Electrospun MXene/carbon nanofibers as supercapacito

Journal of Materials Chemistry A 7, 269-277 DOI: 10.1039/c8ta09810g

Citation Report

#	Article	IF	CITATIONS
1	Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose. Advanced Materials, 2019, 31, e1902977.	11.1	253
2	2D Crystal–Based Fibers: Status and Challenges. Small, 2019, 15, e1902691.	5.2	35
3	Toothed wheel needleless electrospinning: a versatile way to fabricate uniform and finer nanomembrane. Journal of Materials Science, 2019, 54, 13834-13847.	1.7	26
4	Auto-programmed heteroarchitecturing: Self-assembling ordered mesoporous carbon between two-dimensional Ti3C2Tx MXene layers. Nano Energy, 2019, 65, 103991.	8.2	70
5	Characterization of Hierarchical Porous Carbons Made from Bean Curd via K ₂ CO ₃ Activation as a Supercapacitor Electrode. ChemElectroChem, 2019, 6, 4022-4030.	1.7	23
6	Tiâ€rich TiO ₂ Tubular Nanolettuces by Electrochemical Anodization for Allâ€Solidâ€State Highâ€Rate Supercapacitor Devices. ChemSusChem, 2019, 12, 4064-4073.	3.6	33
7	Frequency-Dependent Effective Capacitance of Supercapacitors Using Electrospun Cobalt-Carbon Composite Nanofibers. Journal of the Electrochemical Society, 2019, 166, A2403-A2408.	1.3	6
8	Beyond Gold: Spin oated Ti ₃ C ₂ â€Based MXene Photodetectors. Advanced Materials, 2019, 31, e1903271.	11.1	114
9	Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@branched polyethylenimine nanofibers as flexible supercapacitor electrodes. Journal of Alloys and Compounds, 2019, 808, 151737.	2.8	35
10	Functionalized Cuâ€MOF@CNT Hybrid: Synthesis, Crystal Structure and Applicability in Supercapacitors. Chemistry - an Asian Journal, 2019, 14, 3566-3571.	1.7	32
11	Preparation and mechanical performances of carbon fiber reinforced epoxy composites by Mxene nanosheets coating. Journal of Materials Science: Materials in Electronics, 2019, 30, 10516-10523.	1.1	19
12	Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding. Nanoscale, 2019, 11, 8616-8625.	2.8	83
13	Layer-by-Layer Assembly of Polyaniline Nanofibers and MXene Thin-Film Electrodes for Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 47929-47938.	4.0	38
14	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
15	Two-Dimensional Nanomaterials-Based Polymer Composites: Fabrication and Energy Storage Applications. Advances in Polymer Technology, 2019, 2019, 1-15.	0.8	13
16	Further construction of MnO2 composite through in-situ growth on MXene surface modified by carbon coating with outstanding catalytic properties on thermal decomposition of ammonium perchlorate. Applied Surface Science, 2020, 502, 144171.	3.1	54
17	PEDOT hollow nanospheres for integrated bifunctional electrochromic supercapacitors. Organic Electronics, 2020, 77, 105497.	1.4	28
18	The fabrication of activated carbon and metal-carbide 2D framework-based asymmetric electrodes for the capacitive deionization of Cr(<scp>vi</scp>) ions toward industrial wastewater remediation.	1.2	43

