Dynamic relaxations and relaxation-property relations

Progress in Materials Science 106, 100561 DOI: 10.1016/j.pmatsci.2019.03.006

Citation Report

#		IF	CITATIONS
11		11	CHAHONS
1	Optical Processing of DNA-Programmed Nanoparticle Superlattices. Nano Letters, 2019, 19, 8074-8081.	4.5	14
2	Dynamic Mechanical Relaxation in LaCe-Based Metallic Glasses: Influence of the Chemical Composition. Metals, 2019, 9, 1013.	1.0	7
3	Fast rejuvenation in bulk metallic glass induced by ultrasonic vibration precompression. Intermetallics, 2020, 118, 106687.	1.8	21
4	Thermal transport property correlated with microstructural evolution of Fe-based amorphous alloy. Acta Materialia, 2020, 200, 793-802.	3.8	19
5	Influence of combinatorial annealing and plastic deformation treatments on the intrinsic properties of Cu46Zr46Al8 bulk metallic glass. Intermetallics, 2020, 127, 106986.	1.8	8
6	Effects of nanoscale chemical heterogeneity on the wear, corrosion, and tribocorrosion resistance of Zr-based thin film metallic glasses. Surface and Coatings Technology, 2020, 402, 126324.	2.2	13
7	Dynamic mechanical relaxation in Zr65Ni7Cu18Al10 metallic glass. Journal of Non-Crystalline Solids, 2020, 546, 120266.	1.5	5
8	Zr55Cu30Al10Ni5 amorphous alloy sheets with large plasticity fabricated by twin-roll strip casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 794, 139904.	2.6	6
9	Quenching Temperature and Cooling Rate Effects on Thermal Rejuvenation of Metallic Glasses. Metals and Materials International, 2021, 27, 5108-5113.	1.8	6
10	Atomistic investigation of aging and rejuvenation in CuZr metallic glass under cyclic loading. Computational Materials Science, 2020, 185, 109965.	1.4	15
11	Variation in the structure of the amorphous NiTi-based alloys during mechanical vibrations. Journal of Non-Crystalline Solids, 2020, 542, 120101.	1.5	2
12	Dynamic relaxations of a metallic glass studied on cooling. Journal of Alloys and Compounds, 2020, 846, 156426.	2.8	3
13	Unusual internal friction and its size dependence in nanoscale metallic glasses. Journal of Applied Physics, 2020, 128, .	1.1	2
14	Unraveling strongly entropic effect on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>β</mml:mi> -relaxation in metallic glass: Insights from enhanced atomistic samplings over experimentally relevant timescales. Physical Review B. 2020, 102, .</mml:math 	1.1	5
15	A Cu-Y-Al glassy alloy with strong beta relaxation and low activation energies for structural relaxation and crystallization. Thermochimica Acta, 2020, 693, 178762.	1.2	4
16	Unified perspective on structural heterogeneity of a LaCe-based metallic glass from versatile dynamic stimuli. Intermetallics, 2020, 125, 106922.	1.8	8
17	Relating melting temperature with structure heterogeneity and plasticity of Zr57Cu20Al10Ni8Ag5 bulk metallic glass. Journal of Non-Crystalline Solids, 2020, 543, 120100.	1.5	9
18	Mechanism of synergistic alloying effects on glass-forming ability of magnetic metallic glasses. Intermetallics, 2020, 123, 106833.	1.8	1

	Сіта	tion Report	
#	Article	IF	CITATIONS
19	Surface dynamics measurement on a gold based metallic glass. Applied Physics Letters, 2020, 116, .	1.5	9
20	Temperature Effect on Fracture of a Zr-Based Bulk Metallic Glass. Materials, 2020, 13, 2391.	1.3	6
21	Rejuvenation through plastic deformation of a La-based metallic glass measured by fast-scanning calorimetry. Journal of Non-Crystalline Solids: X, 2020, 8, 100051.	0.5	6
22	Crystallization of amorphous Ti40.7Hf9.5Ni41.8Cu8 alloy during the low-frequency mechanical vibrations at room temperature. Materials Letters, 2020, 275, 128084.	1.3	1
23	Reversible and irreversible <i>\hat{l}^2</i> -relaxations in metallic glasses. Physical Review B, 2020, 101, .	1.1	19
