$\hat{I}^{3}\hat{I}'$ T cells: pleiotropic immune effectors with the rapeut

Nature Reviews Cancer 19, 392-404 DOI: 10.1038/s41568-019-0153-5

Citation Report

#	Article	IF	CITATIONS
1	Selenium nanoparticles as new strategy to potentiate $\hat{I}^{3}\hat{I}$ T cell anti-tumor cytotoxicity through upregulation of tubulin- \hat{I}_{\pm} acetylation. Biomaterials, 2019, 222, 119397.	5.7	73
2	Silver nanoparticles induce cell death of colon cancer cells through impairing cytoskeleton and membrane nanostructure. Micron, 2019, 126, 102750.	1.1	27
3	Immunity, Hypoxia, and Metabolism–the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiological Reviews, 2020, 100, 1-102.	13.1	190
4	Zoledronate rescues immunosuppressed monocytes in sepsis patients. Immunology, 2020, 159, 88-95.	2.0	10
5	Molecular imaging biomarkers for immune checkpoint inhibitor therapy. Theranostics, 2020, 10, 1708-1718.	4.6	68
6	HMGB1 Promotes Myeloid Egress and Limits Lymphatic Clearance of Malignant Pleural Effusions. Frontiers in Immunology, 2020, 11, 2027.	2.2	4
7	Exosomes derived from Vδ2-T cells control Epstein-Barr virus–associated tumors and induce T cell antitumor immunity. Science Translational Medicine, 2020, 12, .	5.8	48
8	Irreversible electroporation plus allogenic Vγ9Vδ2 T cells enhances antitumor effect for locally advanced pancreatic cancer patients. Signal Transduction and Targeted Therapy, 2020, 5, 215.	7.1	54
9	Highâ€dose postâ€transplant cyclophosphamide impairs γδTâ€cell reconstitution after haploidentical haematopoietic stem cell transplantation using lowâ€dose antithymocyte globulin and peripheral blood stem cell graft. Clinical and Translational Immunology, 2020, 9, e1171.	1.7	9
10	Editorial: γδT Cells in Cancer. Frontiers in Immunology, 2020, 11, 602411.	2.2	2
11	Valproic acid enhances pamidronate-sensitized cytotoxicity of Vδ2+ T cells against EBV-related lymphoproliferative cells. International Immunopharmacology, 2020, 88, 106890.	1.7	2
12	From thymus to periphery: Molecular basis of effector γδâ€T cell differentiation. Immunological Reviews, 2020, 298, 47-60.	2.8	42
13	Cancer immunotherapy with γδT cells: many paths ahead of us. Cellular and Molecular Immunology, 2020, 17, 925-939.	4.8	180
14	Immune Landscape of the Tumor Microenvironment Identifies Prognostic Gene Signature CD4/CD68/CSF1R in Osteosarcoma. Frontiers in Oncology, 2020, 10, 1198.	1.3	25
15	Prognostic Implications of Immune-Related Genes' (IRGs) Signature Models in Cervical Cancer and Endometrial Cancer. Frontiers in Genetics, 2020, 11, 725.	1.1	24
16	Combination of Detoxified Pneumolysin Derivative ΔA146Ply and Berbamine as a Treatment Approach for Breast Cancer. Molecular Therapy - Oncolytics, 2020, 18, 247-261.	2.0	8
17	Distinct and temporary-restricted epigenetic mechanisms regulate human αβ and γδT cell development. Nature Immunology, 2020, 21, 1280-1292.	7.0	43
18	High Abundance of Intratumoral γδT Cells Favors a Better Prognosis in Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis. Frontiers in Immunology, 2020, 11, 573920.	2.2	22

#	Article	IF	CITATIONS
19	Beyond CAR T cells: Engineered Vγ9VΠ2 T cells to fight solid tumors. Immunological Reviews, 2020, 298, 117-133.	2.8	9
20	Gut Î ³ δT cells as guardians, disruptors, and instigators of cancer. Immunological Reviews, 2020, 298, 198-217.	2.8	28
21	Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells, 2020, 9, 2044.	1.8	39
22	Interrogating Cellular Communication in Cancer with Genetically Encoded Imaging Reporters. Radiology Imaging Cancer, 2020, 2, e190053.	0.7	5
