Metabolic adaptations of tissue-resident immune cells

Nature Immunology 20, 793-801

DOI: 10.1038/s41590-019-0407-0

Citation Report

#	Article	IF	CITATIONS
1	Inflammatory and immunometabolic consequences of gut dysfunction in HIV: Parallels with IBD and implications for reservoir persistence and non-AIDS comorbidities. EBioMedicine, 2019, 46, 522-531.	2.7	57
2	A peaceful death orchestrates immune balance in a chaotic environment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22901-22903.	3.3	7
3	Systematic Enzyme Mapping of Cellular Metabolism by Phasor-Analyzed Label-Free NAD(P)H Fluorescence Lifetime Imaging. International Journal of Molecular Sciences, 2019, 20, 5565.	1.8	27
4	Persistent colonization of non-lymphoid tissue-resident macrophages by <i>Stenotrophomonas maltophilia</i> . International Immunology, 2020, 32, 133-141.	1.8	6
5	Deficiency of CD73 activity promotes protective cardiac immunity against Trypanosoma cruzi infection but permissive environment in visceral adipose tissue. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165592.	1.8	8
6	Metabolic regulation of innate immunity. Advances in Immunology, 2020, 145, 129-157.	1.1	10
7	Decreased Frequency of Intestinal CD39+ $\hat{l}^3\hat{l}$ + T Cells With Tissue-Resident Memory Phenotype in Inflammatory Bowel Disease. Frontiers in Immunology, 2020, 11, 567472.	2.2	10
8	Immunometabolism in the Single-Cell Era. Cell Metabolism, 2020, 32, 710-725.	7.2	116
9	C ₆₀ Fullerene Governs Doxorubicin Effect on Metabolic Profile of Rat Microglial Cells In Vitro. Molecular Pharmaceutics, 2020, 17, 3622-3632.	2.3	7
10	\hat{l}^2 -Hydroxybutyrate Oxidation Promotes the Accumulation of Immunometabolites in Activated Microglia Cells. Metabolites, 2020, 10, 346.	1.3	14
11	Pathogenesis of ANCA-associated vasculitis: an emerging role for immunometabolism. Rheumatology, 2020, 59, iii33-iii41.	0.9	5
12	Differential regulation of the immune system in a brain-liver-fats organ network during short-term fasting. Molecular Metabolism, 2020, 40, 101038.	3.0	7
13	Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Nature Reviews Rheumatology, 2020, 16, 255-267.	3.5	74
14	Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nature Communications, 2020, 11, 1559.	5.8	139
15	Environmental arginine controls multinuclear giant cell metabolism and formation. Nature Communications, 2020, 11, 431.	5.8	37
16	Metabolic regulation of epigenetic remodeling in immune cells. Current Opinion in Biotechnology, 2020, 63, 111-117.	3.3	21
17	Macrophage activation as an archetype of mitochondrial repurposing. Molecular Aspects of Medicine, 2020, 71, 100838.	2.7	18
18	Mitochondria: An Integrative Hub Coordinating Circadian Rhythms, Metabolism, the Microbiome, and Immunity. Frontiers in Cell and Developmental Biology, 2020, 8, 51.	1.8	37

#	Article	IF	CITATIONS
19	Diversity of energy metabolism in immune responses regulated by micro-organisms and dietary nutrition. International Immunology, 2020, 32, 447-454.	1.8	22
20	Cellâ€intrinsic metabolic regulation of mononuclear phagocyte activation: Findings from the tip of the iceberg. Immunological Reviews, 2020, 295, 54-67.	2.8	45
21	Involvements of long noncoding RNAs in obesityâ€associated inflammatory diseases. Obesity Reviews, 2021, 22, e13156.	3.1	28
22	Tissue-specific features of microglial innate immune responses. Neurochemistry International, 2021, 142, 104924.	1.9	8
23	Ssu72 regulates alveolar macrophage development and allergic airway inflammation by fine-tuning of GM-CSF receptor signaling. Journal of Allergy and Clinical Immunology, 2021, 147, 1242-1260.	1.5	8
24	Lipid Droplets as Regulators of Metabolism and Immunity. Immunometabolism, 2021, , .	0.7	10
26	New Tools for Studying Macrophage Polarization: Application to Bacterial Infections. , 0, , .		4
27	Microenvironmental Regulation of Macrophage Transcriptomic and Metabolomic Profiles in Pulmonary Hypertension. Frontiers in Immunology, 2021, 12, 640718.	2.2	19
28	Dwellers and Trespassers: Mononuclear Phagocytes at the Borders of the Central Nervous System. Frontiers in Immunology, 2020, 11, 609921.	2.2	26
29	Immune-Related Genes: Potential Regulators and Drug Therapeutic Targets in Hypertrophic Cardiomyopathy. Journal of Nanomaterials, 2021, 2021, 1-14.	1.5	1
30	Resident immune cells of the avascular lens: Mediators of the injury and fibrotic response of the lens. FASEB Journal, 2021, 35, e21341.	0.2	18
31	Intravital Metabolic Autofluorescence Imaging Captures Macrophage Heterogeneity Across Normal and Cancerous Tissue. Frontiers in Bioengineering and Biotechnology, 2021, 9, 644648.	2.0	16
33	GABA transporter sustains IL- $1\hat{l}^2$ production in macrophages. Science Advances, 2021, 7, .	4.7	44
34	Embryonic Origin and Subclonal Evolution of Tumor-Associated Macrophages Imply Preventive Care for Cancer. Cells, 2021, 10, 903.	1.8	12
35	Immunometabolism of Tissue-Resident Macrophages – An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Frontiers in Immunology, 2021, 12, 665782.	2,2	15
36	Extracellular Acidity Reprograms Macrophage Metabolism and Innate Responsiveness. Journal of Immunology, 2021, 206, 3021-3031.	0.4	4
37	Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection. Immunity, 2021, 54, 1200-1218.e9.	6.6	68
38	Targeting cell-intrinsic metabolism for antifibrotic therapy. Journal of Hepatology, 2021, 74, 1442-1454.	1.8	24