#	Article	IF	CITATIONS
19	Nitrogen-doped asphaltene-based porous carbon fibers as supercapacitor electrode material with high specific capacitance. Electrochimica Acta, 2020, 330, 135270.	2.6	56
20	Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: Theoretical consideration and current progress. Progress in Energy and Combustion Science, 2020, 77, 100805.	15.8	107
21	Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 1210-1221.	4.0	108
22	Synthesis, characterizations, and biocompatibility evaluation of polycaprolactone–MXene electrospun fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124282.	2.3	66
23	Ordered mesoporous carbon-silica frameworks confined magnetic mesoporous TiO2 as an efficient catalyst under acoustic cavitation energy. Journal of Materiomics, 2020, 6, 45-53.	2.8	7
24	Nitrogen-doped porous carbon tubes composites derived from metal-organic framework for highly efficient capacitive deionization. Electrochimica Acta, 2020, 331, 135420.	2.6	33
25	A skin-like sensor for intelligent Braille recognition. Nano Energy, 2020, 68, 104346.	8.2	87
26	MXenes—A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond. Applied Materials Today, 2020, 18, 100509.	2.3	82
27	Electrochemical Evaluation of Directly Electrospun Carbide-Derived Carbon-Based Electrodes in Different Nonaqueous Electrolytes for Energy Storage Applications. Journal of Carbon Research, 2020, 6, 59.	1.4	6
28	Direct growth of NiCo2O4 nanosheet arrays on 3D-Ni-modified CFs for enhanced electrochemical storage in flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 17879-17891.	1.1	5
29	Three-Dimensional Hierarchical Porous Structures Constructed by Two-Stage MXene-Wrapped Si Nanoparticles for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 48718-48728.	4.0	45
30	Exploring the Influence of Critical Parameters for the Effective Synthesis of High-Quality 2D MXene. ACS Omega, 2020, 5, 26845-26854.	1.6	56
31	MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO ₂ . Journal of Materials Chemistry C, 2020, 8, 16258-16281.	2.7	61
32	Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nature Communications, 2020, 11, 6160.	5.8	183
33	D-ribose directed one-step fabrication of modifier-free C/NiCo2O4 nanowires with advanced electrochemical performance. Electrochimica Acta, 2020, 358, 136926.	2.6	5
34	Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chemical Society Reviews, 2020, 49, 6666-6693.	18.7	466
35	Silver nanowire networks with preparations and applications: a review. Journal of Materials Science: Materials in Electronics, 2020, 31, 15669-15696.	1.1	54
36	Antimonene dendritic nanostructures: Dual-functional material for high-performance energy storage and harvesting devices. Nano Energy, 2020, 77, 105248.	8.2	86

#	Article	IF	CITATIONS
37	A multifunctional interface design on cellulose substrate enables high performance flexible all-solid-state supercapacitors. Energy Storage Materials, 2020, 32, 208-215.	9.5	52
38	Electrospun Lignin-Based Carbon Nanofibers as Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 12831-12841.	3.2	86
39	Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets. Journal of Materials Chemistry A, 2020, 8, 18538-18559.	5.2	86
40	Green synthesis of ZnO–Co ₃ O ₄ nanocomposite using facile foliar fuel and investigation of its electrochemical behaviour for supercapacitors. New Journal of Chemistry, 2020, 44, 18281-18292.	1.4	46
41	Thermally Driven High-Rate Intercalated Pseudocapacitance of Flower-like Architecture of Ultrathin Few Layered Î-MnO ₂ Nanosheets on Carbon Nano-Onions. ACS Applied Energy Materials, 2020, 3, 11398-11409.	2.5	16
42	Effect of different phenylsilane contents on the electrochemical behavior of cyclodextrin/phenylsilane-W. dela Cruzderived carbon nanofiber composites. Materials Letters, 2020, 279, 128428.	1.3	0
43	State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coordination Chemistry Reviews, 2020, 424, 213514.	9.5	169
44	Recent Advances in Functional 2D MXeneâ€Based Nanostructures for Nextâ€Generation Devices. Advanced Functional Materials, 2020, 30, 2005223.	7.8	216
45	MXene/N-Doped Carbon Foam with Three-Dimensional Hollow Neuron-like Architecture for Freestanding, Highly Compressible All Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 44777-44788.	4.0	82
46	Hierarchical Carbon Fiber@MXene@MoS ₂ Coreâ€sheath Synergistic Microstructure for Tunable and Efficient Microwave Absorption. Advanced Functional Materials, 2020, 30, 2002595.	7.8	311
47	Recent Advances in 2D MXene Integrated Smart-Textile Interfaces for Multifunctional Applications. Chemistry of Materials, 2020, 32, 10296-10320.	3.2	101
48	Construction of Dualâ€Mesoporous Carbon Fibers Via Coassembly for Supercapacitors. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000365.	0.8	2
49	MXenes and MXenes-based Composites. Engineering Materials, 2020, , .	0.3	8
50	2D Transition Metal Carbides (MXenes): Applications as an Electrically Conducting Material. Advanced Materials, 2020, 32, e2002159.	11.1	201
51	3D porous graphene/NiCo2O4 hybrid film as an advanced electrode for supercapacitors. Applied Surface Science, 2020, 534, 147598.	3.1	23
52	High-Performance Electrocatalytic Conversion of N ₂ to NH ₃ Using 1T-MoS ₂ Anchored on Ti ₃ C ₂ MXene under Ambient Conditions. ACS Applied Materials & Interfaces, 2020, 12, 26060-26067.	4.0	92
53	Metal-Level Robust, Folding Endurance, and Highly Temperature-Stable MXene-Based Film with Engineered Aramid Nanofiber for Extreme-Condition Electromagnetic Interference Shielding Applications. ACS Applied Materials & Interfaces, 2020, 12, 26485-26495.	4.0	113
54	MXeneâ€Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000739.	7.8	168