24	Shadow glass transition as a thermodynamic signature of β relaxation in hyper-quenched metallic glasses. National Science Review, 2020, 7, 1896-1905.	4.6	58
25	Correlation between High Temperature Deformation and Î ² Relaxation in LaCe-Based Metallic Glass. Materials, 2020, 13, 833.	1.3	8
26	Statistical complexity of potential energy landscape as a dynamic signature of the glass transition. Physical Review B, 2020, 101, .	1.1	12
27	A new mathematical expression for the relation between characteristic temperature and glass-forming ability of metallic glasses. Journal of Non-Crystalline Solids, 2020, 533, 119829.	1,5	31
28	Revisiting the breakdown of Stokes-Einstein relation in glass-forming liquids with machine learning. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	3
29	Synthesizing of Novel Bulk (Zr67Cu33)100â^'xWx(x; 5–30 at%) Glassy Alloys by Spark Plasma Sinterii Mechanically Alloyed Powders. Molecules, 2020, 25, 1906.	ng of 1.7	3
30	Current research trends in dielectric relaxation studies of amorphous pharmaceuticals: Physical stability, tautomerism, and the role of hydrogen bonding. TrAC - Trends in Analytical Chemistry, 2021, 134, 116097.	5.8	11
31	Ibuprofen incorporated into unmodified and modified mesoporous silica: From matrix synthesis to drug release. Microporous and Mesoporous Materials, 2021, 310, 110541.	2.2	10
32	Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach. Computational Materials Science, 2021, 186, 110025.	1.4	34
33	Achieving pronounced β-relaxations and improved plasticity in CuZr metallic glass. Journal of Alloys and Compounds, 2021, 850, 156774.	2.8	1
34	Effect of minor addition on dynamic mechanical relaxation in ZrCu-based metallic glasses. Journal of Non-Crystalline Solids, 2021, 553, 120496.	1.5	7
35	Origin of structural heterogeneity in Zr-Co-Al metallic glasses from the point of view of liquid structures. Journal of Non-Crystalline Solids, 2021, 553, 120501.	1.5	8
36	Theory of Pressure-Induced Rejuvenation and Strain Hardening in Metallic Glasses. Physical Review Letters, 2021, 126, 025502.	2.9	28

#	Article	IF	CITATIONS
37	Internal friction behavior of Zr ₅₉ Fe ₁₈ Al ₁₀ Ni ₁₀ Nb ₃ metallic glass under different aging temperatures. Chinese Physics B, 2021, 30, 026401.	0.7	2
38	Vitrification and Physical Aging in Polymer Glasses by Broadband Dielectric Spectroscopy. ACS Symposium Series, 2021, , 133-156.	0.5	3
39	High temperature strain glass in Ti–Au and Ti–Pt based shape memory alloys. Chinese Physics B, 2021, 30, 018101.	0.7	1
40	β-Relaxation and Crystallization Behaviors in a Pulse-Current-Thermoplastic-Formed La-Based Bulk Metallic Glass. Journal of Physical Chemistry B, 2021, 125, 657-664.	1.2	5
41	Fast dynamics in a model metallic glass-forming material. Journal of Chemical Physics, 2021, 154, 084505.	1.2	32
42	Dynamic mechanical relaxation behavior of binary metallic glasses. Intermetallics, 2021, 130, 107075.	1.8	1
43	Effects of minor Si addition on structural heterogeneity and glass formation of GdDyErCoAl high-entropy bulk metallic glass. Journal of Materials Research and Technology, 2021, 11, 378-391.	2.6	13
44	From elastic excitations to macroscopic plasticity in metallic glasses. Applied Materials Today, 2021, 22, 100958.	2.3	11
45	Nano-heterogeneity-stabilized and magnetic-interaction-modulated metallic glasses. Science China Materials, 2021, 64, 1813-1819.	3.5	12
46	Rejuvenation of a naturally aged bulk metallic glass by elastostatic loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140843.	2.6	12
47	Macroscopic viscoelastic deformation at room temperature in mechanically rejuvenated Zr-based metallic glass. MRS Communications, 2021, 11, 330-335.	0.8	2
