Use of Î²2-adrenoreceptor agonist and antagonist drugs

Neurology 93, e135-e142 DOI: 10.1212/wnl.000000000007694

Citation Report

#	Article	IF	CITATIONS
1	Author response: Lower carotid revascularization rates after stroke in racial/ethnic minority-serving US hospitals. Neurology, 2020, 94, 897-897.	1.1	0
2	Beta Agonists and Progression of Parkinson's Disease in Older Adults: A Retrospective Cohort Study. Movement Disorders, 2020, 35, 1275-1277.	3.9	2
3	Reader response: Use of β2-adrenoreceptor agonist and antagonist drugs and risk of Parkinson disease. Neurology, 2020, 94, 898-899.	1.1	2
4	β-Adrenoceptor Drugs and Parkinson's Disease: A Nationwide Nested Case–Control Study. CNS Drugs, 2020, 34, 763-772.	5.9	11
5	The Future of Targeted Gene-Based Treatment Strategies and Biomarkers in Parkinson's Disease. Biomolecules, 2020, 10, 912.	4.0	18
6	Author response: Use of β2-adrenoreceptor agonist and antagonist drugs and risk of Parkinson disease. Neurology, 2020, 94, 899-899.	1.1	0
7	Editors' note: Use of β2-adrenoreceptor agonist and antagonist drugs and risk of Parkinson disease. Neurology, 2020, 94, 897-898.	1.1	0
8	β-adrenoreceptors and the risk of Parkinson's disease. Lancet Neurology, The, 2020, 19, 247-254.	10.2	49
10	Focused Ultrasound Thalamotomy for the Treatment of Essential Tremor: A 2-Year Outcome Study of Chinese People. Frontiers in Aging Neuroscience, 2021, 13, 697029.	3.4	10
11	The association between developing Parkinson's disease and β-Adrenoceptor acting agents use: A systematic review and meta-analysis. Journal of the Neurological Sciences, 2021, 430, 120009.	0.6	4
12	Risk Factors for Phenoconversion in <scp>Rapid Eye Movement</scp> Sleep Behavior Disorder. Annals of Neurology, 2022, 91, 404-416.	5.3	27
13	Slowing Parkinson's Disease Progression with Vaccination and Other Immunotherapies. CNS Drugs, 2022, 36, 327-343.	5.9	6
14	Shared Molecular Targets in Parkinson's Disease and Arterial Hypertension: A Systematic Review. Biomedicines, 2022, 10, 653.	3.2	3
15	Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities. Molecular Psychiatry, 2022, 27, 3182-3191.	7.9	14
16	Beta-adrenergic drugs and risk of Parkinson's disease: A systematic review and meta-analysis. Ageing Research Reviews, 2022, 80, 101670.	10.9	6
17	Identifying Protective Drugs for Parkinson's Disease in Healthâ€Care Databases Using Machine Learning. Movement Disorders, 2022, 37, 2376-2385.	3.9	6
18	Association between use of ß2-adrenergic receptor agonists and incidence of Parkinson's disease: Retrospective cohort analysis. PLoS ONE, 2022, 17, e0276368.	2.5	2
19	Alcohol and Parkinson's Disease: A Systematic Review and Meta-Analysis. Journal of Parkinson's Disease, 2022, 12, 2369-2381.	2.8	5

#	Article	IF	CITATIONS
20	Beta2-adrenoreceptor agonists and long-term risk of Parkinson's disease. Parkinsonism and Related Disorders, 2023, 110, 105389.	2.2	2
21	Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metabolic Brain Disease, 2023, 38, 873-919.	2.9	3
22	Opposing effects of β-2 and β-1 adrenergic receptor signaling on neuroinflammation and dopaminergic neuron survival in α-synuclein-mediated neurotoxicity. Journal of Neuroinflammation, 2023, 20, .	7.2	2
23	β2â€Adrenoreceptor Agonists, Montelukast, and Parkinson Disease Risk. Annals of Neurology, 2023, 93, 1023-1028.	5.3	2
24	β2-Adrenoceptor Agonists in Asthma or Chronic Obstructive Pulmonary Disease and Risk of Parkinson's Disease: Nested Case-Control Study. Clinical Epidemiology, 0, Volume 15, 695-705.	3.0	0
25	Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handbook of Experimental Pharmacology, 2023, , .	1.8	2
26	A Role of β2-Adrenoreceptor Agonists Related to the Development of Parkinson's Disease. Neurology India, 2023, 71, 710.	0.4	0
27	Chronic diseases and multimorbidity patterns, their recent onset, and risk of new-onset Parkinson's disease and related functional degeneration in older adults: a prospective cohort study. EClinicalMedicine, 2023, 65, 102265.	7.1	0
28	Association Between Use of Any of the Drugs Prescribed in Norway and the Subsequent Risk of Parkinson Disease. Neurology, 2023, 101, .	1.1	0
29	Nonselective beta-adrenoceptor blocker use and risk of Parkinson's disease: from multiple real-world evidence. BMC Medicine, 2023, 21, .	5.5	0