Longâ€Lived Roomâ€Temperature Phosphorescence fo Oxygen

Angewandte Chemie - International Edition 58, 12102-12106

DOI: 10.1002/anie.201906312

Citation Report

#	Article	IF	CITATIONS
1	Hydrogen Bonding-Induced Morphology Dependence of Long-Lived Organic Room-Temperature Phosphorescence: A Computational Study. Journal of Physical Chemistry Letters, 2019, 10, 6948-6954.	2.1	76
2	Organic Roomâ€Temperature Phosphorescence with Strong Circularly Polarized Luminescence Based on Paracyclophanes. Angewandte Chemie - International Edition, 2019, 58, 17220-17225.	7.2	97
3	Organic Roomâ€Temperature Phosphorescence with Strong Circularly Polarized Luminescence Based on Paracyclophanes. Angewandte Chemie, 2019, 131, 17380-17385.	1.6	27
4	Room-Temperature Phosphorescence from Encapsulated Pyrene Induced by Xenon. Journal of Physical Chemistry A, 2019, 123, 9123-9131.	1.1	12
5	Room-temperature phosphorescent polymers with excitation-wavelength and delay-time emission dependencies. RSC Advances, 2019, 9, 36287-36292.	1.7	5
6	Tuning phosphorescence features of triphenylamines by varying functional groups and intermolecular interactions. Dyes and Pigments, 2020, 173, 107931.	2.0	13
7	Visibleâ€Lightâ€Excited Roomâ€Temperature Phosphorescence in Water by Cucurbit[8]urilâ€Mediated Supramolecular Assembly. Angewandte Chemie, 2020, 132, 10014-10019.	1.6	178
8	Visibleâ€Lightâ€Excited Roomâ€Temperature Phosphorescence in Water by Cucurbit[8]urilâ€Mediated Supramolecular Assembly. Angewandte Chemie - International Edition, 2020, 59, 9928-9933.	7.2	273
9	Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nature Communications, 2020, 11, 3678.	5.8	122
10	Smartphoneâ€Based Luminescent Thermometry via Temperatureâ€Sensitive Delayed Fluorescence from Gd ₂ O ₂ S:Eu ³⁺ . Advanced Optical Materials, 2020, 8, 2000507.	3.6	35
11	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie - International Edition, 2020, 59, 23456-23460.	7.2	62
12	Monochromophoreâ€Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. Angewandte Chemie, 2020, 132, 23662-23666.	1.6	7
13	Hexanuclear Zn(II)-Induced Dense π-Stacking in a Metal–Organic Framework Featuring Long-Lasting Room Temperature Phosphorescence. Inorganic Chemistry, 2020, 59, 10395-10399.	1.9	80
14	Alternating Vinylarene–Carbon Monoxide Copolymers: Simple and Efficient Nonconjugated Luminescent Macromolecules. Macromolecules, 2020, 53, 9337-9344.	2.2	30
15	Room-temperature phosphorescence from organic aggregates. Nature Reviews Materials, 2020, 5, 869-885.	23.3	786
16	Room temperature phosphorescence from heavy atom free benzophenone boronic ester derivatives. Bulletin of Materials Science, 2020, 43, 1.	0.8	5
17	Nonconventional luminophores with unprecedented efficiencies and color-tunable afterglows. Materials Horizons, 2020, 7, 2105-2112.	6.4	80
18	Color-tunable ultralong organic phosphorescence materials for visual UV-light detection. Science China Chemistry, 2020, 63, 1443-1448.	4.2	52

#	ARTICLE	IF	CITATIONS
19	A long persistent phosphorescent metal–organic framework for multi-level sensing of oxygen. Journal of Materials Chemistry C, 2020, 8, 9916-9922.	2.7	27
20	Stimuliâ€Responsive Purely Organic Roomâ€Temperature Phosphorescence Materials. Chemistry - A European Journal, 2020, 26, 11914-11930.	1.7	76
21	Stimulusâ€responsive room temperature phosphorescence in purely organic luminogens. InformaÄnÃ-Materiály, 2020, 2, 791-806.	8.5	100
22	Accessing Tunable Afterglows from Highly Twisted Nonaromatic Organic AlEgens via Effective Throughâ€Space Conjugation. Angewandte Chemie - International Edition, 2020, 59, 10018-10022.	7.2	120