#	Article	IF	CITATIONS
39	Salt Transiently Inhibits Mitochondrial Energetics in Mononuclear Phagocytes. Circulation, 2021, 144, 144-158.	1.6	32
40	Immune cells in lens injury repair and fibrosis. Experimental Eye Research, 2021, 209, 108664.	1.2	14
42	Immune responses to injury and their links to eye disease. Translational Research, 2021, 236, 52-71.	2.2	69
43	Experimental respiratory exposure to putative Gulf War toxins promotes persistent alveolar macrophage recruitment and pulmonary inflammation. Life Sciences, 2021, 282, 119839.	2.0	3
44	Monosodium Urate Crystals Regulate a Unique JNK-Dependent Macrophage Metabolic and Inflammatory Response. SSRN Electronic Journal, 0, , .	0.4	0
47	Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection. Journal of Clinical Investigation, 2020, 130, 5397-5412.	3.9	41
48	Metabolic Rewiring in the Tumor Microenvironment to Support Immunotherapy: A Focus on Neutrophils, Polymorphonuclear Myeloid-Derived Suppressor Cells and Natural Killer Cells. Vaccines, 2021, 9, 1178.	2.1	5
49	Tissue Location Drives the Metabolic Re-Profiling of Macrophages. Immunometabolism, 2020, , .	0.7	O
51	Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metabolism, 2021, 33, 2260-2276.e7.	7.2	173
52	Phenotypic Switch of Human Peritoneal Macrophages during Childhood. European Journal of Pediatric Surgery, 2021, 31, 086-094.	0.7	4
53	Effect of Bacteriophage-Derived Double Stranded RNA on Rat Peritoneal Macrophages and Microglia in Normoxia and Hypoxia. Proceedings of the Latvian Academy of Sciences, 2021, 75, 343-349.	0.0	2
54	Immune Checkpoints and Innate Lymphoid Cellsâ€"New Avenues for Cancer Immunotherapy. Cancers, 2021, 13, 5967.	1.7	11
55	Sensei: how many samples to tell a change in cell type abundance?. BMC Bioinformatics, 2022, 23, 2.	1.2	2
56	Helminth resistance is mediated by differential activation of recruited monocyte-derived alveolar macrophages and arginine depletion. Cell Reports, 2022, 38, 110215.	2.9	30
57	Single-cell RNA sequencing analysis reveals the relationship of bone marrow and osteopenia in STZ-induced type 1 diabetic mice. Journal of Advanced Research, 2022, 41, 145-158.	4.4	3
58	A defective lysophosphatidic acid-autophagy axis increases miscarriage risk by restricting decidual macrophage residence. Autophagy, 2022, 18, 2459-2480.	4.3	26
59	Trained ILC3 responses promote intestinal defense. Science, 2022, 375, 859-863.	6.0	60
60	Monosodium urate crystals regulate a unique JNK-dependent macrophage metabolic and inflammatory response. Cell Reports, 2022, 38, 110489.	2.9	20