23	Innate and adaptive $\hat{I}^{3}\hat{I}^{T}$ cells: How, when, and why. Immunological Reviews, 2020, 298, 99-116.	2.8	46
24	The Role of Human Î ³ δT Cells in Anti-Tumor Immunity and Their Potential for Cancer Immunotherapy. Cells, 2020, 9, 1206.	1.8	43
25	What Can Gamma Delta T Cells Contribute to an HIV Cure?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 233.	1.8	16
26	Boosting the Immune System for HIV Cure: A $\hat{I}^{3}\hat{I}^{}$ T Cell Perspective. Frontiers in Cellular and Infection Microbiology, 2020, 10, 221.	1.8	7
27	Effect of naive and cancer-educated fibroblasts on colon cancer cell circadian growth rhythm. Cell Death and Disease, 2020, 11, 289.	2.7	10
28	MR1-Restricted T Cells Are Unprecedented Cancer Fighters. Frontiers in Immunology, 2020, 11, 751.	2.2	22
29	Minor Histocompatibility Antigen-Specific T Cells. Frontiers in Pediatrics, 2020, 8, 284.	0.9	20
30	Butyrophilin-2A1 Directly Binds Germline-Encoded Regions of the Vγ9VÎ′2 TCR and Is Essential for Phosphoantigen Sensing. Immunity, 2020, 52, 487-498.e6.	6.6	164
31	Activation of Human γδT Cells: Modulation by Toll-Like Receptor 8 Ligands and Role of Monocytes. Cells, 2020, 9, 713.	1.8	18
32	Mistletoe-Extract Drugs Stimulate Anti-Cancer Vγ9Vδ2 T Cells. Cells, 2020, 9, 1560.	1.8	9
33	γδTCR Recognition of MR1: Adapting to Life on the Flip Side. Trends in Biochemical Sciences, 2020, 45, 551-553.	3.7	4
34	Development and Function of γÎT Cells in the Oral Mucosa. Journal of Dental Research, 2020, 99, 498-505.	2.5	16
35	The Role of Gamma Delta T Cells in Autoimmune Rheumatic Diseases. Cells, 2020, 9, 462.	1.8	38
36	Immunosuppressant indulges EBV reactivation and related lymphoproliferative disease by inhibiting Vδ2+T cells activities after hematopoietic transplantation for blood malignancies. , 2020, 8, e000208.		18

#	Article	IF	CITATIONS
37	Immunotherapy of Pediatric Solid Tumors: Treatments at a Crossroads, with an Emphasis on Antibodies. Cancer Immunology Research, 2020, 8, 161-166.	1.6	48
38	Immune microenvironment of hepatocellular carcinoma, intrahepatic cholangiocarcinoma and liver metastasis of colorectal adenocarcinoma: Relationship with histopathological and molecular classifications. Hepatology Research, 2021, 51, 5-18.	1.8	29
39	$\hat{I}^{3}\hat{I}^{\prime}$ T cells in tissue physiology and surveillance. Nature Reviews Immunology, 2021, 21, 221-232.	10.6	230
40	Functional and metabolic dichotomy of murine Î ³ δT cell subsets in cancer immunity. European Journal of Immunology, 2021, 51, 17-26.	1.6	10
41	Emerging immunotherapies for metastasis. British Journal of Cancer, 2021, 124, 37-48.	2.9	32
42	Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cellular and Molecular Immunology, 2021, 18, 427-439.	4.8	122
43	Chimeric Antigen Receptor beyond CAR-T Cells. Cancers, 2021, 13, 404.	1.7	29
44	Imaging of cell-based therapy using ⁸⁹ Zr-oxine <i>ex vivo</i> cell labeling for positron emission tomography. Nanotheranostics, 2021, 5, 27-35.	2.7	20
45	Identification of biomarkers related to Tumor-Infiltrating Lymphocytes (TILs) infiltration with gene co-expression network in colorectal cancer. Bioengineered, 2021, 12, 1676-1688.	1.4	9
46	Characterization of ascites- and tumor-infiltrating $\hat{I}^{3}\hat{I}^{T}$ T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Science Translational Medicine, 2021, 13, .	5.8	37
47	The subtle interplay between gamma delta T lymphocytes and dendritic cells: is there a role for a therapeutic cancer vaccine in the era of combinatorial strategies?. Cancer Immunology, Immunotherapy, 2021, 70, 1797-1809.	2.0	12