48	Effects of Annealing on Enthalpy Recovery and Nanomechanical Behaviors of a La-Based Bulk Metallic Glass. Metals, 2021, 11, 579.	1.0	0
49	Relaxation dynamics of Pd–Ni–P metallic glass: decoupling of anelastic and viscous processes. Journal of Physics Condensed Matter, 2021, 33, 164004.	0.7	10
50	Fast mobility induced self-lubrication at metallic glass surface. Journal of Applied Physics, 2021, 129, .	1.1	2
51	Effectively one-dimensional phase diagram of CuZr liquids and glasses. Physical Review B, 2021, 103, .	1.1	4
52	Microstructure and mechanical properties of Zr55Cu30Al10Ni5 amorphous alloy with high-energy states produced by strip casting. Journal of Alloys and Compounds, 2021, 861, 158542.	2.8	10
53	Interfacial bonding of CuZr metallic glass via oxide: A molecular dynamics study. Corrosion Science, 2021, 182, 109275.	3.0	9
54	Impact of cryogenic cycling on tracer diffusion in plastically deformed Pd40 Ni40 P20 bulk metallic glass. Acta Materialia, 2021, 209, 116785.	3.8	17

#	Article	IF	CITATIONS
55	Connecting structural defects to tensile failure in a 3D-printed fully-amorphous bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 813, 141106.	2.6	20
56	Intrinsic relaxation in a supercooled ZrTiNiCuBe glass forming liquid. Physical Review Materials, 2021, 5, .	0.9	7
57	Influence of the chemical composition on the β-relaxation and the mechanical behavior of LaCe-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2021, 562, 120779.	1.5	3
58	Quantized aging mode in metallic glass-forming liquids. Acta Materialia, 2021, 211, 116873.	3.8	11
59	The correlation between β relaxation and shear transformation zone in LaNiAl bulk metallic glasses: The effect of cryogenic thermal cycling treatment. Journal of Alloys and Compounds, 2021, 865, 158993.	2.8	7
60	Controllable nanoporous copper synthesized by dealloying metallic glasses: New insights into the tuning pore structure and applications. Chemical Engineering Journal, 2021, 427, 130861.	6.6	6
61	A criterion of glass-forming ability and stability derived from pseudo-four characteristic temperatures. Intermetallics, 2021, 134, 107201.	1.8	2
62	Visco-elasticity and mechanical relaxation behavior in La-based metallic glasses. Journal of Non-Crystalline Solids, 2021, 564, 120843.	1.5	1
63	Metallic Nanoglasses with Promoted \hat{I}^2 -Relaxation and Tensile Plasticity. Nano Letters, 2021, 21, 6051-6056.	4.5	25
64	Dynamic mechanical behavior of (La0.7Ce0.3)65Al10Co25 bulk metallic glass: Influence of the physical aging and heat treatment. Journal of Alloys and Compounds, 2021, 869, 159271.	2.8	6
65	Revealing the structural heterogeneity of metallic glass: Mechanical spectroscopy and nanoindentation experiments. International Journal of Mechanical Sciences, 2021, 201, 106469.	3.6	89
66	Identifying the high entropy characteristic in La-based metallic glasses. Applied Physics Letters, 2021, 119, .	1.5	3
67	Dynamic mechanical relaxation and thermal creep of high-entropy La30Ce30Ni10Al20Co10 bulk metallic glass. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	37
68	Formation of a phase separated structure in the Zr–Cu–Fe–Al alloys by thermo-mechanical processing. Intermetallics, 2021, 135, 107224.	1.8	8
69	Flow serrations of rejuvenation behaviour through cryogenic thermal cycling for Zr-based bulk metallic glass. Philosophical Magazine, 2021, 101, 2261-2272.	0.7	2
70	Large heat-capacity jump in cooling-heating of fragile glass from kinetic Monte Carlo simulations based on a two-state picture. Physical Review E, 2021, 104, 024131.	0.8	4
71	Correlative study between elastic modulus and glass formation in ZrCuAl(X) amorphous system using a machine learning approach. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