23	Accessing Tunable Afterglows from Highly Twisted Nonaromatic Organic AlEgens via Effective Throughâ€Space Conjugation. Angewandte Chemie, 2020, 132, 10104-10108.	1.6	12
24	Timeâ€Dependent Afterglow Color in a Singleâ€Component Organic Molecular Crystal. Angewandte Chemie, 2020, 132, 10118-10122.	1.6	103
25	Timeâ€Dependent Afterglow Color in a Singleâ€Component Organic Molecular Crystal. Angewandte Chemie - International Edition, 2020, 59, 10032-10036.	7.2	144
26	Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow. Nature Communications, 2020, 11, 842.	5.8	194
27	Dual Emission from Precious Metalâ€Free Luminophores Consisting of C, H, O, Si, and S/P at Room Temperature. Chemistry - A European Journal, 2020, 26, 5162-5167.	1.7	19
28	Hydrophilic Ultralong Organic Nanophosphors. Small, 2020, 16, e1906733.	5.2	30
29	Roomâ€Temperature Phosphorescenceâ€active Boronate Particles: Characterization and Ratiometric Afterglowâ€sensing Behavior by Surface Grafting of Rhodamine B. Chemistry - an Asian Journal, 2020, 15, 787-795.	1.7	14
30	Ï€-Type halogen bonding enhanced the long-lasting room temperature phosphorescence of Zn(<scp>ii</scp>) coordination polymers for photoelectron response applications. Inorganic Chemistry Frontiers, 2020, 7, 2224-2230.	3.0	59
31	Multicolor ultralong room-temperature phosphorescence from pure organic emitters by structural isomerism. Chemical Engineering Journal, 2021, 408, 127309.	6.6	16
32	A Multiâ€Stimuliâ€Responsive Molecule with Responses to Light, Oxygen, and Mechanical Stress through Flexible Tuning of Triplet Excitons. Advanced Optical Materials, 2021, 9, 2001550.	3.6	32
33	Robust Whiteâ€Light Emitting and Multiâ€Responsive Luminescence of a Dualâ€Mode Phosphorescence Molecule. Advanced Optical Materials, 2021, 9, 2001685.	3.6	44
34	A color-tunable single molecule white light emitter with high luminescence efficiency and ultra-long room temperature phosphorescence. Journal of Materials Chemistry C, 2021, 9, 727-735.	2.7	33
35	Room-temperature white and color-tunable afterglow by manipulating multi-mode triplet emissions. Journal of Materials Chemistry C, 2021, 9, 3257-3263.	2.7	17
36	A color-tunable single-component luminescent molecule with multiple emission centers. Chemical Science, 2021, 12, 9201-9206.	3.7	32

#	ARTICLE	IF	CITATIONS
37	Transformable fluorescent nanoparticles (TFNs) of amphiphilic block copolymers for visual detection of aromatic amines in water. Polymer Chemistry, 2021, 12, 5467-5476.	1.9	6
38	Organic phosphorescent polymorphs induced by various halogen bonds with stimuli-responsive single/dual phosphorescence switching. Journal of Materials Chemistry C, 2021, 9, 2738-2743.	2.7	16
39	Imaging the oxygen wave with a single bioluminescent bacterium. Chemical Science, 2021, 12, 12400-12406.	3.7	9
40	A positively charged aggregation-induced emission (AIE) luminogen as an ultra-sensitive mechanochromic luminescent material: design, synthesis and versatile applications. Materials Chemistry Frontiers, 2021, 5, 2849-2859.	3.2	16
41	A highly efficient purely organic room-temperature phosphorescence film based on a selenium-containing emitter for sensitive oxygen detection. Journal of Materials Chemistry C, 2021, 9, 9907-9913.	2.7	25
42	Living supramolecular polymerization of an AIE-active Ir(<scp>iii</scp>) complex with irregular emission. Materials Chemistry Frontiers, 2021, 5, 7808-7816.	3.2	11
43	Organic dye assemblies with aggregationâ€induced photophysical changes and their bioâ€applications. Aggregate, 2021, 2, e39.	5.2	79