48	Identifying the Immunological Gene Signatures of Immune Cell Subtypes. BioMed Research International, 2021, 2021, 1-10.	0.9	1
49	Next Generation Sequencingâ€Based Identification of Tâ€Cell Receptors for Immunotherapy Against Hepatocellular Carcinoma. Hepatology Communications, 2021, 5, 1106-1119.	2.0	2
50	The Dual Roles of Human Î ³ δT Cells: Anti-Tumor or Tumor-Promoting. Frontiers in Immunology, 2020, 11, 619954.	2.2	45
51	Adoptive cell therapy of patient-derived renal cell carcinoma xenograft model with IL-15-induced γÎT cells. Medical Oncology, 2021, 38, 30.	1.2	8
52	Genetic Influence on the Peripheral Differentiation Signature of Vδ2+ γδ and CD4+ αβ T Cells in Adults. Cells, 2021, 10, 373.	1.8	2
53	Immune Infiltration Landscape in Clear Cell Renal Cell Carcinoma Implications. Frontiers in Oncology, 2020, 10, 491621.	1.3	15
54	Vγ9VÎ′2 T cells strengthen cisplatin inhibition activity against breast cancer MDA-MB-231 cells by disrupting mitochondrial function and cell ultrastructure. Cancer Cell International, 2021, 21, 113.	1.8	0

#	Article	IF	CITATIONS
55	Single-cell analysis reveals the origins and intrahepatic development of liver-resident IFN-Î ³ -producing Î ³ δ T cells. Cellular and Molecular Immunology, 2021, 18, 954-968.	4.8	18
56	Function of γδT cells in tumor immunology and their application to cancer therapy. Experimental and Molecular Medicine, 2021, 53, 318-327.	3.2	95
57	Î ³ δT Cells in Merkel Cell Carcinomas Have a Proinflammatory Profile Prognostic of Patient Survival. Cancer Immunology Research, 2021, 9, 612-623.	1.6	22
58	Immunotherapy: A Potential Approach to Targeting Cancer Stem Cells. Current Cancer Drug Targets, 2021, 21, 117-131.	0.8	4
59	Neutrophil dynamics in the tumor microenvironment. Journal of Clinical Investigation, 2021, 131, .	3.9	52
60	Epigenetic modulation of immune synaptic-cytoskeletal networks potentiates î³î´T cell-mediated cytotoxicity in lung cancer. Nature Communications, 2021, 12, 2163.	5.8	16
62	Generation of Stable Isopentenyl Monophosphate Aryloxy Triester Phosphoramidates as Activators of Vγ9VΠ2 T Cells. ChemMedChem, 2021, 16, 2375-2380.	1.6	1
63	Bispecific Antibody PD-L1 x CD3 Boosts the Anti-Tumor Potency of the Expanded Vγ2Vδ2 T Cells. Frontiers in Immunology, 2021, 12, 654080.	2.2	8
64	Adoptive Î ³ ÎT-cell transfer alone or combined with chemotherapy for the treatment of advanced esophageal cancer. Cytotherapy, 2021, 23, 423-432.	0.3	3
65	Dichotomous and stable gamma delta T-cell number and function in healthy individuals. , 2021, 9, e002274.		13
66	Revisiting the Role of Î ³ δT Cells in Anti-CMV Immune Response after Transplantation. Viruses, 2021, 13, 1031.	1.5	7
67	Circulating PD1+Vδ1+γδT Cell Predicts Fertility in Endometrial Polyp Patients of Reproductive-Age. Frontiers in Immunology, 2021, 12, 639221.	2.2	5
68	Monocyte-dependent co-stimulation of cytokine induction in human γδT cells by TLR8 RNA ligands. Scientific Reports, 2021, 11, 15231.	1.6	5
69	Untargeted metabolomics approach to discriminate mistletoe commercial products. Scientific Reports, 2021, 11, 14205.	1.6	10
70	Extracellular Vesicles as an Advanced Delivery Biomaterial for Precision Cancer Immunotherapy. Advanced Healthcare Materials, 2022, 11, e2100650.	3.9	27
71	Human Î ³ δT cell sensing of AMPK-dependent metabolic tumor reprogramming through TCR recognition of EphA2. Science Immunology, 2021, 6, .	5.6	23
73	IDO Inhibition Facilitates Antitumor Immunity of Vγ9VÎ″2 T Cells in Triple-Negative Breast Cancer. Frontiers in Oncology, 2021, 11, 679517.	1.3	15
