Performance of perovskite solar cells under simulated t real-world operating conditions

Nature Energy 4, 568-574 DOI: 10.1038/s41560-019-0400-8

Citation Report

#	Article	IF	CITATIONS
1	Toward Highly Thermal Stable Perovskite Solar Cells by Rational Design of Interfacial Layer. IScience, 2019, 22, 534-543.	1.9	38
2	Intensity-Modulated Photocurrent Spectroscopy and Its Application to Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 24995-25014.	1.5	52
3	Ready cells for large-scale systems. Nature Energy, 2019, 4, 536-537.	19.8	5
4	Photovoltaics literature survey (No. 153). Progress in Photovoltaics: Research and Applications, 2019, 27, 889-895.	4.4	0
5	Highly efficient walking perovskite solar cells based on thermomechanical polymer films. Journal of Materials Chemistry A, 2019, 7, 26154-26161.	5.2	12
6	The role of excitons in 3D and 2D lead halide perovskites. Journal of Materials Chemistry C, 2019, 7, 12006-12018.	2.7	80
7	Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport. Applied Energy, 2020, 257, 113969.	5.1	90
8	Highly efficient and rapid manufactured perovskite solar cells via Flash InfraRed Annealing. Materials Today, 2020, 35, 9-15.	8.3	35
9	Inkjetâ€Printed Micrometerâ€Thick Perovskite Solar Cells with Large Columnar Grains. Advanced Energy Materials, 2020, 10, 1903184.	10.2	142
10	Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review. Renewable and Sustainable Energy Reviews, 2020, 119, 109608.	8.2	83
11	Predicted Power Output of Silicon-Based Bifacial Tandem Photovoltaic Systems. Joule, 2020, 4, 580-596.	11.7	46
12	Theoretical study of building-integrated photovoltaics based on perovskite single junction and perovskite/silicon tandem solar cells. Energy Exploration and Exploitation, 2020, 38, 723-732.	1.1	3
13	Impedance Spectroscopy of Perovskite Solar Cells: Studying the Dynamics of Charge Carriers Before and After Continuous Operation. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000291.	0.8	54
14	Perovskite Solar Cells for BIPV Application: A Review. Buildings, 2020, 10, 129.	1.4	60
15	Location-Specific Spectral and Thermal Effects in Tracking and Fixed Tilt Photovoltaic Systems. IScience, 2020, 23, 101634.	1.9	7
16	Temperature dependence of CIGS and perovskite solar cell performance: an overview. SN Applied Sciences, 2020, 2, 1.	1.5	26
17	Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells. Nature Energy, 2020, 5, 851-859.	19.8	177
18	Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination <i>versus</i> extraction. Journal of Materials Chemistry C, 2020, 8, 12648-12655.	2.7	70