44	Highly Efficient Roomâ€Temperature Phosphorescence Based on Singleâ€Benzene Structure Molecules and Photoactivated Luminescence with Afterglow. Advanced Functional Materials, 2021, 31, 2010659.	7.8	140
45	Metalâ€Free Organic Luminophores that Exhibit Dual Fluorescence and Phosphorescence Emission at Room Temperature. ChemPlusChem, 2021, 86, 446-459.	1.3	19
46	Luminescence lifetime imaging of ultra-long room temperature phosphorescence on a smartphone. Analytical and Bioanalytical Chemistry, 2021, 413, 3291-3297.	1.9	11
47	Room-Temperature Phosphorescence of Thiophene Boronate Ester-Cross Linked Polyvinyl Alcohol; A Triplet-to-Singlet FRET-Induced Multi-Color Afterglow Luminescence with Sulforhodamine B. Bulletin of the Chemical Society of Japan, 2021, 94, 1204-1209.	2.0	15
48	Forceâ€Induced Turnâ€On Persistent Roomâ€Temperature Phosphorescence in Purely Organic Luminogen. Angewandte Chemie, 2021, 133, 12443-12448.	1.6	24
49	Michael Polyaddition Approach Towards Sulfur Enriched Nonaromatic Polymers with Fluorescenceâ€Phosphorescence Dual Emission. Macromolecular Rapid Communications, 2021, 42, e2100036.	2.0	10
50	Forceâ€Induced Turnâ€On Persistent Roomâ€Temperature Phosphorescence in Purely Organic Luminogen. Angewandte Chemie - International Edition, 2021, 60, 12335-12340.	7.2	98
51	Endowing Phosphor Materials with Longâ€Afterglow Circularly Polarized Phosphorescence via Ball Milling. Advanced Optical Materials, 2021, 9, 2100452.	3.6	15
52	Twoâ€Photon Ionization Induced Stable White Organic Long Persistent Luminescence. Angewandte Chemie - International Edition, 2021, 60, 16984-16988.	7.2	48
53	Twoâ€Photon Ionization Induced Stable White Organic Long Persistent Luminescence. Angewandte Chemie, 2021, 133, 17121-17125.	1.6	30
54	Modulating Room-Temperature Phosphorescence through the Synergistic Effect of Heavy-Atom Effect and Halogen Bonding. Journal of Physical Chemistry C, 2021, 125, 16350-16357.	1.5	21

#	Article	IF	Citations
55	Stimulus-Responsive Room Temperature Phosphorescence Materials: Internal Mechanism, Design Strategy, and Potential Application. Accounts of Materials Research, 2021, 2, 644-654.	5.9	131
56	Deepâ€Blue Ultralong Roomâ€Temperature Phosphorescence from Halogenâ€Free Organic Materials through Cage Effect for Various Applications. Advanced Optical Materials, 2021, 9, 2100959.	3.6	13
57	Persistent Roomâ€Temperature Phosphorescence from Purely Organic Molecules and Multiâ€Component Systems. Advanced Optical Materials, 2021, 9, 2100411.	3.6	81
58	Achieving long lifetime of pure organic room-temperature phosphorescence via constructing hydrogen-bonded organic frameworks. Journal of Luminescence, 2021, 236, 118120.	1.5	4
59	Multistage Stimulusâ€Responsive Room Temperature Phosphorescence Based on Host–Guest Doping Systems. Angewandte Chemie - International Edition, 2021, 60, 20259-20263.	7.2	125
60	Multistage Stimulusâ€Responsive Room Temperature Phosphorescence Based on Host–Guest Doping Systems. Angewandte Chemie, 2021, 133, 20421-20425.	1.6	17
61	A miniaturized apparatus based on a smartphone for microsecond-resolved luminescence lifetime imaging. Sensors and Actuators B: Chemical, 2021, 343, 130086.	4.0	11
62	Sustainable afterglow materials from lignin inspired by wood phosphorescence. Cell Reports Physical Science, 2021, 2, 100542.	2.8	21
63	Luminescent halogen clusters. Cell Reports Physical Science, 2022, 3, 100593.	2.8	11
64	Oxygen sensing properties of thianthrene and phenothiazine derivatives exhibiting room temperature phosphorescence: Effect of substitution of phenothiazine moieties. Sensors and Actuators B: Chemical, 2021, 345, 130369.	4.0	22