75	Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery. Frontiers in Immunology, 2021, 12, 592031.	2.2	6

#	Article	IF	CITATIONS
76	JAML promotes CD8 and γδT cell antitumor immunity and is a novel target for cancer immunotherapy. Journal of Experimental Medicine, 2021, 218, .	4.2	11
77	Unconventional T cells and kidney disease. Nature Reviews Nephrology, 2021, 17, 795-813.	4.1	24
78	Activated Î ³ Î^T Cells With Higher CD107a Expression and Inflammatory Potential During Early Pregnancy in Patients With Recurrent Spontaneous Abortion. Frontiers in Immunology, 2021, 12, 724662.	2.2	12
79	Crosstalk between $\hat{I}^{3}\hat{I}^{\prime}$ T cells and the microbiota. Nature Microbiology, 2021, 6, 1110-1117.	5.9	44
80	Mistletoe lectins: From interconnecting proteins to potential tumour inhibiting agents. Phytomedicine Plus, 2021, 1, 100039.	0.9	11
81	Landscape of Immune Microenvironment Under Immune Cell Infiltration Pattern in Breast Cancer. Frontiers in Immunology, 2021, 12, 711433.	2.2	70
82	Immunomodulatory Effect of Irreversible Electroporation Alone and Its Cooperating With Immunotherapy in Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 712042.	1.3	15
83	Î ³ δT Cells for Leukemia Immunotherapy: New and Expanding Trends. Frontiers in Immunology, 2021, 12, 729085.	2.2	18
84	Distinct metabolic programs established in the thymus control effector functions of γδT cell subsets in tumor microenvironments. Nature Immunology, 2021, 22, 179-192.	7.0	99
85	Interplay between Î ³ ÎT-Cell Metabolism and Tumour Microenvironment Offers Opportunities for Therapeutic Intervention. Immunometabolism, 2021, 3, 210026.	0.7	2
87	Coordinated signals from PARP-1 and PARP-2 are required to establish a proper T cell immune response to breast tumors in mice. Oncogene, 2020, 39, 2835-2843.	2.6	15
89	T cell optimization for graft-versus-leukemia responses. JCl Insight, 2020, 5, .	2.3	23
90	Recent advances in understanding the development and function of γδT cells. F1000Research, 2020, 9, 306.	0.8	6
91	Potent Bidirectional Cross-Talk Between Plasmacytoid Dendritic Cells and γÎT Cells Through BTN3A, Type I/II IFNs and Immune Checkpoints. Frontiers in Immunology, 2020, 11, 861.	2.2	17
92	"γÎT Cell-IL17A-Neutrophil―Axis Drives Immunosuppression and Confers Breast Cancer Resistance to High-Dose Anti-VEGFR2 Therapy. Frontiers in Immunology, 2021, 12, 699478.	2.2	8
93	The role of B7-H3 in tumors and its potential in clinical application. International Immunopharmacology, 2021, 101, 108153.	1.7	22
95	Tumor microenvironment: the formation of the immune profile. Medical Immunology (Russia), 2020, 22, 207-220.	0.1	3
96	Genetically Modified T Cells for Esophageal Cancer Therapy: A Promising Clinical Application. Frontiers in Oncology, 2021, 11, 763806.	1.3	6

#	Article	IF	CITATIONS
98	Association between αβ and γδT-cell subsets and clinicopathological characteristics in patients with breast cancer. Oncology Letters, 2020, 20, 325.	0.8	2
99	Dysfunctional BTN3A together with deregulated immune checkpoints and type I/II IFN dictate defective interplay between pDCs and γδT cells in melanoma patients, which impacts clinical outcomes. Clinical and Translational Immunology, 2021, 10, e1329.	1.7	7
100	High fat diet induced gut dysbiosis alters corneal epithelial injury response in mice. Ocular Surface, 2022, 23, 49-59.	2.2	7
102	MicroRNAâ€181a restricts human γδT cell differentiation by targeting Map3k2 and Notch2. EMBO Reports, 2022, 23, e52234.	2.0	5