#	Article	IF	CITATIONS
55	3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020, 30, 2000842.	7.8	276
56	Targeted Synthesis of Polymer and Microporous Carbon Nanofibers via Temperatureâ€Dependent and Molecularlyâ€Triggered Interfacial Assembly. Advanced Materials Interfaces, 2020, 7, 2000381.	1.9	4
58	Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation. Composites Part B: Engineering, 2020, 197, 108188.	5.9	79
59	Bath Electrospinning of Continuous and Scalable Multifunctional MXeneâ€Infiltrated Nanoyarns. Small, 2020, 16, e2002158.	5.2	81
60	Hierarchically Porous Carbon Nanofibers with Controllable Porosity Derived from Iodinated Polyvinyl Alcohol for Supercapacitors. Advanced Materials Interfaces, 2020, 7, 2000513.	1.9	16
61	Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes. Desalination, 2020, 491, 114540.	4.0	75
62	All-solid-state flexible supercapacitor of Carbonized MXene/Cotton fabric for wearable energy storage. Applied Surface Science, 2020, 528, 146975.	3.1	29
63	Hydrophobic and Stable MXene–Polymer Pressure Sensors for Wearable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 15362-15369.	4.0	161
64	3D knitted energy storage textiles using MXene-coated yarns. Materials Today, 2020, 34, 17-29.	8.3	103
65	Preaddition of Cations to Electrolytes for Aqueous 2.2 V High Voltage Hybrid Supercapacitor with Superlong Cycling Life and Its Energy Storage Mechanism. ACS Applied Materials & Interfaces, 2020, 12, 17659-17668.	4.0	27
66	Enhancing Capacitance Performance of Ti3C2Tx MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction. Nano-Micro Letters, 2020, 12, 77.	14.4	136
67	Solvent treatment inducing ultralong cycle stability poly(3,4â€ethylenedioxythiophene):poly(styrenesulfonic acid) fibers as bindingâ€free electrodes for supercapacitors. International Journal of Energy Research, 2020, 44, 5856-5865.	2.2	8
68	MXene Composite Nanofibers for Cell Culture and Tissue Engineering. ACS Applied Bio Materials, 2020, 3, 2125-2131.	2.3	96
70	Binder-Free Two-Dimensional MXene/Acid Activated Carbon for High-Performance Supercapacitors and Methylene Blue Adsorption. Energy & Fuels, 2020, 34, 10120-10130.	2.5	37
71	2D inorganic nanosheets as versatile building blocks for hybrid electrode materials for supercapacitor. Coordination Chemistry Reviews, 2020, 421, 213439.	9.5	68
72	Freezing Titanium Carbide Aqueous Dispersions for Ultra-long-term Storage. ACS Applied Materials & Interfaces, 2020, 12, 34032-34040.	4.0	136
73	Recent advances in electrospun nanofibers for supercapacitors. Journal of Materials Chemistry A, 2020, 8, 16747-16789.	5.2	166
74	There is plenty of space in the MXene layers: The confinement and fillings. Journal of Energy Chemistry, 2020, 48, 344-363.	7.1	72