72	A refined local structure in a metallic glass tailored via flash-annealing. Materials Characterization, 2021, 178, 111214.	1.9	6

#	Article	IF	CITATIONS
73	Pronounced β-relaxation in plastic FeNi-based bulk metallic glasses and its structural origin. Intermetallics, 2021, 136, 107234.	1.8	13
74	Stress relaxation in high-entropy Pd20Pt20Cu20Ni20P20 metallic glass: Experiments, modeling and theory. Mechanics of Materials, 2021, 160, 103959.	1.7	5
75	Amorphous alloys and differential scanning calorimetry (DSC). Journal of Thermal Analysis and Calorimetry, 2022, 147, 7141-7157.	2.0	20
76	Predicting the glass formation of metallic glasses using machine learning approaches. Computational Materials Science, 2021, 197, 110656.	1.4	14
77	Boson-peak-like anomaly caused by transverse phonon softening in strain glass. Nature Communications, 2021, 12, 5755.	5.8	18
78	Thermodynamics and kinetics of glassy and liquid phase-change materials. Materials Science in Semiconductor Processing, 2021, 135, 106094.	1.9	7
79	Microstructural effects on the dynamical relaxation of glasses and glass composites: A molecular dynamics study. Acta Materialia, 2021, 220, 117293.	3.8	9
80	Dynamic mechanical response of ZrCu-based bulk metallic glasses. International Journal of Mechanical Sciences, 2021, 211, 106770.	3.6	11
81	Characteristic of dynamic mechanical relaxation processes in Cu46Zr46Al8 and La43.4Ce18.6Ni24Al14 metallic glasses. Journal of Alloys and Compounds, 2021, 887, 161392.	2.8	2
82	Effect of natural aging on relaxation behavior and mechanical property of a La-based bulk metallic glass. Intermetallics, 2021, 139, 107365.	1.8	2
83	Water-repellent surfaces of metallic glasses: fabrication and application. Materials Today Advances, 2021, 12, 100164.	2.5	8
84	Elastic and structural properties of Mg25Al75 binary metallic glass under different cooling conditions. Journal of Alloys and Compounds, 2022, 891, 161979.	2.8	13
85	Relaxation and vibrational properties in metal alloys and other disordered systems. Journal of Physics Condensed Matter, 2020, 32, 203001.	0.7	23
86	Manipulation of relaxation processes in a metallic glass through cryogenic treatment. Journal of Alloys and Compounds, 2022, 894, 162407.	2.8	10
87	Bulk intrinsic heterogeneity of metallic glasses probed by Meissner effect. Intermetallics, 2020, 119, 106721.	1.8	1
88	On low-temperature strength and tensile ductility of bulk metallic glass composites containing stable or shape memory β-Ti crystals. Acta Materialia, 2022, 222, 117444.	3.8	17
89	Linking local connectivity to atomic-scale relaxation dynamics in metallic glass-forming systems. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 066101.	0.2	1
90	Influence of sub-glass transition heat-treatment on physical and structural properties of Cu46Zr44Al8Hf2 metallic glass. Research on Engineering Structures and Materials, 2020, , .	0.2	1

#	Article	IF	Citations
91	Mechanism of low thermal conductivity for Fe76Si13B8Nb2Cu1 amorphous and nanocrystalline alloys at room temperature. Journal of Non-Crystalline Solids, 2022, 576, 121264.	1.5	6
92	Laser additive manufacturing of metallic glasses: issues in vitrification and mechanical properties. Oxford Open Materials Science, 2020, 1, .	0.5	4
93	Stress and Deformation During Solidification of Amorphous Alloys Causes Microstructural Inhomogeneity. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 6-11.	1.1	1
94	Wettability and Interfacial Reactions Between Metallic Glass Melts and Cu/Mo Used as Roller Materials for Twin-Roll Casting. Acta Metallurgica Sinica (English Letters), 2022, 35, 1221-1230.	1.5	2
95	Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing. Nature Communications, 2021, 12, 6582.	5.8	51