103	The Contribution of Human Herpes Viruses to γδT Cell Mobilisation in Co-Infections. Viruses, 2021, 13, 2372.	1.5	5
104	Microenvironment-activatable cascaded responsive carbonized polymer dots as a theranostic platform for precise rapamycin delivery to potentiate the synergy of chemotherapy and Î ³ δT cells-mediated immunotherapy against tumor. Applied Materials Today, 2022, 26, 101364.	2.3	4
105	Association between αβ and γδ T‑cell subsets and clinicopathological characteristics in patients with breast cancer. Oncology Letters, 2020, 20, 325.	0.8	5
107	Properties and Roles of γÎT Cells in Plasmodium yoelii nigeriensis NSM Infected C57BL/6 Mice. Frontiers in Cellular and Infection Microbiology, 2021, 11, 788546.	1.8	3
108	Identification of the function of $\hat{l}^3\hat{l}$ 1 T cells in the lung cancer microenvironments. Clinical and Translational Oncology, 2022, , 1.	1.2	0
109	Immune microenvironment-related gene mapping predicts immunochemotherapy response and prognosis in diffuse large B-cell lymphoma. Medical Oncology, 2022, 39, 44.	1.2	5
110	Comprehensive Analysis of Immune-Related Prognosis of TK1 in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 786873.	1.3	9
111	Stimulatory and inhibitory activity of STING ligands on tumor-reactive human gamma/delta T cells. Oncolmmunology, 2022, 11, 2030021.	2.1	7
112	Celastrol gel ameliorates imiquimod-induced psoriasis-like dermatitis in mice by targeting Langerhans cells. Biomedicine and Pharmacotherapy, 2022, 147, 112644.	2.5	11
113	Gamma delta (γΠ) T cells in cancer immunotherapy; where it comes from, where it will go?. European Journal of Pharmacology, 2022, 919, 174803.	1.7	23
114	Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells. Journal of Controlled Release, 2022, 343, 379-391.	4.8	12
115	Allogeneic Vγ9Vδ2 T-Cell Therapy Promotes Pulmonary Lesion Repair: An Open-Label, Single-Arm Pilot Study in Patients With Multidrug-Resistant Tuberculosis. Frontiers in Immunology, 2021, 12, 756495.	2.2	7
116	γδT cell costimulatory ligands in antitumor immunity. Exploration of Immunology, 2022, 2, 79-97.	1.7	2
117	Transient 40°C-shock potentiates cytotoxic responses of Vδ2+ γδ T cell via HSP70 upregulation. Cancer Immunology, Immunotherapy, 2022, , 1.	2.0	1

#	Article	IF	CITATIONS
118	The microbiota is a potential mediator of the crosstalk between γδT cells and tumors. Exploration of Immunology, 0, , 48-63.	1.7	1
119	Tumor-associated protein ligands recognized by human $\hat{I}^{3\hat{I}'}$ T cell receptor and their implications in cancer therapy. Exploration of Immunology, 0, , 64-78.	1.7	0
120	1α,25(OH) ₂ D ₃ reverses exhaustion and enhances antitumor immunity of human cytotoxic T cells. , 2022, 10, e003477.		17
121	Dendritic epidermal T cells secreting exosomes promote the proliferation of epidermal stem cells to enhance wound re-epithelialization. Stem Cell Research and Therapy, 2022, 13, 121.	2.4	7
123	Local Ablative Therapy Associated with Immunotherapy in Locally Advanced Pancreatic Cancer: A Solution to Overcome the Double Trouble?—A Comprehensive Review. Journal of Clinical Medicine, 2022, 11, 1948.	1.0	7
124	New insights on murine $\hat{I}^{3}\hat{I}$ T cells from single-cell multi-omics. Science Bulletin, 2022, 67, 1102-1104.	4.3	2
125	Mutation of the Polyproline Sequence in CD3ε Evidences TCR Signaling Requirements for Differentiation and Function of Pro-Inflammatory Tγδ17 Cells. Frontiers in Immunology, 2022, 13, 799919.	2.2	2
126	Apoptosis, Pyroptosis, and Ferroptosis Conspiringly Induce Immunosuppressive Hepatocellular Carcinoma Microenvironment and γδT-Cell Imbalance. Frontiers in Immunology, 2022, 13, 845974.	2.2	15
