Micrometeorological determinants of pedestrian therm record-breaking heat in Tempe, Arizona: Introducing th

Science of the Total Environment 687, 137-151

DOI: 10.1016/j.scitotenv.2019.06.085

Citation Report

#	Article	IF	CITATIONS
1	Effects of natural and artificial shade on human thermal comfort in residential neighborhood parks of Phoenix, Arizona, USA. Urban Forestry and Urban Greening, 2019, 44, 126429.	2.3	56
2	A Review on interdisciplinary methods for the characterization of thermal perception in public spaces. Journal of Physics: Conference Series, 2019, 1343, 012007.	0.3	3
3	Integrating four radiant heat load mitigation strategies is an efficient intervention to improve human health in urban environments. Science of the Total Environment, 2020, 698, 134259.	3.9	21
4	Field assessment of winter outdoor 3-D radiant environment and its impact on thermal comfort in a severely cold region. Science of the Total Environment, 2020, 709, 136175.	3.9	27
5	Field Assessment of Neighboring Building and Tree Shading Effects on the 3D Radiant Environment and Human Thermal Comfort in Summer within Urban Settlements in Northeast China. Advances in Meteorology, 2020, 2020, 1-19.	0.6	8
6	Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology, 2021, 65, 1277-1289.	1.3	36
7	Intra-urban differences of outdoor thermal comfort in Ghent on seasonal level and during record-breaking 2019 heat wave. Building and Environment, 2020, 185, 107103.	3.0	31
8	Validation of seasonal mean radiant temperature simulations in hot arid urban climates. Science of the Total Environment, 2020, 749, 141392.	3.9	58
9	The Best Urban Trees for Daytime Cooling Leave Nights Slightly Warmer. Forests, 2020, 11, 945.	0.9	13
10	The motley drivers of heat and cold exposure in 21st century US cities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21108-21117.	3.3	51
11	Improving City Vitality through Urban Heat Reduction with Green Infrastructure and Design Solutions: A Systematic Literature Review. Buildings, 2020, 10, 219.	1.4	15
12	Solar reflective pavements—A policy panacea to heat mitigation?. Environmental Research Letters, 2020, 15, 064016.	2.2	60
13	Impacts of form and design policies on urban microclimate: Assessment of zoning and design guideline choices in urban redevelopment projects. Landscape and Urban Planning, 2020, 202, 103870.	3.4	38
14	Associations between urban thermal environment and physical indicators based on meteorological data in Foshan City. Sustainable Cities and Society, 2020, 60, 102288.	5.1	12
15	Allometric scaling of thermal infrared emitted from UK cities and its relation to urban form. City and Environment Interactions, 2020, 5, 100037.	1.8	4
16	A multi-layer urban canopy meteorological model with trees (BEP-Tree): Street tree impacts on pedestrian-level climate. Urban Climate, 2020, 32, 100590.	2.4	85
17	Assessment of "lift-up―design's impact on thermal perceptions in the transition process from indoor to outdoor. Sustainable Cities and Society, 2020, 56, 102081.	5.1	17
18	Rational design of sun and wind shaded evaporative cooling vests for enhanced personal cooling in hot and dry climates. Applied Thermal Engineering, 2020, 171, 115122.	3.0	20