96	Common structural basis of short- and long-time relaxation dynamics in metallic glass-forming liquids. Computational Materials Science, 2022, 203, 111135.	1.4	2
97	Short to medium range order and atomic dynamic property within the surface of nanoscale metallic glasses revealed by molecular dynamics simulations. Journal of Non-Crystalline Solids, 2022, 578, 121348.	1.5	5
98	Grain boundary diffusion and viscous flow governed mechanical relaxation in polycrystalline materials. Science China Materials, 2022, 65, 1403.	3.5	1
99	Structure-dynamics relationships in cryogenically deformed bulk metallic glass. Nature Communications, 2022, 13, 127.	5.8	24
100	Correlation between vibrational anomalies and emergent anharmonicity of the local potential energy landscape in metallic glasses. Physical Review B, 2022, 105, .	1.1	12
101	Evident glass relaxation at room temperature induced by size effect. Physical Review B, 2022, 105, .	1.1	4
102	Strong adhesion induced by liquid-like surface of metallic glasses. Applied Physics Letters, 2022, 120, 051601.	1.5	0
103	Annealing metallic glasses above Tg in order to accelerate the relaxation process in molecular dynamics simulations. Applied Physics Letters, 2022, 120, 011904.	1.5	5
104	Universal scaling law of glass rheology. Nature Materials, 2022, 21, 404-409.	13.3	9
105	High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts. Chinese Physics B, O, , .	0.7	1
106	Deformation of Cu-Pd-P metallic glass under cyclic mechanical load on continous heating. Theoretical and Applied Fracture Mechanics, 2022, 118, 103262.	2.1	3
107	Nanoscale structural heterogeneity perspective on the ameliorated magnetic properties of a Fe-based amorphous alloy with decreasing cooling rate. Journal of Non-Crystalline Solids, 2022, 581, 121433.	1.5	4
108	Correlating nano-tribological behavior with the free volume of Zr-based bulk metallic glasses via their fictive temperature. Wear, 2022, 494-495, 204247.	1.5	3

#	Article	IF	CITATIONS
109	Stability of metallic glasses under simulated space conditions. Journal of Alloys and Compounds, 2022, 902, 163811.	2.8	1
110	Deformation behavior of a nanoporous metallic glass at room temperature. International Journal of Plasticity, 2022, 152, 103232.	4.1	25
111	Nanoscale Heterogeneities of Non-Noble Iron-Based Metallic Glasses toward Efficient Water Oxidation at Industrial-Level Current Densities. ACS Applied Materials & Interfaces, 2022, 14, 10288-10297.	4.0	18
112	High Mixing Entropy Enhanced Energy States in Metallic Glasses. Chinese Physics Letters, 2022, 39, 046401.	1.3	5
113	Surface dynamics of glasses. Applied Physics Reviews, 2022, 9, .	5.5	22
114	Low-temperature relaxation behavior of a bulk metallic glass leading to improvement of both strength and plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142841.	2.6	4
115	The correlation between structural characteristics and plasticity mediated by shear transformation zone size in amorphous alloys. Intermetallics, 2022, 143, 107496.	1.8	5
116	Temperature-dependence of impact toughness of bulk metallic glass composites containing phase transformable β-Ti crystals. Acta Materialia, 2022, 229, 117827.	3.8	14
117	Dynamic relaxation characteristics and stress relaxation behavior of Pd-based _{ } metallic glass. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 086101.	0.2	0
118	Correlating the Annealing Temperature Dependence of the Structural Inhomogeneity and the Diffusion in Zr-Ti-Cu-Ni-Be Glassy System. Solid State Phenomena, 0, 330, 11-15.	0.3	1
119	Unraveling the microstructural heterogeneity and plasticity of Zr50Cu40Al10 bulk metallic glass by nanoindentation. International Journal of Plasticity, 2022, 154, 103305.	4.1	26
120	Unraveling the threshold stress of structural rejuvenation of metallic glasses via thermo-mechanical creep. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	12