#	Article	IF	CITATIONS
75	K + Intercalation of NH 4 HF 2 â€Exfoliated Ti 3 C 2 MXene as Binderâ€Free Electrodes with High Electrochemical Capacitance. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900806.	0.8	6
76	Holey graphene/MnO ₂ nanosheets with open ion channels for highâ€performance solidâ€state asymmetric supercapacitors. International Journal of Energy Research, 2020, 44, 3446-3457.	2.2	10
77	Self-supporting Prussian blue@CNF based battery-capacitor with superhigh adsorption capacity and selectivity for potassium recovery. Chemical Engineering Journal, 2020, 388, 124162.	6.6	48
78	Radiationâ€Induced Selfâ€Assembly of Ti ₃ C ₂ T <i>_x</i> with Improved Electrochemical Performance for Supercapacitor. Advanced Materials Interfaces, 2020, 7, 1901839.	1.9	16
79	Review of MXene electrochemical microsupercapacitors. Energy Storage Materials, 2020, 27, 78-95.	9.5	223
80	Scalable Synthesis of Ti ₃ C ₂ T _{<i>x</i>} MXene. Advanced Engineering Materials, 2020, 22, 1901241.	1.6	468
81	B/P/N/O co-doped hierarchical porous carbon nanofiber self-standing film with high volumetric and gravimetric capacitance performances for aqueous supercapacitors. Electrochimica Acta, 2020, 337, 135800.	2.6	107
82	MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Advanced Functional Materials, 2020, 30, 1910504.	7.8	308
83	Carbon nanofibers derived from bacterial cellulose: Surface modification by polydopamine and the use of ferrous ion as electrolyte additive for collaboratively increasing the supercapacitor performance. Applied Surface Science, 2020, 519, 146252.	3.1	25
84	Self-assembly of hierarchical Ti3C2Tx-CNT/SiNPs resilient films for high performance lithium ion battery electrodes. Electrochimica Acta, 2020, 348, 136211.	2.6	43
85	Rich porous dual-shell carbon spheres by dissolution-reassembly with high performance in supercapacitor. Journal of Energy Storage, 2020, 29, 101375.	3.9	12
86	Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. Journal of Materials Chemistry A, 2020, 8, 7508-7535.	5.2	201
87	2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Applied Physics Reviews, 2020, 7, 021304.	5.5	126
88	Highâ€ŧhroughput fabrication of carbonized electrospun polyacrylonitrile/poly(acrylic acid) nanofibers with additives for enhanced electrochemical sensing. Journal of Applied Polymer Science, 2020, 137, 49341.	1.3	12
89	Layered molybdenum disulfide coated carbon hollow spheres synthesized through supramolecular selfâ€assembly applied to supercapacitors. International Journal of Energy Research, 2020, 44, 7082-7092.	2.2	14
90	MXeneâ€Based Nanocomposites for Energy Conversion and Storage Applications. Chemistry - A European Journal, 2020, 26, 6342-6359.	1.7	66
91	Recent Advances and Promise of MXeneâ€Based Nanostructures for Highâ€Performance Metal Ion Batteries. Advanced Functional Materials, 2020, 30, 2000706.	7.8	192
92	Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. ACS Applied Materials & Interfaces, 2020, 12, 22212-22224.	4.0	264

#	Article	IF	CITATIONS
93	Co ₃ O ₄ /NiCo ₂ O ₄ Perforated Nanosheets for High-Energy-Density All-Solid-State Asymmetric Supercapacitors with Extended Cyclic Stability. ACS Applied Nano Materials, 2020, 3, 4241-4252.	2.4	50
94	Fishbone-derived N-doped hierarchical porous carbon as an electrode material for supercapacitor. Journal of Alloys and Compounds, 2020, 832, 154950.	2.8	32
95	MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polymer Reviews, 2021, 61, 80-115.	5.3	123
96	High-performance battery-type Fe1-xS@CFs anode for all-solid-state battery-type asymmetric supercapacitor with high energy density and wide working temperature range. Applied Surface Science, 2021, 537, 147817.	3.1	19
97	Electrospun carbon nanofibers as electrode materials for supercapacitor applications. , 2021, , 641-688.		5
98	Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 850, 156608.	2.8	79
99	Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. Journal of Colloid and Interface Science, 2021, 584, 1-10.	5.0	86
100	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733.	16.0	97
101	3D hierarchical flower-like NiMoO4@Ni3S2 composites on Ni foam for high-performance battery-type supercapacitors. Journal of Physics and Chemistry of Solids, 2021, 148, 109697.	1.9	16
102	Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Materials, 2021, 35, 630-660.	9.5	182
103	Textile Technology for Soft Robotic and Autonomous Garments. Advanced Functional Materials, 2021, 31, 2008278.	7.8	127
104	Synthesis of manganese (IV) oxide at activated carbon on reduced graphene oxide sheets via laser irradiation technique for organic binder-free electrodes in flexible supercapacitors. Ceramics International, 2021, 47, 7416-7424.	2.3	9
105	Hierarchical porous "skin/skeleton―like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors. Journal of Hazardous Materials, 2021, 410, 124565.	6.5	51
106	Construction of hierarchical honeycomb-like MnCo2S4 nanosheets as integrated cathodes for hybrid supercapacitors. Journal of Alloys and Compounds, 2021, 859, 157815.	2.8	27
107	Comparison of Additives in Anode: The Case of Graphene, MXene, CNTs Integration with Silicon Inside Carbon Nanofibers. Acta Metallurgica Sinica (English Letters), 2021, 34, 337-346.	1.5	14
108	Monomer self-deposition synthesis of N-doped mesoporous carbon tubes using halloysite as template for supercapacitors. Journal of Materials Science, 2021, 56, 3312-3324.	1.7	9
109	Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Progress in Materials Science, 2021, 120, 100757.	16.0	288
110	Chemically Stabilized and Functionalized 2Dâ€MXene with Deep Eutectic Solvents as Versatile Dispersion Medium. Advanced Functional Materials, 2021, 31, 2008722.	7.8	60