#	Article	IF	CITATIONS
19	Effect of Interfacial Layers on the Device Lifetime of Perovskite Solar Cells. Small Methods, 2020, 4, 2000065.	4.6	22
20	Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. Advanced Energy Materials, 2020, 10, 2000454.	10.2	86
21	The Molybdenum Oxide Interface Limits the High-Temperature Operational Stability of Unencapsulated Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2349-2360.	8.8	49
22	Understanding the effect of light and temperature on the optical properties and stability of mixed-ion halide perovskites. Journal of Materials Chemistry C, 2020, 8, 9714-9723.	2.7	13
23	Observation of Structural Phase Transitions and Pbl ₂ Formation During the Degradation of Triple-Cation Double-Halide Perovskites. ACS Applied Energy Materials, 2020, 3, 6302-6309.	2.5	11
24	Transparent photovoltaic technologies: Current trends towards upscaling. Energy Conversion and Management, 2020, 219, 112982.	4.4	112
25	Reviewing and understanding the stability mechanism of halide perovskite solar cells. InformaÄnÃ- Materiály, 2020, 2, 1034-1056.	8.5	55
26	Phase Distribution and Carrier Dynamics in Multiple-Ring Aromatic Spacer-Based Two-Dimensional Ruddlesden–Popper Perovskite Solar Cells. ACS Nano, 2020, 14, 4871-4881.	7.3	126
27	Local Structure and Dynamics in Methylammonium, Formamidinium, and Cesium Tin(II) Mixed-Halide Perovskites from ¹¹⁹ Sn Solid-State NMR. Journal of the American Chemical Society, 2020, 142, 7813-7826.	6.6	66
28	Compositional Engineering for Compact Perovskite Absorber Fabrication Toward Efficient Photovoltaics. IEEE Journal of Photovoltaics, 2020, 10, 765-770.	1.5	1
29	Reducing photovoltage loss at the anode contact of methylammonium-free inverted perovskite solar cells by conjugated polyelectrolyte doping. Journal of Materials Chemistry A, 2020, 8, 7309-7316.	5.2	28
30	From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. Advanced Energy Materials, 2020, 10, 1904054.	10.2	256
31	How far are we from attaining 10-year lifetime for metal halide perovskite solar cells?. Materials Science and Engineering Reports, 2020, 140, 100545.	14.8	67
32	Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties. ACS Energy Letters, 2020, 5, 642-649.	8.8	52
33	Luminescent solar concentrators based on melt-spun polymer optical fibers. Materials and Design, 2020, 189, 108518.	3.3	29
34	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	19.8	797
35	Efficient lateral-structure perovskite single crystal solar cells with high operational stability. Nature Communications, 2020, 11, 274.	5.8	120
36	Enhancement of the thermal properties of heterojunction perovskite solar cells by nanostructured contacts design. Solar Energy, 2020, 202, 204-209.	2.9	15

#	Article	IF	CITATIONS
37	Heterojunction Perovskite Solar Cells: Opto-Electro-Thermal Physics, Modeling, and Experiment. ACS Nano, 2020, 14, 5017-5026.	7.3	40
38	Investigation of the effect of MAI and PbI\$\$_{mathrm {2}}\$\$ concentrations on the properties of perovskite solar cells. Bulletin of Materials Science, 2020, 43, 1.	0.8	0
39	Highâ€Throughput Characterization of Perovskite Solar Cells for Rapid Combinatorial Screening. Solar Rrl, 2020, 4, 2000097.	3.1	18
40	Balance between the explored Pt counter electrode in an electrolyte medium and the photoanode for highly efficient liquid-junction photovoltaic devices. Journal of Science: Advanced Materials and Devices, 2020, 5, 180-184.	1.5	2
41	Unusual Bimodal Photovoltaic Performance of Perovskite Solar Cells at Real-World Operating Temperatures. Journal of Physical Chemistry C, 2020, 124, 9118-9125.	1.5	2
42	Eliminating the electric field response in a perovskite heterojunction solar cell to improve operational stability. Science Bulletin, 2021, 66, 536-544.	4.3	10
43	Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002326.	10.2	118
44	Evaluating metal constraints for photovoltaics: Perspectives from China's PV development. Applied Energy, 2021, 282, 116148.	5.1	20
45	Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. Journal of Power Sources, 2021, 485, 229313.	4.0	82
46	Ammonium sulfate treatment at TiO2/perovskite interface boosts operational stability of perovskite solar cells. Journal of Materials Chemistry C, 0, , .	2.7	0
47	A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics. Journal of Materials Chemistry A, 2021, 9, 15294-15300.	5.2	27
48	Efficient and stable perovskite solar cells based on a quasi-point-contact and rear-reflection structure with 22.5% efficiency. Journal of Materials Chemistry A, 2021, 9, 14877-14887.	5.2	8
49	Perovskite solar cells as modern nano tools and devices in solar power energy. , 2021, , 377-427.		5
50	Stability Improvement of Perovskite Solar Cells by Compositional and Interfacial Engineering. Chemistry of Materials, 2021, 33, 1540-1570.	3.2	65
51	Efficient Photocatalytic and Antimicrobial Behaviour of Zinc Oxide Nanoplates Prepared By Hydrothermal Method. Journal of Cluster Science, 2022, 33, 773-783.	1.7	5
52	Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light: Science and Applications, 2021, 10, 32.	7.7	112
53	Post-Treating the Precursor Intermediate Film by a Cooling Stage for Fabricating Efficient Formamidinium-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 11783-11792.	4.0	5
54	Mixed Conductivity of Hybrid Halide Perovskites: Emerging Opportunities and Challenges. Frontiers in Energy Research, 2021, 9, .	1.2	26