121	Preliminary study on the effect of microstructure shape on impact compression dynamic fracture of two-dimensional brittle materials protective structures. European Journal of Mechanics, A/Solids, 2022, 95, 104625.	2.1	3
122	Composition dependence in glass-forming ability of Cu–Ag binary alloys. Acta Materialia, 2022, 235, 118059.	3.8	4
123	Understanding the unusual-caged dynamics from the microstructure and interatomic interactions in binary metallic glass-forming liquids. Journal of Non-Crystalline Solids, 2022, 590, 121699.	1.5	7
124	Evolution of the distribution of flow units of a metallic glass under cyclic loading. Journal of Alloys and Compounds, 2022, 916, 165479.	2.8	2
125	Hidden spatiotemporal sequence in transition to shear band in amorphous solids. Physical Review Research, 2022, 4, .	1.3	10
126	Evolution path of metallic glasses under extensive cryogenic thermal cycling: Rejuvenation or relaxation?. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143551.	2.6	5

#	Article	IF	CITATIONS
127	Atomic-scale icosahedral short-range ordering in a rejuvenated Zr-based bulk metallic glass upon deep cryogenic treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143565.	2.6	12
128	Tuning the mechanical properties of cellular metallic glasses. International Journal of Plasticity, 2022, 156, 103373.	4.1	7
129	Pressure effects on the dynamics and glass formation of Cu-Ag eutectic melt. Journal of Non-Crystalline Solids, 2022, 594, 121800.	1.5	0
130	Unveiling the boson peak from local geometric distortion in a metallic glass. Journal of Non-Crystalline Solids, 2022, 594, 121804.	1.5	2
131	Effect of Zr/B ratio on \hat{I}^2 relaxation, structural heterogeneity, and magnetic properties of Fe-Zr-B amorphous alloys. Journal of Non-Crystalline Solids, 2022, 594, 121822.	1.5	3
132	Advances in Fe-based amorphous/nanocrystalline alloys. Journal of Applied Physics, 2022, 132, .	1.1	13
133	Liquid-like atoms in dense-packed solid glasses. Nature Materials, 2022, 21, 1240-1245.	13.3	38
134	Two-step annealing induced structural rejuvenation: A cause for memory effect in metallic glasses. Materials Today Physics, 2022, , 100824.	2.9	2
135	Achieving structural rejuvenation in metallic glass by modulating \hat{I}^2 relaxation intensity via easy-to-operate mechanical cycling. International Journal of Plasticity, 2022, 157, 103402.	4.1	32
136	Transient nature of fast relaxation in metallic glass. Acta Materialia, 2022, 239, 118254.	3.8	5
137	Influence of Microalloying Process on Dynamic Mechanical Relaxation of ZrCo-Based Amorphous Alloy. Advances in Materials Science and Engineering, 2022, 2022, 1-9.	1.0	0
138	Unified upper temperature for cryogenic thermal cycling treatment in Fe-based bulk metallic glasses. Journal of Alloys and Compounds, 2023, 931, 167263.	2.8	2
139	Aging and rejuvenation during high-temperature deformation in a metallic glass. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	13
140	Evidence for strain and a structural reset in Pd40Ni40P20 bulk metallic glass. Journal of Applied Physics, 2022, 132, .	1.1	3
141	Discovery of a new criterion for predicting glass-forming ability based on symbolic regression and artificial neural network. Journal of Applied Physics, 2022, 132, .	1.1	8
142	Vibration assisted glass-formation in zeolitic imidazolate framework. Journal of Chemical Physics, 2022, 157, 104501.	1.2	7
143	Shear Band Control for Improved Strength-Ductility Synergy in Metallic Glasses. Applied Mechanics Reviews, 2022, 74, .	4.5	8
144	Intrinsic Correlation between the Fraction of Liquidlike Zones and the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>î²</mml:mi> Relaxation in High-Entropy Metallic Glasses. Physical Review Letters, 2022, 129, .</mml:math 	2.9	31