127	Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Seminars in Cancer Biology, 2022, 86, 207-223.	4.3	35
128	The Diverse Roles of γδT Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers, 2021, 13, 6212.	1.7	13
129	Electroacupuncture Attenuates Immune-Inflammatory Response in Hippocampus of Rats with Vascular Dementia by Inhibiting TLR4/MyD88 Signaling Pathway. Chinese Journal of Integrative Medicine, 2022, 28, 153-161.	0.7	11
130	Breast cancer microenvironment and obesity: challenges for therapy. Cancer and Metastasis Reviews, 2022, 41, 627-647.	2.7	13
131	Bibliometric Analysis of Î ³ δT Cells as Immune Regulators in Cancer Prognosis. Frontiers in Immunology, 2022, 13, 874640.	2.2	6
132	Single-cell differentiation trajectories define early stages of a human cutaneous T-cell lymphoma. Exploration of Immunology, 0, , 185-199.	1.7	0
133	The duplexity of unconventional T cells in cancer. International Journal of Biochemistry and Cell Biology, 2022, 146, 106213.	1.2	6
142	Analysis of the Heterogeneity of the Tumor Microenvironment and the Prognosis and Immunotherapy Response of Different Immune Subtypes in Hepatocellular Carcinoma. Journal of Oncology, 2022, 2022, 1-21.	0.6	0
143	Analysis of the Seasonal Fluctuation of γδT Cells and Its Potential Relation with Vitamin D3. Cells, 2022, 11, 1460.	1.8	6
144	Engineering $\hat{I}^{3}\hat{I}$ T Cells: Recognizing and Activating on Their Own Way. Frontiers in Immunology, 2022, 13, .	2.2	12

#	Article	IF	CITATIONS
145	Revisit the signatures of γδT cells in hepatocellular carcinoma. Clinical and Translational Medicine, 2022, 12, e859.	1.7	1
146	NKG2D signaling regulates IL-17A-producing $\hat{I}^{\hat{J}}\hat{I}$ T cells in mice to promote cancer progression. , 2022, 1, .		6
147	Contemplating Dichotomous Nature of Gamma Delta T Cells for Immunotherapy. Frontiers in Immunology, 2022, 13, .	2.2	6
148	Î ³ δT Cells in Emerging Viral Infection: An Overview. Viruses, 2022, 14, 1166.	1.5	3
149	Transcriptional profiling of human Vδ1 TÂcells reveals a pathogen-driven adaptive differentiation program. Cell Reports, 2022, 39, 110858.	2.9	13
150	A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer. Nature Cancer, 2022, 3, 696-709.	5.7	39
151	Obesity and cancer: the gammadelta T cell link. Exploration of Immunology, 0, , 320-333.	1.7	1
152	CD137 Costimulation Enhances the Antitumor Activity of Vγ9Vδ2-T Cells in IL-10-Mediated Immunosuppressive Tumor Microenvironment. Frontiers in Immunology, 0, 13, .	2.2	2
153	Allogeneic gamma delta T cells as adoptive cellular therapy for hematologic malignancies. Exploration of Immunology, 0, , 334-350.	1.7	12
154	Vγ2 x PD-L1, a Bispecific Antibody Targeting Both the Vγ2 TCR and PD-L1, Improves the Anti-Tumor Response of Vγ2VÎ′2 T Cell. Frontiers in Immunology, 0, 13, .	2.2	5
155	Human Î ³ δT Cell Subsets and Their Clinical Applications for Cancer Immunotherapy. Cancers, 2022, 14, 3005.	1.7	17
156	Innate-like TÂcells: A promising asset in anti-cancer immunity. Cancer Cell, 2022, 40, 714-716.	7.7	5
157	Androgens in Patients With Luminal B and HER2 Breast Cancer Might Be a Biomarker Promoting Anti-PD-1 Efficacy. Frontiers in Oncology, 0, 12, .	1.3	4
158	SARS-CoV-2 spike and nucleocapsid proteins fail to activate human dendritic cells or Î ³ δT cells. PLoS ONE, 2022, 17, e0271463.	1.1	3
159	γδT Cells in the Tumor Microenvironment—Interactions With Other Immune Cells. Frontiers in Immunology, 0, 13, .	2.2	30