#	Article	IF	CITATIONS
55	Formation of Highâ€Performance Multiâ€Cation Halide Perovskites Photovoltaics by δâ€CsPbl ₃ /δâ€RbPbl ₃ Seedâ€Assisted Heterogeneous Nucleation. Advanced Energy Materials, 2021, 11, 2003785.	10.2	32
56	Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small, 2021, 17, e2005495.	5.2	61
57	Economic Convenience of Hybrid Thermoelectric-Photovoltaic Solar Harvesters. ACS Applied Energy Materials, 2021, 4, 4029-4037.	2.5	12
58	Perovskite Solar Cells for Space Applications: Progress and Challenges. Advanced Materials, 2021, 33, e2006545.	11.1	184
59	Temperature Coefficients of Perovskite Photovoltaics for Energy Yield Calculations. ACS Energy Letters, 2021, 6, 2038-2047.	8.8	43
60	Efficiency of bulk perovskite-sensitized upconversion: Illuminating matters. Applied Physics Letters, 2021, 118, .	1.5	12
61	Simulation Study of Perovskite Cell Performance in Real Conditions of Sub-Saharan Africa. TH Wildau Engineering and Natural Sciences Proceedings, 0, 1, .	0.0	1
62	Coupled and optimized properties of a hybrid system integrating electrochemical cycles with perovskite solar cell. International Journal of Energy Research, 2021, 45, 18846-18856.	2.2	8
63	Temperature Effects on the Energy Yield of Perovskite Solar Cells. , 2021, , .		0
64	Application of Thin Film Ultralow-Power Lead-Free Perovskite Solar Energy Harvesters in Power Management Systems. , 2021, , .		0
65	Electrical properties and J-V modeling of perovskite (CH3NH3PbI3) solar cells after external thermal exposure. Solar Energy, 2021, 222, 95-102.	2.9	13
66	Effect of Antisolvent Application Rate on Film Formation and Photovoltaic Performance of Methylammoniumâ€Free Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2021, 2, 2100061.	2.8	13
67	Thermal Management Enables More Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3029-3036.	8.8	26
68	Progress in ambient air-processed perovskite solar cells: Insights into processing techniques and stability assessment. Solar Energy, 2021, 224, 1369-1395.	2.9	43
69	Machine Learning Roadmap for Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 7866-7877.	2.1	51
70	Impact of anionic system modification on the desired properties for CuGa(S1â^'Se)2 solid solutions. Computational Materials Science, 2021, 196, 110553.	1.4	5
71	First-principles investigation on the thickness-dependent optoelectronic properties of two-dimensional perovskite BA2SnI4. Physica B: Condensed Matter, 2021, 616, 413070.	1.3	3
72	Highly efficient and stable perovskite solar cells enabled by a fluoro-functionalized TiO2 inorganic interlayer. Matter, 2021, 4, 3301-3312.	5.0	21