		15	C
#	ARTICLE	IF	CITATIONS
19	The cooling efficiency of variable greenery coverage ratios in different urban densities: A study in a subtropical climate. Building and Environment, 2020, 174, 106772.	3.0	86
20	Seasonal and meteorological effects on the cooling magnitude of trees in subtropical climate. Building and Environment, 2020, 177, 106911.	3.0	15
21	Solar elevation impact on the heat stress mitigation of pedestrians on tree-lined sidewalks of E-W street canyons – Analysis under Central European heat wave conditions. Urban Forestry and Urban Greening, 2021, 58, 126905.	2.3	17
22	Evaluating radiant heat in an outdoor urban environment: Resolving spatial and temporal variations with two sensing platforms and data-driven simulation. Urban Climate, 2021, 35, 100745.	2.4	13
23	High-Resolution Modelling of Thermal Exposure during a Hot Spell: A Case Study Using PALM-4U in Prague, Czech Republic. Atmosphere, 2021, 12, 175.	1.0	27
24	Application of the UTCI in High-Resolution Urban Climate Modeling Techniques. , 2021, , 177-191.		0
25	Project Coolbit: can your watch predict heat stress and thermal comfort sensation?. Environmental Research Letters, 2021, 16, 034031.	2.2	44
26	The role of blue and green infrastructure in thermal sensation in public urban areas: A case study of summer days in four Czech cities. Sustainable Cities and Society, 2021, 66, 102683.	5.1	31
27	A regression-based three-phase approach to assess outdoor thermal comfort in informal micro-entrepreneurial settings in tropical Mumbai. International Journal of Biometeorology, 2022, 66, 313-329.	1.3	6
28	Mapping Local Climate Zones and Their Applications in European Urban Environments: A Systematic Literature Review and Future Development Trends. ISPRS International Journal of Geo-Information, 2021, 10, 260.	1.4	42
29	Thermal comfort assessment over the past two decades in different landscape areas within Palembang City. IOP Conference Series: Earth and Environmental Science, 2021, 724, 012010.	0.2	1
30	Piloting urban ecosystem accounting for the United States. Ecosystem Services, 2021, 48, 101226.	2.3	20
31	Improved methods for estimating mean radiant temperature in hot and sunny outdoor settings. International Journal of Biometeorology, 2021, 65, 967-983.	1.3	31
32	Thermal-irradiant performance of green infrastructure typologies: Field measurement study in a subtropical climate city. Science of the Total Environment, 2021, 764, 144635.	3.9	19
33	50 Grades of Shade. Bulletin of the American Meteorological Society, 2021, 102, E1805-E1820.	1.7	44
34	Cooling hot cities: a systematic and critical review of the numerical modelling literature. Environmental Research Letters, 2021, 16, 053007.	2.2	85
35	Wearable sensing techniques to understand pedestrian-level outdoor microclimate affecting heat related risk in urban parks. Solar Energy, 2022, 242, 397-412.	2.9	9
36	Comparison and modification of measurement and simulation techniques for estimating Tmrt in summer and winter in a severely cold region. Building and Environment, 2021, 199, 107918.	3.0	12

CITATION REPORT

#	Article	IF	CITATIONS
37	A Mobile Vehicle-Based Methodology for Dynamic Microclimate Analysis. International Journal of Environmental Research, 2021, 15, 893-901.	1.1	10
38	Quantifying the Effect of Building Shadowing and Cloudiness on Mean Radiant Temperature in Singapore. Atmosphere, 2021, 12, 1012.	1.0	7
39	Comparison between mental mapping and land surface temperature in two Czech cities: A new perspective on indication of locations prone to heat stress. Building and Environment, 2021, 203, 108090.	3.0	8
40	Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review. International Journal of Biometeorology, 2021, 65, 779-803.	1.3	19
41	Urban Heatwaves and Thermal Remote Sensing. , 2021, , .		0
42	Identifying the need for locally-observed wet bulb globe temperature across outdoor athletic venues for current and future climates in a desert environment. Environmental Research Letters, 0, , .	2.2	6
43	Evaluating the thermal-radiative performance of ENVI-met model for green infrastructure typologies: Experience from a subtropical climate. Building and Environment, 2022, 207, 108427.	3.0	45
44	Urban cooling strategies as interaction opportunities in the public space: a methodological proposal. Journal of Physics: Conference Series, 2021, 2042, 012128.	0.3	1
46	Anisotropic radiation source models for computational thermal manikin simulations based on common radiation field measurements. Building and Environment, 2022, 208, 108636.	3.0	4
47	Summer thermal comfort of pedestrians in diverse urban settings: A mobile study. Building and Environment, 2022, 208, 108600.	3.0	17
48	Applicability of mobile-measurement strategies to different periods: A field campaign in a precinct with a block park. Building and Environment, 2022, 211, 108762.	3.0	7
49	More than surface temperature: mitigating thermal exposure in hyper-local land system. Journal of Land Use Science, 2022, 17, 79-99.	1.0	18
50	A microscale three-dimensional model of urban outdoor thermal exposure (TUF-Pedestrian). International Journal of Biometeorology, 2022, 66, 833-848.	1.3	15
51	Measuring and comparing thermal comfort in outdoor and semi-outdoor spaces in tropical Singapore. Urban Climate, 2022, 42, 101122.	2.4	17
52	Hemispherical Photographs: A Review of Acquisition Methods and Applications in the Context of Urban Energy and Environment Assessments. , 2022, 1, .		2
53	Biometeorological conditions during hot summer days in diverse urban environments of Banja Luka (Bosnia and Herzegovina). Geographica Pannonica, 2022, 26, 29-45.	0.5	8
54	Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city. Science of the Total Environment, 2022, 834, 155294.	3.9	15
56	MaRTiny—A Low-Cost Biometeorological Sensing Device With Embedded Computer Vision for Urban Climate Research. Frontiers in Environmental Science, 2022, 10, .	1.5	5