	CIMION		
#	Article	IF	Citations
111	Recent advances in MXene-based force sensors: a mini-review. RSC Advances, 2021, 11, 19169-19184.	1.7	12
112	Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. Journal of Materials Chemistry A, 2021, 9, 3231-3269.	5.2	97
113	Structure and properties of 2D materials in general and their importance to energy storage. , 2021, , 11-75.		0
114	Electrospun carbon nanofibers embedded with MOF-derived N-doped porous carbon and ZnO quantum dots for asymmetric flexible supercapacitors. New Journal of Chemistry, 2021, 45, 10672-10682.	1.4	15
115	Significantly improved conductivity of spinel Co ₃ O ₄ porous nanowires partially substituted by Sn in tetrahedral sites for high-performance quasi-solid-state supercapacitors. Journal of Materials Chemistry A, 2021, 9, 7005-7017.	5.2	31
116	Co ₃ O ₄ @PEI/Ti ₃ C ₂ T _x MXene nanocomposites for a highly sensitive NO _x gas sensor with a low detection limit. Journal of Materials Chemistry A, 2021, 9, 6335-6344.	5.2	84
117	MXene-encapsulated hollow Fe ₃ O ₄ nanochains embedded in N-doped carbon nanofibers with dual electronic pathways as flexible anodes for high-performance Li-ion batteries. Nanoscale, 2021, 13, 4624-4633.	2.8	78
118	Reduced graphene oxide/g-C ₃ N ₄ modified carbon fibers for high performance fiber supercapacitors. New Journal of Chemistry, 2021, 45, 923-929.	1.4	16
119	A novel method to synthesize BiSI uniformly coated with rGO by chemical bonding and its application as a supercapacitor electrode material. Journal of Materials Chemistry A, 2021, 9, 15452-15461.	5.2	15
120	Ultrahigh-energy sodium ion capacitors enabled by the enhanced intercalation pseudocapacitance of self-standing Ti2Nb2O9/CNF anodes. Nanoscale, 2021, 13, 15781-15788.	2.8	7
121	Enhancing the supercapacitor performance of flexible <scp>MXene</scp> /carbon cloth electrodes by oxygen plasma and chemistry modification. International Journal of Energy Research, 2021, 45, 9229-9240.	2.2	14
122	Construction of Functionalized Carbon Nanofiber–g-C ₃ N ₄ and TiO ₂ Spheres as a Nanostructured Hybrid Electrode for High-Performance Supercapacitors. Energy & Fuels, 2021, 35, 1796-1809.	2.5	27
123	Applications of MXene-based composite fibers in smart textiles. Journal of Physics: Conference Series, 2021, 1790, 012066.	0.3	3
124	Polyaniline integration and interrogation on carbon nano-onions empowered supercapacitors. Electrochimica Acta, 2021, 370, 137659.	2.6	20
125	Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Materials and Design, 2021, 200, 109442.	3.3	101
126	Recent Progress in Binderâ€Free Electrodes Synthesis for Electrochemical Energy Storage Application. Batteries and Supercaps, 2021, 4, 860-880.	2.4	35
127	Development and current situation of flexible and transparent EM shielding materials. Journal of Materials Science: Materials in Electronics, 2021, 32, 25603-25630.	1.1	20
128	Effect of Ti3AlC2 precursor and processing conditions on microwave absorption performance of resultant Ti3C2Tx MXene. Journal of Materials Science, 2021, 56, 9287-9301.	1.7	19