65	Cucurbit[8]uril mediated ultralong purely organic phosphorescence and excellent mechanical strength performance in double-network supramolecular hydrogels. Dyes and Pigments, 2021, 195, 109725.	2.0	10
66	Regulating force-resistance and acid-responsiveness of pure organics with persistent phosphorescence <i>via</i> simple isomerization. Journal of Materials Chemistry C, 2021, 9, 5227-5233.	2.7	12
67	Full-type photoluminescence from a single organic molecule for multi-signal temperature sensing. Materials Chemistry Frontiers, 2021, 5, 2261-2270.	3.2	22
68	Room-temperature phosphorescent organic materials for optical waveguides. Journal of Materials Chemistry C, 2021, 9, 14115-14132.	2.7	18
69	Photoinduced <i>versus</i> spontaneous host–guest electron transfer within a MOF and chromic/luminescent response. Inorganic Chemistry Frontiers, 2021, 8, 4828-4837.	3.0	16
70	Nonconventional luminophores: characteristics, advancements and perspectives. Chemical Society Reviews, 2021, 50, 12616-12655.	18.7	203
71	A metal-free 2D layered organic ammonium halide framework realizing full-color persistent room-temperature phosphorescence. Chemical Science, 2021, 12, 14451-14458.	3.7	29
72	The same molecule but a different molecular conformation results in a different room temperature phosphorescence in phenothiazine derivatives. Journal of Materials Chemistry C, 2021, 9, 15375-15380.	2.7	25

#	Article	IF	CITATIONS
73	Circularly Polarized Organic Room Temperature Phosphorescence from Amorphous Copolymers. Journal of the American Chemical Society, 2021, 143, 18527-18535.	6.6	132
74	Manipulation of Organic Afterglow by Thermodynamic and Kinetic Control. Chemistry - A European Journal, 2021, 27, 16735-16743.	1.7	6
75	The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. Nanomaterials, 2021, 11, 2791.	1.9	3
76	Recent Advances on Host–Guest Material Systems toward Organic Room Temperature Phosphorescence. Small, 2022, 18, e2104073.	5.2	170
77	Bathochromic-Shifted Emissions by Postfunctionalization of Nonconjugated Polyketones. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59288-59297.	4.0	14
78	Phase- and Halogen-Dependent Room-Temperature Phosphorescence Properties of Biphenylnitrile Derivatives. Journal of Physical Chemistry C, 2021, 125, 27489-27496.	1.5	4
79	Robust and color-tunable afterglows from guanidine derivatives. Chemical Communications, 2022, 58, 545-548.	2.2	17
80	Light emission of organic luminogens: Generation, mechanism and application. Progress in Materials Science, 2022, 125, 100914.	16.0	69
81	Efficient Room-Temperature Phosphorescence from Discrete Molecules Based on Thianthrene Derivatives for Oxygen Sensing and Detection. Frontiers in Chemistry, 2021, 9, 810304.	1.8	15
82	Unveiling the crucial contributions of electrostatic and dispersion interactions to the ultralong room-temperature phosphorescence of H-bond crosslinked poly(vinyl alcohol) films. Materials Horizons, 2022, 9, 1081-1088.	6.4	42
83	Achieving two things at one stroke: crystal engineering simultaneously optimizes the emission and mechanical compliance of organic crystals. Journal of Materials Chemistry C, 2022, 10, 3894-3900.	2.7	8
84	Halogen Bonding: A New Platform for Achieving Multiâ€Stimuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie, 2022, 134, .	1.6	20
85	Persistent room temperature phosphorescence films based on star-shaped organic emitters. Journal of Materials Chemistry C, 2022, 10, 1833-1838.	2.7	9
86	Halogen Bonding: A New Platform for Achieving Multiâ€Stimuliâ€Responsive Persistent Phosphorescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	111