#	Article	IF	CITATIONS
73	Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3650-3660.	8.8	28
74	Lead contamination analysis of perovskite modules under simulated working conditions. Solar Energy, 2021, 226, 85-91.	2.9	16
75	Understanding degradation mechanisms of perovskite solar cells due to electrochemical metallization effect. Solar Energy Materials and Solar Cells, 2021, 230, 111278.	3.0	20
76	Influence of contact electrode and light power on the efficiency of tandem perovskite solar cell: Numerical simulation. Solar Energy, 2021, 226, 161-172.	2.9	32
77	Development and Challenges of Metal Halide Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100545.	3.1	34
78	Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells. Applied Energy, 2021, 300, 117343.	5.1	37
79	Optoelectronic simulation and optimization of tandem and multi-junction perovskite solar cells using concentrating photovoltaic systems. Energy Reports, 2021, 7, 5895-5908.	2.5	4
80	Dynamic temperature effects in perovskite solar cells and energy yield. Sustainable Energy and Fuels, 0, , .	2.5	5
81	Decisive influence of amorphous PbI _{2â^'x} on the photodegradation of halide perovskites. Journal of Materials Chemistry A, 2021, 9, 15059-15067.	5.2	8
82	Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. Small Methods, 2021, 5, e2000937.	4.6	24
83	High-throughput analysis of the ideality factor to evaluate the outdoor performance of perovskite solar minimodules. Nature Energy, 2021, 6, 54-62.	19.8	40
84	Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells. Nano Energy, 2020, 76, 105127.	8.2	76
85	Standardising current–voltage measurements for metastable solar cells. JPhys Energy, 2020, 2, 011002.	2.3	7
86	Perovskite solar cell performance assessment. JPhys Energy, 2020, 2, 044002.	2.3	12
87	Vapor-assisted deposition of highly efficient, stable black-phase FAPbI ₃ perovskite solar cells. Science, 2020, 370, .	6.0	530
88	Red Light-Emitting Diodes with All-Inorganic CsPbI3/TOPO Composite Nanowires Color Conversion Films. Nanoscale Research Letters, 2020, 15, 216.	3.1	8
89	Enhancing the photodetection performance of MAPbI ₃ perovskite photodetectors by a dual functional interfacial layer for color imaging. Optics Letters, 2021, 46, 150.	1.7	18
90	Host-guest complexation in hybrid perovskite optoelectronics. JPhys Materials, 2021, 4, 042011.	1.8	8

#	Article	IF	CITATIONS
91	Insights into Accelerated Degradation of Perovskite Solar Cells under Continuous Illumination Driven by Thermal Stress and Interfacial Junction. ACS Applied Energy Materials, 2021, 4, 11121-11132.	2.5	29
92	Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Fa§ades into Power Generators. Advanced Materials, 2022, 34, e2104661.	11.1	37
93	From the lab to roof top applications: outdoor performance, temperature behavior and energy yield of perovskite solar cells. , 2020, , .		1
94	Surface treatment of Mixed-Halide CsPb(BrxI1-x)3 perovskite quantum dots for thermal stability enhancement. Materials Research Bulletin, 2022, 146, 111622.	2.7	4
95	Energy yield of perovskite solar cells: Influence of location, orientation, and external light management. Solar Energy Materials and Solar Cells, 2022, 234, 111421.	3.0	9
96	Outdoor Performance of Perovskite Photovoltaic Technology. , 0, , .		2
97	Impact of the polar optical phonon and alloy scattering on the charge-carrier mobilities of FA0.83Cs0.17Pb(I1â^'xBrx)3 hybrid perovskites. Physical Chemistry Chemical Physics, 2021, , .	1.3	3
98	Universal Dynamic Liquid Interface for Healing Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
99	Temperatureâ€Insensitive Efficient Inorganic Perovskite Photovoltaics by Bulk Heterojunctions. Advanced Materials, 2022, , 2108357.	11.1	9
100	Defects and stability of perovskite solar cells: a critical analysis. Materials Chemistry Frontiers, 2022, 6, 400-417.	3.2	68
101	Mechanical Reliability of Fullerene/Tin Oxide Interfaces in Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Letters, 2022, 7, 827-833.	8.8	25
102	Will the Internet of Things Be Perovskite Powered? Energy Yield Measurement and Real-World Performance of Perovskite Solar Cells in Ambient Light Conditions. IoT, 2022, 3, 109-121.	2.3	6
103	Metal-Dielectric Thin Film Structure Metamaterial for Obtaining High Equilibrium Temperature Under Direct Solar Optical Radiation. IEEE Photonics Journal, 2022, 14, 1-5.	1.0	0
104	Analysis of Lightâ€Enhanced Capacitance Dispersion in Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	11
105	Temperature measurement with photodiodes: Application to laser diode temperature monitoring. Sensors and Actuators A: Physical, 2022, 337, 113441.	2.0	1
106	Ti1–graphene single-atom material for improved energy level alignment in perovskite solar cells. Nature Energy, 2021, 6, 1154-1163.	19.8	72
107	Evaluation of annual performance for buildingâ€integrated photovoltaics based on 2â€terminal perovskite/silicon tandem cells under realistic conditions. Energy Science and Engineering, 2022, 10, 1373-1383.	1.9	2
108	Insights from scalable fabrication to operational stability and industrial opportunities for perovskite solar cells and modules. Cell Reports Physical Science, 2022, 3, 100827.	2.8	16