160	Glucose metabolism controls human γΠT-cell-mediated tumor immunosurveillance in diabetes. , 2022, 19, 944-956.		8
161	Visualizing γδT cells by very late antigen-4-targeted positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 4156-4170.	3.3	1
162	TCR-Vγδusage distinguishes protumor from antitumor intestinal γδT cell subsets. Science, 2022, 377, 276-284.	6.0	40

CITATION REPORT	

#	Article	IF	CITATIONS
163	Phenotypic Changes of Peripheral γδT Cell and Its Subsets in Patients With Coronary Artery Disease. Frontiers in Immunology, 0, 13, .	2.2	1
164	Zoledronic acid enhances the efficacy of immunotherapy in non-small cell lung cancer. International Immunopharmacology, 2022, 110, 109030.	1.7	5
165	Targeting cereblon in hematologic malignancies. Blood Reviews, 2023, 57, 100994.	2.8	8
166	$\hat{I}^{3}\hat{I}$ T cells: a sparkling star for clinical immunotherapy. Exploration of Immunology, 0, , 540-557.	1.7	0
167	Fasting renders immunotherapy effective against low-immunogenic breast cancer while reducing side effects. Cell Reports, 2022, 40, 111256.	2.9	25
169	RNA methylation in immune cells. Advances in Immunology, 2022, , 39-94.	1.1	4
170	Gamma delta T-cell reconstitution after allogeneic HCT: A platform for cell therapy. Frontiers in Immunology, 0, 13, .	2.2	1
172	Battle of the $\hat{I}^{\hat{J}}$ T cell subsets in the gut. Trends in Cancer, 2022, 8, 881-883.	3.8	2
173	Current Progress of CAR-NK Therapy in Cancer Treatment. Cancers, 2022, 14, 4318.	1.7	14
174	Generation and proof-of-concept for allogeneic CD123 CAR-Delta One T (DOT) cells in acute myeloid leukemia. , 2022, 10, e005400.		16
175	Patterns of immune infiltration and survival in endocrine therapy-treated ER-positive breast cancer: A computational study of 1900 patients. Biomedicine and Pharmacotherapy, 2022, 155, 113787.	2.5	7
176	ldentification of the immunosuppressive effect of γδT cells correlated to bone morphogenetic protein 2 in acute myeloid leukemia. Frontiers in Immunology, 0, 13, .	2.2	2
177	Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics, 2022, 14, 2181.	2.0	3
178	Characterization of the Immune Microenvironmental Landscape of Lung Squamous Cell Carcinoma with Immune Cell Infiltration. Disease Markers, 2022, 2022, 1-15.	0.6	2
179	Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells, 2022, 11, 3572.	1.8	4
180	The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Military Medical Research, 2022, 9, .	1.9	22
181	Single cell profiling of Î ³ δ hepatosplenic T-cell lymphoma unravels tumor cell heterogeneity associated with disease progression. Cellular Oncology (Dordrecht), 2023, 46, 211-226.	2.1	5
182	Strategies to enhance CAR-T persistence. Biomarker Research, 2022, 10, .	2.8	15

#	Article	IF	CITATIONS
183	An immune risk score predicts progression-free survival of melanoma patients in South China receiving anti-PD-1 inhibitor therapy—a retrospective cohort study examining 66 circulating immune cell subsets. Frontiers in Immunology, 0, 13, .	2.2	2
184	PD-1 and TIM-3 differentially regulate subsets of mouse IL-17A–producing γδT cells. Journal of Experimental Medicine, 2023, 220, .	4.2	20
185	γÎ1L17 under control. Journal of Experimental Medicine, 2023, 220, .	4.2	0
186	Spleen tyrosine kinase mediates the γÎTCR signaling required for γÎT cell commitment and γÎT17 differentiation. Frontiers in Immunology, 0, 13, .	2.2	1
187	Biological characteristics of $\hat{I}^{3}\hat{I}T$ cells and application in tumor immunotherapy. Frontiers in Genetics, 0, 13, .	1.1	1
188	γδT cells are effectors of immunotherapy in cancers with HLA class I defects. Nature, 2023, 613, 743-750.	13.7	79