τιων Ρ

#	Article	IF	CITATIONS
129	Controllable configuration of conductive pathway by tailoring the fiber alignment for ultrasensitive strain monitoring. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106223.	3.8	8
130	Layered materials and their heterojunctions for supercapacitor applications: a review. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 357-388.	6.8	20
131	Strategically Controlled Flash Irradiation on Silicon Anode for Enhancing Cycling Stability and Rate Capability toward High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 15205-15215.	4.0	4
132	MXenes and their composites for hybrid capacitors and supercapacitors: a critical review. Emergent Materials, 2021, 4, 655-672.	3.2	17
133	Twoâ€dimensional materials and synthesis, energy storage, utilization, and conversion applications of twoâ€dimensional <scp>MXene</scp> materials. International Journal of Energy Research, 2021, 45, 9878-9894.	2.2	10
134	Combinational reduction of graphene oxide via coherent and incoherent light irradiation for flexible supercapacitors. Diamond and Related Materials, 2021, 113, 108237.	1.8	12
135	Threeâ€dimensional printing of highâ€mass loading electrodes for energy storage applications. InformaÄnÃ- Materiály, 2021, 3, 631-647.	8.5	50
136	MXene polymer nanocomposites: a review. Materials Today Advances, 2021, 9, 100120.	2.5	96
137	MXenes for memristive and tactile sensory systems. Applied Physics Reviews, 2021, 8, .	5.5	25
138	Effects of the molecular structure from pitch fractions on the properties of pitchâ€based electrospun nanofibers. Journal of Applied Polymer Science, 2021, 138, 50728.	1.3	9
139	Enhanced energy storage performance of iron molybdate by Ni doping. Materials Chemistry and Physics, 2021, 261, 124211.	2.0	4
140	Smart-Fabric-Based Supercapacitor with Long-Term Durability and Waterproof Properties toward Wearable Applications. ACS Applied Materials & Interfaces, 2021, 13, 14778-14785.	4.0	65
141	Electrospun Polyacrylonitrile Carbon Nanofiber for Supercapacitor Application: A Review. Advanced Engineering Forum, 0, 40, 25-42.	0.3	5
142	Surface Functionalization of Ti ₃ C ₂ T <i>_x</i> MXene Nanosheets with Catechols: Implication for Colloidal Processing. Langmuir, 2021, 37, 5447-5456.	1.6	17
143	Fundamental Insight into the Degradation Mechanism of an rGO-Fe ₃ O ₄ Supercapacitor and Improving Its Capacity Behavior via Adding an Electrolyte Additive. Energy & Fuels, 2021, 35, 8406-8416.	2.5	16
144	Charge Dynamics in TiO ₂ /MXene Composites. Journal of Physical Chemistry C, 2021, 125, 10473-10482.	1.5	20
145	Multi-functional and flexible helical fiber sensor for micro-deformation detection, temperature sensing and ammonia gas monitoring. Composites Part B: Engineering, 2021, 211, 108621.	5.9	35
146	Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage. Journal of Colloid and Interface Science, 2021, 587, 489-498.	5.0	95