ARTICLE IF CITATIONS # Directly purifiable Pre-oxidation of Spiro-OMeTAD for stability enhanced perovskite solar cells with 109 6.6 14 efficiency over 23%. Chemical Engineering Journal, 2022, 437, 135457. Estimation of the CubeSat's Available Energy for Free-Orientation Scenario. IEEE Aerospace and Electronic Systems Magazine, 2021, 36, 6-14. 2.3 The emergence of concentrator photovoltaics for perovskite solar cells. Applied Physics Reviews, 111 5.5 8 2021, 8, . Millimeterâ€Sized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Rollâ€toâ€Roll Fabricated Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, . Machine learning-based hybrid demand-side controller for renewable energy management., 2022, 113 6 291-307. Universal Dynamic Liquid Interface for Healing Perovskite Solar Cells. Advanced Materials, 2022, 34, 114 11.1 e2202301. Efficient and Stable FAâ€Rich Perovskite Photovoltaics: From Material Properties to Device 116 10.2 16 Optimization. Advanced Energy Materials, 2022, 12, . Ultrahighâ€Resolution Optical Fiber Thermometer Based on Microcavity Optoâ€Mechanical Oscillation. 1.7 Advanced Photonics Research, 2022, 3, . Investigation of Defects in Cs₂Snl₆â€Based Double Perovskite Solar Cells Via 118 1.3 27 SCAPSã€ID. Advanced Theory and Simulations, 2022, 5, . Recent Criterion on Stability Enhancement of Perovskite Solar Cells. Processes, 2022, 10, 1408. 1.3 Transient performance modelling of ultra-thin Sn-based perovskite solar cells based on electrode 120 3 1.2 contact design to improve thermal stability. European Physical Journal Plus, 2022, 137, . Physics, Simulation, and Experiment of Perovskite Solar Cells with Addressing Hysteresis Effect. Solar 3.1 <u>Rrl, 2022, 6, .</u> Interfacial Embedding for Highâ€Efficiency and Stable Methylammoniumâ€Free Perovskite Solar Cells with 122 10.2 30 Fluoroarene Hydrazine. Advanced Energy Materials, 2022, 12, . Perovskite Solar Module Outdoor Field Testing and Spectral Irradiance Effects on Power Generation. 1.2 Physica Status Solidi - Rapid Research Letters, 0, , 2200220. Analysis of degradation kinetics of halide perovskite solar cells induced by light and heat stress. 124 3.0 10 Solar Energy Materials and Solar Cells, 2022, 246, 111899. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives., 2022, 1, 220006-220006. Photo-enhanced growth of lead halide perovskite crystals and their electro-optical properties. RSC 126 1.7 1 Advances, 2022, 12, 27775-27780. Degradation Analysis of Triple-Cation Perovskite Solar Cells by Electrochemical Impedance Spectroscopy. ACS Applied Energy Materials, 2022, 5, 12545-12552.