#	Article	IF	CITATIONS
61	Cell Trafficking at the Intersection of the Tumor–Immune Compartments. Annual Review of Biomedical Engineering, 2022, 24, 275-305.	5.7	9
62	Metabolism of tissue macrophages in homeostasis and pathology. Cellular and Molecular Immunology, 2022, 19, 384-408.	4.8	117
63	Macrophage mitochondrial bioenergetics and tissue invasion are boosted by an Atossaâ€Porthos axis in Drosophila. EMBO Journal, 2022, 41, e109049.	3.5	8
64	Glucocorticoid receptor modulates myeloid-derived suppressor cell function via mitochondrial metabolism in immune thrombocytopenia., 2022, 19, 764-776.		10
66	Intracellular infection and immune system cues rewire adipocytes to acquire immune function. Cell Metabolism, 2022, 34, 747-760.e6.	7.2	21
67	Fucoxanthin Attenuates the Reprogramming of Energy Metabolism during the Activation of Hepatic Stellate Cells. Nutrients, 2022, 14, 1902.	1.7	3
68	Editorial: Immune Regulation of Metabolic Homeostasis. Frontiers in Endocrinology, 2022, 13, .	1.5	1
69	The Good and the Bad: Monocytes' and Macrophages' Diverse Functions in Inflammation. Cells, 2022, 11, 1979.	1.8	39
70	Leptin receptor signaling sustains metabolic fitness of alveolar macrophages to attenuate pulmonary inflammation. Science Advances, 2022, 8, .	4.7	7
71	Single Cell Analysis Reveals Reciprocal Tumor-Macrophage Intercellular Communications Related with Metabolic Reprogramming in Stem-like Gastric Cancer. Cells, 2022, 11, 2373.	1.8	3
72	The Yin-Yang functions of macrophages in metabolic disorders. , 2022, 1, 319-332.		1
73	Regulation of microglial physiology by the microbiota. Gut Microbes, 2022, 14, .	4.3	14
74	Metagenomic evidence for increasing antibiotic resistance in progeny upon parental antibiotic exposure as the cost of hormesis. Chemosphere, 2022, 309, 136738.	4.2	3
75	S100A8-mediated metabolic adaptation controls HIV-1 persistence in macrophages in vivo. Nature Communications, 2022, 13, .	5.8	10
76	Metabolic features of innate lymphoid cells. Journal of Experimental Medicine, 2022, 219, .	4.2	2
77	Bone Marrow Macrophages Induce Inflammation by Efferocytosis of Apoptotic Prostate Cancer Cells via HIF- $1\hat{l}\pm$ Stabilization. Cells, 2022, 11, 3712.	1.8	3
78	GABA regulates IL- $1\hat{l}^2$ production in macrophages. Cell Reports, 2022, 41, 111770.	2.9	19
79	The ciliary zonules provide a pathway for immune cells to populate the avascular lens during eye development. Experimental Biology and Medicine, 2022, 247, 2251-2273.	1.1	3

#	Article	IF	CITATIONS
80	Systemic immune-inflammation index is associated with decreased bone mass density and osteoporosis in postmenopausal women but not in premenopausal women. Endocrine Connections, 2023, 12, .	0.8	9
81	Tissue-specific metabolic profile drives iNKT cell function during obesity and liver injury. Cell Reports, 2023, 42, 112035.	2.9	3
82	Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis. Immunity, 2023, 56, 516-530.e9.	6.6	39
83	Glycolytic activity in human immune cells: inter-individual variation and functional implications during health and diabetes. Immunometabolism, 2022, 4, e00008.	0.7	2
84	Metabolism in type 2 immune responses. Immunity, 2023, 56, 723-741.	6.6	7
85	Network analysis of large-scale ImmGen and Tabula Muris datasets highlights metabolic diversity of tissue mononuclear phagocytes. Cell Reports, 2023, 42, 112046.	2.9	4
86	Alternative signal priming enhances the inflammatory response in macrophages. , 0, , .		0
87	Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Frontiers in Immunology, 0, 14 , .	2.2	8
88	Immunometabolic Processes of Macrophages in Disease States. Physiology, 0, , .	4.0	0
89	Defensiveâ€lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunological Reviews, 2023, 317, 113-136.	2.8	3
90	Transcriptional programing of T cell metabolism by STAT family transcription factors. European Journal of Immunology, 2023, 53, .	1.6	0
91	Shaping of the alveolar landscape by respiratory infections and long-term consequences for lung immunity. Frontiers in Immunology, 0, 14 , .	2.2	2
94	Metformin: update on mechanisms of action and repurposing potential. Nature Reviews Endocrinology, 2023, 19, 460-476.	4.3	55
99	Measuring the Metabolic State of Tissue-Resident Macrophages via SCENITH. Methods in Molecular Biology, 2024, , 363-376.	0.4	0