#	Article	IF	CITATIONS
147	Enhancing interfacial adhesion of MXene nanofiltration membranes via pillaring carbon nanotubes for pressure and solvent stable molecular sieving. Journal of Membrane Science, 2021, 623, 119033.	4.1	32
148	2D and Layered Ti-based Materials for Supercapacitors and Rechargeable Batteries: Synthesis, Properties, and Applications. Current Applied Materials, 2022, 1, .	0.4	4
149	Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review. Energies, 2021, 14, 2649.	1.6	26
150	All-Fiber-Structured Triboelectric Nanogenerator via One-Pot Electrospinning for Self-Powered Wearable Sensors. ACS Applied Materials & Interfaces, 2021, 13, 24774-24784.	4.0	68
151	An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Research, 2022, 15, 535-541.	5.8	31
152	Strategies for Fabricating Highâ€Performance Electrochemical Energyâ€Storage Devices by MXenes. ChemElectroChem, 2021, 8, 1948-1987.	1.7	16
153	Hydroplastic Micromolding of 2D Sheets. Advanced Materials, 2021, 33, e2008116.	11.1	17
154	Wearable technologies enable high-performance textile supercapacitors with flexible, breathable and wearable characteristics for future energy storage. Energy Storage Materials, 2021, 37, 94-122.	9.5	80
155	Multifunctional flexible porous liquefied bio-carbon nanofibers prepared from the combination of mangosteen (Garcinia mangostana) peels and monohydroxybenzene for supercapacitors applications. Journal of Electroanalytical Chemistry, 2021, 890, 115228.	1.9	7
157	A comprehensive review of <scp>MXenes</scp> as catalyst supports for the oxygen reduction reaction in fuel cells. International Journal of Energy Research, 2021, 45, 15760-15782.	2.2	49
158	Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation. Carbon, 2021, 177, 199-206.	5.4	56
159	Enhanced tensile and electrochemical performance of MXene/CNT hierarchical film. Nanotechnology, 2021, 32, 355706.	1.3	19
160	Enhanced supercapacitive performance of reduced graphene oxide by incorporating NiCo2O4 quantum dots using aqueous electrolyte. Electrochimica Acta, 2021, 381, 138235.	2.6	17
161	Spindle MnCO3 tightly encapsulated by MXene nanoflakes with strengthened interface effect for lithium-ion battery. Surface and Coatings Technology, 2021, 417, 127192.	2.2	12
162	Catalytic and Photocatalytic Electrospun Nanofibers for Hydrogen Generation from Ammonia Borane Complex: A Review. Polymers, 2021, 13, 2290.	2.0	9
163	Electrochemical and Hydrothermal Activation of Carbon Fiber Supercapacitor Electrode. Fibers and Polymers, 2022, 23, 10-17.	1.1	27
164	MXenes: Emerging 2D materials for hydrogen storage. Nano Energy, 2021, 85, 105989.	8.2	132
165	Recent advances and challenges of electrode materials for flexible supercapacitors. Coordination Chemistry Reviews, 2021, 438, 213910.	9.5	204

#	Article	IF	CITATIONS
166	Development and Applications of MXene-Based Functional Fibers. ACS Applied Materials & Interfaces, 2021, 13, 36655-36669.	4.0	47
167	Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. Journal of Chemical Health and Safety, 2021, 28, 326-338.	1.1	102
168	O-doped porous carbon derived from biomass waste for high-performance zinc-ion hybrid supercapacitors. Ionics, 2021, 27, 4495-4505.	1.2	14
169	Advances in the Synthesis of 2D MXenes. Advanced Materials, 2021, 33, e2103148.	11.1	488
170	Advanced carbon materials with different spatial dimensions for supercapacitors. Nano Materials Science, 2021, 3, 241-267.	3.9	54
171	Flexible nickel disulfide nanoparticles-anchored carbon nanofiber hybrid mat as a flexible binder-free cathode for solid-state asymmetric supercapacitors. Nanotechnology, 2021, 32, 495403.	1.3	17
172	Engineering of Battery Type Electrodes for High Performance Lithium Ion Hybrid Supercapacitors. ChemElectroChem, 2021, 8, 4686-4724.	1.7	7
173	Confinement of transition metal phosphides in N, P-doped electrospun carbon fibers for enhanced electrocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2021, 875, 159934.	2.8	16
174	Electrospun Nanofibers: Materials, Synthesis Parameters, and Their Role in Sensing Applications. Macromolecular Materials and Engineering, 2021, 306, 2100410.	1.7	46
175	Discriminative detection of volatile organic compounds using an electronic nose based on TiO2 hybrid nanostructures. Sensors and Actuators B: Chemical, 2021, 344, 130124.	4.0	19
176	MnCo2S4 – MXene: A novel hybrid electrode material for high performance long-life asymmetric supercapattery. Journal of Colloid and Interface Science, 2021, 600, 264-277.	5.0	57
177	Porosity-adjustable MXene film with transverse and longitudinal ion channels for flexible supercapacitors. Microporous and Mesoporous Materials, 2021, 326, 111389.	2.2	11
178	A hierarchical carbon Fiber@MXene@ZnO core-sheath synergistic microstructure for efficient microwave absorption and photothermal conversion. Carbon, 2021, 183, 872-883.	5.4	75
179	Semi-transparent reduced graphene oxide temperature sensor on organic light-emitting diodes for fingerprint liveness detection of smartphone authentication. Sensors and Actuators A: Physical, 2021, 331, 112876.	2.0	15
180	Rational design of hierarchically sulfide and MXene-reinforced porous carbon nanofibers as advanced electrode for high energy density flexible supercapacitors. Composites Part B: Engineering, 2021, 224, 109246.	5.9	43
181	Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 2021, 42, 317-369.	9.5	113
182	Design and fabrication of cellulose derived free-standing carbon nanofiber membranes for high performance supercapacitors. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100117.	1.6	4
183	Knitted Ti3C2T MXene based fiber strain sensor for human–computer interaction. Journal of Colloid and Interface Science, 2021, 604, 643-649.	5.0	42