		CITATION REPORT		
#	Article		IF	CITATIONS
57	Urban Climate Informatics: An Emerging Research Field. Frontiers in Environmental Science	ce, 2022, 10, .	1.5	14
58	Designing thermally sensitive public spaces: an analysis through urban design media. Jour Design, 0, , 1-22.	nal of Urban	0.6	1
59	Extreme Heat Impacts on the Viability of Alternative Transportation for Reducing Ozone F Case Study from Maricopa County, Arizona. Weather, Climate, and Society, 2022, 14, 90		0.5	2
61	How Do Trees Affect the Microclimate of Urban Streets? Observations and Numerical Eva Highly Compact City. SSRN Electronic Journal, 0, , .	luation in a	0.4	0
62	Enhanced human heat exposure in summer in a Central European courtyard subsequently transparent ETFE foil cushions. Urban Climate, 2022, 44, 101210.	roofed with	2.4	7
63	An expert assessment on playspace designs and thermal environments in a Canadian con Climate, 2022, 44, 101235.	text. Urban	2.4	1
64	The characteristics of dynamic and non-uniform thermal radiation experienced by pedestr street canyon. Building and Environment, 2022, 222, 109361.	ians in a	3.0	11
65	Quantifying the effect of ground view factor and ground temperature on outdoor mean r temperature. Sustainable Cities and Society, 2022, 84, 104030.	adiant	5.1	3
66	Resolving Radiant: Combining Spatially Resolved Longwave and Shortwave Measurement the Understanding of Radiant Heat Flux Reflections and Heterogeneity. Frontiers in Susta 0, 4, .		1.2	1
67	Thermophysiological aspects of wearable robotics: Challenges and opportunities. Temper 10, 313-325.	ature, 2023,	1.7	1
68	Integrated Assessment of Urban Overheating Impacts on Human Life. Earth's Future, 202	.2, 10, .	2.4	39
69	High-fidelity simulation of the effects of street trees, green roofs and green walls on the distribution of thermal exposure in Prague-Dejvice. Building and Environment, 2022, 223,	109484.	3.0	12
70	Woody invaders from contrasted climatic origins distribute differently across the urban-to gradient in oceanic Europe $\hat{a} \in $ Is it trait-related?. Urban Forestry and Urban Greening, 20.		2.3	1
71	A study of subtropical park thermal comfort and its influential factors during summer. Jou Thermal Biology, 2022, 109, 103304.	irnal of	1.1	12
72	Isolating the impacts of urban form and fabric from geography on urban heat and human comfort. Building and Environment, 2022, 224, 109502.	thermal	3.0	9
73	Environmental mobile monitoring of urban microclimates: A review. Renewable and Susta Energy Reviews, 2022, 169, 112847.	inable	8.2	11
74	How do street trees affect urban temperatures and radiation exchange? Observations and evaluation in a highly compact city. Urban Climate, 2022, 46, 101288.	d numerical	2.4	10
75	PanoMRT: Panoramic Infrared Thermography to Model Human Thermal Exposure and Cor Electronic Journal, 0, , .	nfort. SSRN	0.4	0

