, 632-654.	0.6	1
141	Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. , 2023, 2, .		0
142	Self-healing fluorinated poly(urethane urea) for mechanically and environmentally stable, high performance, and versatile fully self-healing triboelectric nanogenerators. Nano Energy, 2023, 108, 108243.	8.2	16
143	An internal electrode strategy for enhancing the stability and durability of triboelectric nanogenerator. Composites Science and Technology, 2023, 237, 110014.	3.8	6
144	Fully degradable triboelectric nanogenerator using graphene composite paper to replace copper electrodes for higher output performance. Nano Energy, 2023, 108, 108223.	8.2	9

#	Article	IF	CITATIONS
145	Intrinsically cryopreservable, bacteriostatic, durable glycerohydrogel inks for 3D bioprinting. Matter, 2023, 6, 983-999.	5.0	6
146	Elastomeric polymers for conductive layers of flexible sensors: Materials, fabrication, performance, and applications. Aggregate, 2023, 4, .	5.2	5
147	Applications of Triboelectric Nanogenerators in Bone Tissue Engineering. Advanced Materials Technologies, 2023, 8, .	3.0	1
148	Transparent, Stretchable, and Adhesive Conductive Ionic Hydrogel-Based Self-Powered Sensors for Smart Elderly Care Systems. ACS Applied Materials & Interfaces, 2023, 15, 11802-11811.	4.0	4
149	Crossâ€Linkâ€Dependent Ionogelâ€Based Triboelectric Nanogenerators with Slippery and Antireflective Properties. Small, 0, , 2301381.	5.2	1
150	lonogels: recent advances in design, material properties and emerging biomedical applications. Chemical Society Reviews, 2023, 52, 2497-2527.	18.7	39
151	Simple Fabrication of Transparent Triboelectric Nanogenerator Based on Coffee-Ring-Free AgNW Electrode via Spray Deposition with Surfactant. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 1417-1431.	2.7	2
152	Ionic Conduction and Dielectric Response of Nanoparticle-Coupled Hydrogel Network Polymer Electrolytes. Macromolecules, 2023, 56, 3393-3405.	2.2	4
153	Microbial biofilm-based hydrovoltaic technology. Trends in Biotechnology, 2023, 41, 1155-1167.	4.9	2
163	Triboelectric Nanogenerators for Electronic and Robotic Skins. , 2023, , 1877-1928.		0
167	Material selection and performance optimization strategies for a wearable friction nanogenerator (W-TENG). Journal of Materials Chemistry A, 2023, 11, 24454-24481.	5.2	1
173	Facile surface functionalization of triboelectric layers <i>via</i> electrostatically self-assembled zwitterionic molecules for achieving efficient and stable antibacterial flexible triboelectric nanogenerators. Materials Horizons, 2024, 11, 646-660.	6.4	1

180 Wearable Electrochemical Biosensors for Glucose Monitoring. , 2024, , 35-66.