87	Dual-color dynamic anti-counterfeiting labels with persistent emission after visible excitation allowing smartphone authentication. Scientific Reports, 2022, 12, 2100.	1.6	14
88	Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chemical Science, 2022, 13, 4406-4412.	3.7	51
89	Efficient and tunable purely organic room temperature phosphorescence films from selenium-containing emitters achieved by structural isomerism. Journal of Materials Chemistry C, 2022, 10, 5141-5146.	2.7	10
90	Strainâ€Responsive Persistent Roomâ€Temperature Phosphorescence from Halogenâ€Free Polymers for Early Damage Reporting through Phosphorescence Lifetime and Image Analysis. Advanced Optical Materials, 2022, 10, .	3.6	14

#	Article	IF	CITATIONS
91	A Highly Efficient Phosphorescence/Fluorescence Supramolecular Switch Based on a Bromoisoquinoline Cascaded Assembly in Aqueous Solution. Advanced Science, 2022, 9, e2200524.	5.6	30
92	Resonance-Induced Stimuli-Responsive Capacity Modulation of Organic Ultralong Room Temperature Phosphorescence. Journal of the American Chemical Society, 2022, 144, 6946-6953.	6.6	68
93	Crosslink-enhanced strategy to achieve multicolor long-lived room temperature phosphorescent films with excellent photostability. Chinese Chemical Letters, 2022, 33, 4238-4242.	4.8	16
94	Enhancing Persistent Luminescence of Cellulose by Dehydration for Label-Free Time-Resolved Imaging. ACS Sustainable Chemistry and Engineering, 2021, 9, 17420-17426.	3.2	17
96	Dualâ€Emission of Fluorescence and Roomâ€Temperature Phosphorescence for Ratiometric and Colorimetric Oxygen Sensing and Detection Based on Dispersion of Pure Organic Thianthrene Dimer in Polymer Host. Advanced Optical Materials, 2022, 10, .	3.6	24
98	Regulation of Irradiationâ€Dependent Longâ€Lived Room Temperature Phosphorescence by Controlling Molecular Structures of Chromophores and Matrix. Advanced Optical Materials, 2022, 10, .	3.6	11
99	Fourâ€inâ€One Stimulusâ€Responsive Longâ€Lived Luminescent Systems Based on Pyreneâ€Doped Amorphous Polymers. Angewandte Chemie, 2022, 134, .	1.6	12
100	Nearâ€Infrared Roomâ€Temperature Phosphorescence in Arylselanyl BODIPYâ€Doped Materials. ChemPhotoChem, 2022, 6, .	1.5	4
101	Fourâ€inâ€One Stimulusâ€Responsive Longâ€Lived Luminescent Systems Based on Pyreneâ€Doped Amorphous Polymers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	76
102	AIE-active rare-metal-free phosphorescent materials. , 2022, , 253-274.		1
103	Multimode stimuli responsive dual-state organic room temperature phosphorescence from a phenanthrene derivative. Chemical Engineering Journal, 2022, 444, 136629.	6.6	32
104	Fast photostimulus-responsive ultralong room-temperature phosphorescence behaviour of benzoic acid derivatives@boric acid. Journal of Materials Chemistry C, 2022, 10, 8806-8814.	2.7	6
105	Halogen-doped phosphorescent carbon dots for grayscale patterning. Light: Science and Applications, 2022, 11, .	7.7	27
106	Molecular Uniting Set Identified Characteristic (<scp>MUSIC</scp>) of Organic Optoelectronic Material. Chinese Journal of Chemistry, 2022, 40, 2356-2370.	2.6	42
107	Efficient monomolecular white emission of phenothiazine boronic ester derivatives with room temperature phosphorescence. Journal of Materials Chemistry C, 2022, 10, 10347-10355.	2.7	8
108	Achieving diversified emissive behaviors of AIE, TADF, RTP, dual-RTP and mechanoluminescence from simple organic molecules by positional isomerism. Journal of Materials Chemistry C, 2022, 10, 10009-10016.	2.7	11
109	Accessing Excitation―and Timeâ€Responsive Afterglows from Aqueous Processable Amorphous Polymer Films through Doping and Energy Transfer. Advanced Materials, 2022, 34, .	11.1	52