#	Article	IF	Citations
π 76	The significance of shade provision in reducing street-level summer heat stress in a hot	3.4	9
70	Mediterranean climate. Landscape and Urban Planning, 2023, 229, 104588.	5.4	7
77	Human body radiation area factors for diverse adult population. International Journal of Biometeorology, 2022, 66, 2357-2367.	1.3	4
78	Transformational IoT sensing for air pollution and thermal exposures. Frontiers in Built Environment, 0, 8, .	1.2	12
79	Maximizing the pedestrian radiative cooling benefit per street tree. Landscape and Urban Planning, 2023, 230, 104608.	3.4	25
80	Experiential Value, Place Attachment, and Environmentally Responsible Behavior of Forest Health Tourism—A Case of China. Forests, 2022, 13, 1855.	0.9	3
81	Research Progress and Hotspot Evolution Analysis of Landscape Microclimate: Visual Analysis Based on CNKI and WOS. International Journal of Environmental Research and Public Health, 2022, 19, 15118.	1.2	2
82	Beyond heat exposure — new methods to quantify and link personal heat exposure, stress, and strain in diverse populations and climates: The journal <i>Temperature</i> toolbox. Temperature, 2023, 10, 358-378.	1.7	4
83	PanoMRT: Panoramic infrared thermography to model human thermal exposure and comfort. Science of the Total Environment, 2023, 859, 160301.	3.9	1
84	Street-level heat and air pollution exposure informed by mobile sensing. Transportation Research, Part D: Transport and Environment, 2022, 113, 103535.	3.2	5
85	STMRT: A simple tree canopy radiative transfer model for outdoor mean radiant temperature. Building and Environment, 2023, 228, 109846.	3.0	3
86	A fast and accurate mean radiant temperature model for courtyards: Evidence from the Keyuan Garden in central Guangdong, China. Building and Environment, 2023, 229, 109916.	3.0	7
87	Micrometeorological measurements and biometeorological survey in different urban settings of Novi Sad (Serbia). Glasnik - Srpskog Geografskog Drustva, 2022, 102, 45-66.	0.0	1
88	Effects of Urban Park on Thermal Comfort in Summer – An Analysis of Microclimate Data of Seoul Forest Park –. Journal of the Korean Institute of Landscape Architecture, 2022, 50, 30-41.	0.1	0
89	Thermal comfort in urban areas on hot summer days and its improvement through participatory mapping: A case study of two Central European cities. Landscape and Urban Planning, 2023, 233, 104713.	3.4	5
90	Evaluating the performance of cool pavements for urban heat island mitigation under realistic conditions: A systematic review and meta-analysis. Urban Climate, 2023, 49, 101470.	2.4	8
91	High-resolution thermal exposure and shade maps for cool corridor planning. Sustainable Cities and Society, 2023, 93, 104499.	5.1	4
93	Field assessments of mean radiant temperature estimation methods at beach areas: A case study of Hailing Island, China. Building and Environment, 2023, 232, 110039.	3.0	2
94	Daily variation of ground radiation in unshaded and shaded environments and the effect on mean radiant temperature. Case Studies in Thermal Engineering, 2023, 43, 102791.	2.8	3

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
95	Effectiveness of travel behavior and infrastructure change to mitigate heat exposure. Frontiers in Sustainable Cities, 0, 5, .	1.2	3
96	Evidence-based guidance on reflective pavement for urban heat mitigation in Arizona. Nature Communications, 2023, 14, .	5.8	9
97	Assessment of urban green areas towards changing surface energy balance fluxes in tropical study sites, Central Thailand. Environmental Challenges, 2023, 11, 100715.	2.0	2
98	Establishing a baseline for thermal stress conditions – A high-resolution radiative perspective. Urban Climate, 2023, 49, 101523.	2.4	3
102	A Parametric Tool for Outdoor Shade Design: Harnessing Quantitative Indices and Visual Feedback for Effective and Efficient Climatic Design of Streets. Communications in Computer and Information Science, 2023, , 302-316.	0.4	0