Assessment of Various Dry Photovoltaic Cleaning Techn Power Output of CdTe-Type Modules in Dusty Environm

Sustainability 11, 2850 DOI: 10.3390/su11102850

Citation Report

#	Article	IF	CITATIONS
1	Industrial Production and Field Evaluation of Transparent Electrodynamic Screen (EDS) Film for Water-Free Cleaning of Solar Collectors. , 2019, , .		5
2	Solar energy harvesting and a water droplet cleaning of micropost arrays surfaces. International Journal of Energy Research, 2020, 44, 2072-2083.	4.5	8
3	The Influence of Cleaning Frequency of Photovoltaic Modules on Power Losses in the Desert Climate. Sustainability, 2020, 12, 9750.	3.2	15
4	A novel approach to Solar PV cleaning frequency optimization for soiling mitigation. Scientific African, 2020, 8, e00459.	1.5	12
5	Soiling Losses: A Barrier for India's Energy Security Dependency from Photovoltaic Power. Challenges, 2020, 11, 9.	1.7	48
6	Estimation of an Optimal PV Panel Cleaning Strategy Based on Both Annual Radiation Profile and Module Degradation. IEEE Access, 2020, 8, 63832-63839.	4.2	29
7	Modeling and design of low-cost automatic self cleaning mechanism for standalone micro PV systems. Sustainable Energy Technologies and Assessments, 2021, 43, 100922.	2.7	9
8	A Review on Solar Panel Cleaning Through Chemical Self-cleaning Method. Lecture Notes in Mechanical Engineering, 2021, , 835-844.	0.4	4
9	Study on Preparation Method of Heat-Insulated Super-Hydrophobic Film and Improvement of Photovoltaic Modules Efficiency. , 2021, , .		1
10	Estimate of Soiling Rates Based on Soiling Monitoring Station and PV System Data: Case Study for Equatorial-Climate Brazil. IEEE Journal of Photovoltaics, 2021, 11, 461-468.	2.5	12
11	Incidence angle and diffuse radiation adaptation of soiling ratio measurements of indirect optical soiling sensors. Journal of Renewable and Sustainable Energy, 2021, 13, .	2.0	7
12	Optical degradation impact on the spectral performance of photovoltaic technology. Renewable and Sustainable Energy Reviews, 2021, 141, 110782.	16.4	18
13	Effects of Coating Materials as a Cleaning Agent on the Performance of Poly-Crystal PV Panels. Coatings, 2021, 11, 544.	2.6	5
14	Comparative techno-economic assessment of integrated PV-SOFC and PV-Battery hybrid system for natural gas processing plants. Energy, 2021, 222, 119923.	8.8	35
15	Self-Cleaning Performance of Super-Hydrophilic Coatings for Dust Deposition Reduction on Solar Photovoltaic Cells. Coatings, 2021, 11, 1059.	2.6	28
16	Soiling of photovoltaic panels in the Gulf Cooperation Council countries and mitigation strategies. Solar Energy Materials and Solar Cells, 2021, 231, 111303.	6.2	16
17	A comprehensive review of automatic cleaning systems of solar panels. Sustainable Energy Technologies and Assessments, 2021, 47, 101518.	2.7	29
18	Photovoltaics in the built environment: A critical review. Energy and Buildings, 2021, 253, 111479.	6.7	35