110	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive High‣ying Triplet Excitons**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25

#	ARTICLE	IF	CITATIONS
111	Thermally Activated and Aggregationâ€Regulated Excitonic Coupling Enable Emissive High‣ying Triplet Excitons**. Angewandte Chemie, 2022, 134, .	1.6	5
112	Microsecond-resolved smartphone time-gated luminescence spectroscopy. Optics Letters, 2022, 47, 3427.	1.7	3
113	A Benzene Ringâ€Linked Dimethylamino and Borate Esterâ€Based Molecule and Organic Crystal: Efficient Dual Roomâ€Temperature Phosphorescence with Responsive Property. Advanced Optical Materials, 2022, 10, .	3.6	3
114	Achieving redox-responsive organic afterglow materials ⟨i>via⟨ i> a dopant–matrix design strategy. Journal of Materials Chemistry C, 2022, 10, 11634-11641.	2.7	8
115	Organic Hollow Microstructures with Room Temperature Phosphorescence. Advanced Optical Materials, 2022, 10, .	3.6	3
116	Roomâ€Temperature Phosphorescence Enhanced by Narrowing Down Δ <i>E</i> _{ST} through Tuning Excited States Energy Levels. Advanced Optical Materials, 2022, 10, .	3.6	4
117	Photoelectron Storages in Functionalized Carbon Nitrides for Colorimetric Sensing of Oxygen. ACS Sensors, 2022, 7, 2328-2337.	4.0	11
118	Accurate Wavelength Tracking by Exciton Spin Mixing. Advanced Materials, 2022, 34, .	11.1	3
119	Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications. Nature Communications, 2022, 13, .	5.8	61
120	Promoting the transfer of phosphorescence from the solid state to aqueous phase and establishing the universal real-time detection based on the smartphone imaging. Sensors and Actuators B: Chemical, 2022, 371, 132529.	4.0	13
121	Multi-stimuli-responsive aryl-sulfone derivatives with room-temperature phosphorescence and mechanoluminescence properties. Journal of Luminescence, 2022, 251, 119223.	1.5	1
122	Thermally activated delayed fluorescence (TADF) emitters: sensing and boosting spin-flipping by aggregation. Beilstein Journal of Organic Chemistry, 0, 18, 1177-1187.	1.3	3
123	Aggregation effects on the one- and two-photon excited fluorescence performance of regioisomeric anthraquinone-substituted perylenediimide. Journal of Materials Chemistry C, 2023, 11, 8037-8044.	2.7	6
124	Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Lightâ€Induced Fluorescence to Phosphorescence Switching. Angewandte Chemie, 2022, 134, .	1.6	0
125	Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Lightâ€Induced Fluorescence to Phosphorescence Switching. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
126	Limitation of room temperature phosphorescence efficiency in metal organic frameworks due to triplet-triplet annihilation. Frontiers in Chemistry, 0, 10 , .	1.8	1
127	Molecular insight into the polymorphism-dependent organic phosphorescence. Dyes and Pigments, 2023, 208, 110853.	2.0	3
128	From single molecule to molecular aggregation science. Coordination Chemistry Reviews, 2023, 475, 214872.	9.5	29

#	Article	IF	CITATIONS
129	The Effect of Molecular Conformations and Simulated "Selfâ€Doping―in Phenothiazine Derivatives on Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
130	Regulating Phosphorescence Lifetime of Organic Cocrystals by Alkyl Engineering. Crystal Growth and Design, 2023, 23, 31-36.	1.4	4
131	A Class of Organic Units Featuring Matrixâ€Controlled Colorâ€Tunable Ultralong Organic Room Temperature Phosphorescence. Advanced Science, 2023, 10, .	5.6	27
132	Efficient Persistent Luminescence from Cellulose–Halide Mixtures for Optical Encryption. ACS Sustainable Chemistry and Engineering, 2022, 10, 16752-16759.	3.2	8