#	Article	IF	CITATIONS
145	Attractive Electron Delocalization Behavior of FeCoMoPB Amorphous Nanoplates for Highly Efficient Alkaline Water Oxidation. Small, 2022, 18, .	5.2	11
146	Structural length-scale of \hat{I}^2 relaxation in metallic glass. Journal of Chemical Physics, 2022, 157, .	1.2	2
147	Pressure weakening unusual-caged dynamics of La80Al20 metallic glass-forming liquid. Journal of Molecular Liquids, 2022, 368, 120706.	2.3	2
148	Shear-band blunting governs superior mechanical properties of shape memory metallic glass composites. Acta Materialia, 2022, 241, 118422.	3.8	9
149	Effect of nanoindentation experimental parameters on the estimation of the plastic events in metallic glasses employing various analysis methods. Intermetallics, 2022, 151, 107748.	1.8	0
150	Continuous transition from gamma to beta dynamics during stress relaxation. Scripta Materialia, 2023, 224, 115114.	2.6	5
151	Dissimilar diffusion bonding of bulk metallic glass: Amorphous/crystalline atomic-scale interaction. Materials Characterization, 2023, 195, 112480.	1.9	3
152	Indentation creep dynamics in metallic glasses under different structural states. International Journal of Mechanical Sciences, 2023, 240, 107941.	3.6	8
153	The kinetics of reentrant glass transition in metallic liquids. Acta Materialia, 2023, 244, 118554.	3.8	3
154	Shear transformation zones and serrated flow dynamics of metallic glasses revealed by nanoindentation. Journal of Alloys and Compounds, 2023, 936, 168165.	2.8	1
155	Highly tunable Î ² -relaxation enables the tailoring of crystallization in phase-change materials. Nature Communications, 2022, 13, .	5.8	9
156	Disentangling structural and kinetic components of the α-relaxation in supercooled metallic liquids. Communications Physics, 2022, 5, .	2.0	8
157	Non-Isothermal Dynamic Mechanical Analysis of Ribbon Metallic Glasses and Its Thermodynamic Description. Materials, 2022, 15, 8659.	1.3	0
158	Hidden and universal relaxation mode in metallic glasses of simple atomic structure. Physical Review B, 2022, 106, .	1.1	2
159	Three mechanical relaxation modes associated with nanoscale structural heterogeneity in Pd _{42.5} Ni _{7.5} Cu ₃₀ P ₂₀ fragile glass. EPJ Applied Physics, 2023, 98, 8.	0.3	2
160	Angell plot from the potential energy landscape perspective. Physical Review E, 2022, 106, .	0.8	0
161	A regime beyond the Hall–Petch and inverse-Hall–Petch regimes in ultrafine-grained solids. Communications Physics, 2022, 5, .	2.0	4
162	A fractal structural feature related to dynamic crossover in metallic glass-forming liquids. Physical Chemistry Chemical Physics, 2023, 25, 4151-4160.	1.3	5

#	Article	IF	CITATIONS
163	Novel experimental strategy towards temperature inhomogeneity during spark plasma sintering of metallic glasses. , 2023, 2, 100109.		3
164	Tailoring the mechanical properties of bulk metallic glasses via cooling from the supercooled liquid region. Science China Technological Sciences, 2023, 66, 173-180.	2.0	2
165	Physics-motivated fractional viscoelasticity model for dynamic relaxation in amorphous solids. International Journal of Plasticity, 2023, 164, 103588.	4.1	4
166	Energy-releasing and phase transitions of Ti-based bulk metallic glass composites during heating. Journal of Non-Crystalline Solids, 2023, 607, 122223.	1.5	0
167	Rejuvenation behavior and microstructural evolution of Cu-Zr metallic glass during multiple recovery annealing treatment via molecular dynamic simulation. Journal of Alloys and Compounds, 2023, 945, 169294.	2.8	4
168	Structural heterogeneity in levitated glassy alloys with different undercoolings. Journal of Alloys and Compounds, 2023, 947, 169532.	2.8	1