CITATION REPORT

#	Article	IF	CITATIONS
19	Experimental Investigation to Improve the Energy Efficiency of Solar PV Panels Using Hydrophobic SiO2 Nanomaterial. Coatings, 2020, 10, 503.	2.6	35
20	Management of potential challenges of PV technology proliferation. Sustainable Energy Technologies and Assessments, 2022, 51, 101942.	2.7	25
21	A review of dust accumulation on PV panels in the MENA and the Far East regions. Journal of Engineering and Applied Science, 2022, 69, .	2.0	25
22	Dust deposition effect on photovoltaic modules performance and optimization of cleaning period: A combined experimental–numerical study. Sustainable Energy Technologies and Assessments, 2022, 51, 101946.	2.7	14
23	Sustainability performance by ten representative intelligent Façade technologies: A systematic review. Sustainable Energy Technologies and Assessments, 2022, 52, 102001.	2.7	11
24	A brief summary of cleaning operations and their effect on the photovoltaic performance in Africa and the Middle East. Energy Reports, 2022, 8, 2334-2347.	5.1	16
25	Multi-criteria decision-making approach for the selection of cleaning method of solar PV panels in United Arab Emirates based on sustainability perspective. International Journal of Low-Carbon Technologies, 2022, 17, 380-393.	2.6	30
26	Mining sensor data in a smart environment: a study of control algorithms and microgrid testbed for temporal forecasting and patterns of failure. International Journal of Systems Assurance Engineering and Management, 0, , .	2.4	0
27	A novel solar panel cleaning mechanism to improve performance and harvesting rainwater. Solar Energy, 2022, 237, 19-28.	6.1	24
28	Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Science of the Total Environment, 2022, 827, 154050.	8.0	81
29	Smart Solar Panels for Space Applications. , 2021, , .		1
30	Performance Analysis of Solar PV system using Customize wireless data acquisition system and novel cleaning technique. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 2748-2769.	2.3	7
31	Design and development of self-cleaning PV sliding system. Clean Energy, 2022, 6, 392-403.	3.2	10
32	Data-driven model for the evaluation of the reliability of sensors and actuators used in IoT system architecture. Journal of Reliable Intelligent Environments, 0, , .	5.2	0
33	Research on Adhesive Coefficient of Rubber Wheel Crawler on Wet Tilted Photovoltaic Panel. Applied Sciences (Switzerland), 2022, 12, 6605.	2.5	4
34	Low-Cost Automated PV Panel Dust Cleaning System for Rural Communities. Smart Grid and Renewable Energy, 2022, 13, 173-199.	1.1	0
35	Solar Panels Dirt Monitoring and Cleaning for Performance Improvement: A Systematic Review on Smart Systems. Sustainability, 2022, 14, 10920.	3.2	14
36	Synthesis and Characterization of Highly Transparent and Superhydrophobic Zinc Oxide (ZnO) Film. Lecture Notes in Mechanical Engineering, 2023, , 119-127.	0.4	19

<u></u>		D	_
	ON	NEDC	ND T
CHAH	UN.	NLPU	VIC I

#	Article	IF	CITATIONS
37	Surface Maintenance Analysis of Module PV To Improve Solar PV Performance. International Journal of Scientific Research in Science and Technology, 2022, , 586-609.	0.1	0
38	Microstructure of Surface Pollutants and Brush-Based Dry Cleaning of a Trough Concentrating Solar Power Station. Energies, 2023, 16, 3260.	3.1	0
39	Design and development of cleaning solar plants robots. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 7031-7049.	2.3	0
40	Sand and Dust Storms' Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation. Energies, 2023, 16, 3938.	3.1	6
41	A comprehensive review on dust removal using electrodynamic shield: Mechanism, influencing factors, performance, and progress. Renewable and Sustainable Energy Reviews, 2023, 183, 113471.	16.4	2
42	Microgrid TestBed for Temporal Forecasting Patterns of Failure for Smart Cities. , 2023, , 189-227.		0
43	Automated Cleaning System for Solar Panels. , 2022, , .		0
44	Intelligent Cleaning Strategy of Photovoltaic Solar Cell Modules. Journal of Nanoelectronics and Optoelectronics, 2023, 18, 493-501.	0.5	0
45	A review on cleaning techniques of solar photovoltaic panels. AIP Conference Proceedings, 2023, , .	0.4	0
46	Soiling loss in solar systems: A review of its effect on solar energy efficiency and mitigation techniques. , 2024, 7, 100094.		1
47	Optimal Cleaning Schedule for Photovoltaic Fleet: Analyzing the Impact of Operational Costs on System Profitability. , 2023, , .		0
48	Dust deposition on the photovoltaic panel: A comprehensive survey on mechanisms, effects, mathematical modeling, cleaning methods, and monitoring systems. Solar Energy, 2024, 268, 112300.	6.1	0
49	Examining the influence of thermal effects on solar cells: a comprehensive review. , 2024, 11, .		0
50	Soiling impact and cleaning techniques for optimizing photovoltaic and concentrated solar power power production: A state-of-the-art review. Energy and Environment, 0, , .	4.6	0
51	Solar photovoltaic panel soiling accumulation and removal methods: A review. IET Renewable Power Generation, 0, , .	3.1	0
52	Novel approach to sandstorm-resilient solar tracking system for optimal energy generation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2024, 46, 4029-4050.	2.3	0