189	The emerging roles of γδT cells in cancer immunotherapy. Nature Reviews Clinical Oncology, 2023, 20, 178-191.	12.5	74
190	Surfing on the waves of the human $\hat{I}^{3}\hat{I}$ T cell ontogenic sea. Immunological Reviews, 2023, 315, 89-107.	2.8	5
191	Cytotoxicity of Human Hepatic Intrasinusoidal Gamma/Delta T Cells Depends on Phospho-antigen and NK Receptor Signaling. Anticancer Research, 2023, 43, 63-73.	0.5	1
192	Adoptive Cell Therapy for T-Cell Malignancies. Cancers, 2023, 15, 94.	1.7	4
193	The antitumor activity of human Vγ9Vδ2 T cells is impaired by TGF-β through significant phenotype, transcriptomic and metabolic changes. Frontiers in Immunology, 0, 13, .	2.2	4
194	The Role of Gamma Delta T Cells in Cancer. , 2023, , 1-27.		0
195	Human γδT cells induce CD8+ T cell antitumor responses via antigen-presenting effect through HSP90-MyD88-mediated activation of JNK. Cancer Immunology, Immunotherapy, 0, , .	2.0	1
196	Prognostic role of soluble PD-1 and BTN2A1 in overweight melanoma patients treated with nivolumab or pembrolizumab: finding the missing links in the symbiotic immune-metabolic interplay. Therapeutic Advances in Medical Oncology, 2023, 15, 175883592311518.	1.4	6
197	Exhausted intratumoral Vδ2ⴒ γδT cells in human kidney cancer retain effector function. Nature Immunology, 2023, 24, 612-624.	7.0	15
198	Organoids as an Enabler of Precision Immuno-Oncology. Cells, 2023, 12, 1165.	1.8	2
199	Improved Vδ2+ T cells recovery correlates to reduced incidences of mortality and relapse in acute myeloid leukemia after hematopoietic transplantation. Annals of Hematology, 2023, 102, 937-946.	0.8	3
200	γδT cells maintain sensitivity to immunotherapy in MHC-I-deficient tumors. Nature Immunology, 2023, 24, 387-388.	7.0	3

IF ARTICLE CITATIONS # NKG2A Immune Checkpoint in VÎ2 T Cells: Emerging Application in Cancer Immunotherapy. Cancers, 2023, 201 1.7 3 15, 1264. Deep Immunophenotyping of Human Whole Blood by Standardized Multi-parametric Flow Cytometry Analyses. Phenomics, 2023, 3, 309-328. iATMEcell: identification of abnormal tumor microenvironment cells to predict the clinical outcomes 203 3.2 1 in cancer based on cell–cell crosstalk network. Briefings in Bioinformatics, 2023, 24, . $\hat{I}^{3}\hat{I}^{T}\hat{A}$ cells turn the tables on immune-evasive colon cancer. Med, 2023, 4, 141-142. 204 Immune gene patterns and characterization of the tumor immune microenvironment associated with 205 1.4 1 cancer immunotherapy efficacy. Heliyon, 2023, 9, e14450. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell, 2023, 41, 374-403. 298 A close look at current l³l´T-cell immunotherapy. Frontiers in Immunology, 0, 14, . 207 2.2 9 $\sqrt{13}$ 9 $\sqrt{12}$ T-cell immunotherapy in blood cancers: ready for prime time?. Frontiers in Immunology, 0, 14, . 208 2.2 Comprehensive multi-omics analysis reveals m7G-related signature for evaluating prognosis and immunotherapy efficacy in osteosarcoma. Journal of Bone Oncology, 2023, 40, 100481. 209 1.0 4 Innate lymphoid cells and innate-like T cells in cancer— at the crossroads of innate and adaptive 12.8 immunity. Nature Reviews Cancer, 2023, 23, 351-371. T cells in health and disease. Signal Transduction and Targeted Therapy, 2023, 8, . 214 7.1 36 The cytotoxicity of $\hat{I}^{3}\hat{I}T$ cells in non-small cell lung cancer mediated via coordination of the BCL-2 and AKT pathways. Oncogene, 0, , . βĨ´T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduction and Targeted 237 7.1 7 Therapy, 2023, 8, .