169	Glycol lignin/MAH-g-PP blends and composites with exceptional mechanical properties for automotive applications. Composites Science and Technology, 2023, 238, 110030.	3.8	3
170	Unraveling structural relaxation induced ductile-to-brittle transition from perspective of shear band nucleation kinetics in metallic glass. Journal of Alloys and Compounds, 2023, 952, 170022.	2.8	0
171	Nanoindentation and nanotribology behaviors of open-cell metallic glass nanofoams. International Journal of Mechanical Sciences, 2023, 249, 108254.	3.6	14
172	Variability of mesoscopic mechanical disorder in disordered solids. Journal of Non-Crystalline Solids, 2023, 604, 122137.	1.5	3
173	Distinct relaxation mechanism at room temperature in metallic glass. Nature Communications, 2023, 14, .	5.8	10
174	Laser-based additive manufacturing of bulk metallic glasses: recent advances and future perspectives for biomedical applications. Journal of Materials Research and Technology, 2023, 23, 2956-2990.	2.6	15
175	Thermal transport property correlated with microstructure transformation and structure evolution of Fe-based amorphous coating. Surface and Coatings Technology, 2023, 457, 129298.	2.2	5
176	Quenched-in liquid in glass. Materials Futures, 2023, 2, 017501.	3.1	6
177	The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 076101.	0.2	1
178	Non-monotonic influence of cryogenic thermal cycling on rejuvenation and impact toughness of Ti-based bulk metallic glass composites. Scripta Materialia, 2023, 228, 115340.	2.6	3
179	Scaling Law for Impact Resistance of Amorphous Alloys Connecting Atomistic Molecular Dynamics with Macroscale Experiments. ACS Applied Materials & amp; Interfaces, 2023, 15, 13449-13459.	4.0	2
180	Degeneration of thermal insulation property for Fe-based amorphous coating during long-term heat exposure. Journal of Non-Crystalline Solids, 2023, 606, 122203.	1.5	1

#	Article	IF	CITATIONS
181	Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses. Materials, 2023, 16, 1731.	1.3	0
182	Comparison of structural heterogeneity in Zr- and Pd-based metallic glasses. EPJ Applied Physics, 2023, 98, 18.	0.3	0
183	Medium-Range Order Resists Deformation in Metallic Liquids and Glasses. Metals, 2023, 13, 442.	1.0	2
184	Correlations of multiscale structural evolution and homogeneous flows in metallic glass ribbons. Materials Research Letters, 2023, 11, 547-555.	4.1	4
185	Some aspects of the glass transition of polyvinylpyrrolidone depending on the molecular mass. Physical Chemistry Chemical Physics, 2023, 25, 10706-10714.	1.3	4
186	Structural Relaxation Rate and Aging in Amorphous Solids. Journal of Physical Chemistry C, 2023, 127, 6080-6087.	1.5	4
187	Uncovering the bridging role of slow atoms in unusual caged dynamics and <i>β</i> -relaxation of binary metallic glasses. Journal of Chemical Physics, 2023, 158, 134511.	1.2	0
188	Structural, Thermal, and Optical Property of GeO ₂ -La ₂ O ₃ -TiO ₂ Glasses. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, , 68.	0.6	0
189	Johari–Coldstein <i>β</i> relaxation in glassy dynamics originates from two-scale energy landscape. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2
190	Entropy-driven atomic activation in supercooled liquids and its link to the fragile-to-strong transition. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	2
191	Effect of the physical aging on the secondary \hat{I}^2 relaxation process in a La-based metallic glass. EPJ Applied Physics, 0, , .	0.3	0
192	Dynamic relaxation behavior and its effect on mechanical properties of FePBCCu amorphous alloy. Materials Today Communications, 2023, 35, 106012.	0.9	1
193	New pathways to control the evolution of the atomic motion in metallic glasses. Comptes Rendus Physique, 2023, 24, 1-11.	0.3	0