#	Article	IF	CITATIONS
128	Effect and optimization of the Zn ₃ P ₂ back surface field on the efficiency of CZTS/CZTSSe tandem solar cell: a computational approach. Journal Physics D: Applied Physics, 2023, 56, 025502.	1.3	5
129	How to (Not) Make a Perovskite Solar Panel: A Step-by-Step Process. Processes, 2022, 10, 1980.	1.3	ο
130	Zwitterionic ionic liquid synergistically induces interfacial dipole formation and traps state passivation for high-performance perovskite solar cells. Journal of Colloid and Interface Science, 2023, 630, 155-163.	5.0	11
131	Investigation of Degradation Kinetics of Perovskite Solar Cells by Accelerated Aging. , 2022, , .		0
132	Toward efficient hybrid solar cells comprising quantum dots and organic materials: progress, strategies, and perspectives. Journal of Materials Chemistry A, 2023, 11, 1013-1038.	5.2	8
133	Performance Analysis of Perovskite Solar Cell by Considering Temperature Effect on Physical Parameters of the Absorber Layer. , 2022, , .		1
134	The First Record of Diurnal Performance Evolution of Perovskite Solar Cells in Near Space. Advanced Energy Materials, 2023, 13, .	10.2	5
135	Perylene Diimide Derivative Engineering for Covering Interfacial Defects in Indoor Perovskite Optoelectronics. Solar Rrl, 2023, 7, .	3.1	2
136	Output-power equivalence of two- and four-terminal photovoltaic-thermoelectric hybrid tandems. Applied Physics Express, 2023, 16, 014003.	1.1	1
137	Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nature Reviews Materials, 2023, 8, 261-281.	23.3	77
138	Phase-segregation free quasi-2D perovskite/organic tandem solar cells with low <i>V</i> _{oc} loss and efficiency beyond 21%. Journal of Materials Chemistry A, 2023, 11, 6877-6885.	5.2	3
139	Perovskite-quantum dot hybrid solar cells: a multi-win strategy for high performance and stability. Journal of Materials Chemistry A, 2023, 11, 4487-4509.	5.2	6
140	Highly efficient p-i-n perovskite solar cells that endure temperature variations. Science, 2023, 379, 399-403.	6.0	145
141	Thermodynamic Processes of Perovskite Photovoltaic Devices: Mechanisms, Simulation, and Manipulation. Advanced Functional Materials, 2023, 33, .	7.8	5
142	Roadmap on commercialization of metal halide perovskite photovoltaics. JPhys Materials, 2023, 6, 032501.	1.8	16
143	Study of lead-free perovskite photoconverting structures by impedance spectroscopy. Energy, 2023, 273, 127141.	4.5	4
144	One-year outdoor operation of monolithic perovskite/silicon tandem solar cells. Cell Reports Physical Science, 2023, 4, 101280.	2.8	16
145	Perovskite-Sensitized Upconversion under Operando Conditions. Journal of Physical Chemistry C, 2023, 127, 4773-4783.	1.5	5

#	Article	IF	CITATIONS
146	Evaluation of Hybrid Perovskite Prototypes After 10â€Month Space Flight on the International Space Station. Advanced Energy Materials, 2023, 13, .	10.2	10
147	Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives. Energies, 2023, 16, 2608.	1.6	0
148	A Hygroscopic Composite Backplate Enabling Passive Cooling of Photovoltaic Panels. ACS Energy Letters, 2023, 8, 1921-1928.	8.8	9
149	Highly stable CsFAPbIBr perovskite solar cells with dominant bulk recombination at real operating temperatures. Sustainable Energy and Fuels, 0, , .	2.5	0
151	Surface Passivation of FAPbI ₃ -Rich Perovskite with Cesium Iodide Outperforms Bulk Incorporation. ACS Energy Letters, 2023, 8, 2456-2462.	8.8	14
160	Perspectives on Perovskite Solar Cells Under the Glass of Characterization and Model-based Research. , 2023, , .		0
164	Long-term operating stability in perovskite photovoltaics. Nature Reviews Materials, 2023, 8, 569-586.	23.3	31
173	Thermal Behavior of Crystalline Silicon Bottom Cell in a Monolithic Perovskite/Si Tandem Solar Cells. , 2023, , .		0
176	Analysis Of Measured Operating Temperature Of Perovskite Modules , 2023, , .		0
177	Modulating Efficiency and Stability of Methylammonium/Br-Free Perovskite Solar Cells Using Fluoroarene Hydrazine. , 2023, , .		0