133	The Effect of Molecular Conformations and Simulated "Selfâ€Doping―in Phenothiazine Derivatives on Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2023, 135, .	1.6	5
134	Color-tunable and ultralong organic room temperature phosphorescence from poly(acrylic) Tj ETQq1 1 0.784314 1960-1970.	1 rgBT /Ov 2.7	erlock 10 Tf
135	The unexpected mechanism of transformation from conventional room-temperature phosphorescence to TADF-type organic afterglow triggered by simple chemical modification. Journal of Materials Chemistry C, 2023, 11, 2291-2301.	2.7	5
136	Enabling longâ€ived polymeric room temperature phosphorescence material inÂabominableÂsolvent. Chemistry - A European Journal, 0, , .	1.7	1
137	Modulating room temperature phosphorescence through intermolecular halogen bonding. Journal of Materials Chemistry C, 2023, 11, 4203-4209.	2.7	3
138	Organic <scp>Hostâ€Guest</scp> Materials with Bright Red <scp>Roomâ€Temperature</scp> Phosphorescence for Persistent Bioimaging ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1575-1582.	2.6	9
139	Five-in-one: Dual-mode ultralong persistent luminescence with multiple responses from amorphous polymer films. Chemical Engineering Journal, 2023, 463, 142506.	6.6	16
140	New non-conjugated luminescent glycol-terephthalate oligomers bearing aryl Schiff bases: Chemical functionalization, chemical-optical characterization, thermal behavior and fluorescent sensing properties. Optical Materials, 2023, 137, 113516.	1.7	2
141	Sonicationâ€Responsive Organic Afterglow Emulsions. Advanced Functional Materials, 2023, 33, .	7.8	6
142	Fluorescence Sensing of Physical Parameters and Chemical Composition in Gases and Condensed Media., 2023,, 237-294.		0
143	Circularly polarized organic room temperature phosphorescence activated by liquid crystalline polymer networks. Journal of Materials Chemistry C, 2023, 11, 4104-4111.	2.7	9
144	Recent progress with the application of organic room-temperature phosphorescent materials. , 2023, 1, 582-594.		20
145	Utilizing morpholine for purely organic room temperature phosphors. Science China Chemistry, 2023, 66, 1132-1138.	4.2	2
146	Selective Expression of Organic P hosphorescence Units: When <i>H</i> -Benzo[f]indole Meets 7 <i>H</i> -Benzo[c]carbazole. Chemistry of Materials, 2023, 35, 2624-2634.	3.2	6

#	Article	IF	CITATIONS
147	Efficient Purely Organic Room-Temperature Phosphorescence from Selenium-Containing Conjugated Polymers for Signal-Amplified Oxygen Detection. Macromolecules, 2023, 56, 2972-2979.	2.2	5
148	Achieving Tunable Organic Afterglow and UVâ€Irradiationâ€Responsive Ultralong Roomâ€Temperature Phosphorescence from Pyridineâ€Substituted Triphenylamine Derivatives. Advanced Materials, 2023, 35, .	11.1	37
149	Photoactivated organic phosphorescence by stereo-hindrance engineering for mimicking synaptic plasticity. Light: Science and Applications, 2023, 12 , .	7.7	4
150	Highly Efficient Roomâ€Temperature Phosphorescence Promoted via Intramolecularâ€Space Heavyâ€Atom Effect. Advanced Optical Materials, 2023, 11, .	3.6	8
158	Switching Singlet Exciton to Triplet for Efficient Pure Organic Room-Temperature Phosphorescence by Rational Molecular Design. Jacs Au, 2023, 3, 1835-1842.	3.6	3
161	A narrow-band deep-blue MRTADF-type organic afterglow emitter. Chemical Communications, 2023, 59, 12302-12305.	2.2	1
169	Afterglow bio-applications by utilizing triplet excited states of organic materials. Science China Chemistry, 2023, 66, 2930-2940.	4.2	6
181	Recent Advances in Pure-Organic Host–Guest Room-Temperature Phosphorescence Systems Toward Bioimaging. Transactions of Tianjin University, 0, , .	3.3	0