#	Article	IF	CITATIONS
184	Capacitive deionization of NaCl solution with hierarchical porous carbon materials derived from Mg-MOFs. Separation and Purification Technology, 2021, 277, 119618.	3.9	36
185	Ti3C2T /carbon nanotube/porous carbon film for flexible supercapacitor. Chemical Engineering Journal, 2022, 427, 132002.	6.6	95
186	Application of MXenes for water treatment and energy-efficient desalination: A review. Journal of Hazardous Materials, 2022, 423, 127050.	6.5	111
187	A new potassium dual-ion hybrid supercapacitor based on battery-type Ni(OH)2 nanotube arrays and pseudocapacitor-type V2O5-anchored carbon nanotubes electrodes. Journal of Colloid and Interface Science, 2022, 607, 462-469.	5.0	39
188	Processing Techniques and Application Areas of MXene-Reinforced Nanocomposites. , 2021, , .		1
189	Ti ₃ C ₂ MXene–polymer nanocomposites and their applications. Journal of Materials Chemistry A, 2021, 9, 8051-8098.	5.2	92
190	Ti ₃ C ₂ T _{<i>x</i>} MXene: from dispersions to multifunctional architectures for diverse applications. Materials Horizons, 2021, 8, 2886-2912.	6.4	41
191	Vacuum-filtration assisted layer-by-layer strategy to design MXene/carbon nanotube@MnO ₂ all-in-one supercapacitors. Journal of Materials Chemistry A, 2021, 9, 21347-21356.	5.2	54
192	Review—Futuristic Direction for R&D Challenges to Develop 2D Advanced Materials Based Supercapacitors. Journal of the Electrochemical Society, 2020, 167, 136501.	1.3	27
193	Flexible electrodes with high areal capacity based on electrospun fiber mats. Nanoscale, 2021, 13, 18391-18409.	2.8	15
194	A review on MXenes: new-generation 2D materials for supercapacitors. Sustainable Energy and Fuels, 2021, 5, 5672-5693.	2.5	55
195	Constructing robust and freestanding MXene/Si@C core–shell nanofibers <i>via</i> coaxial electrospinning for high performance Li-ion batteries. Materials Chemistry Frontiers, 2021, 5, 8218-8228.	3.2	10
196	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
198	Preparation of Flexible N-Doped Carbon Nanotube/MXene/PAN Nanocomposite Films with Improved Electrochemical Properties. Industrial & Engineering Chemistry Research, 2021, 60, 15352-15363.	1.8	25
199	High Performance Double Conductive Network Hydrogel Based on Soaking Strategy for Supercapacitors. Macromolecular Materials and Engineering, 0, , 2100652.	1.7	4
200	Cobalt Nanoparticles Encapsulated in N-Doped Carbon on the Surface of MXene (Ti ₃ C ₂) Play a Key Role for Electroreduction of Oxygen. Energy & Fuels, 2021, 35, 17909-17918.	2.5	17
201	Investigation of AC Electrical Properties of MXene-PCL Nanocomposites for Application in Small and Medium Power Generation. Energies, 2021, 14, 7123.	1.6	11
202	Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis to Applications. Engineering Materials, 2021, , 179-199.	0.3	0

#	Article	IF	CITATIONS
203	MXene-MoS2 heterostructure collaborated with catalyzed hairpin assembly for label-free electrochemical detection of microRNA-21. Talanta, 2022, 237, 122927.	2.9	33
204	MXenes Based Composites and Hybrids. Engineering Materials, 2020, , 95-206.	0.3	0
205	Electrochemical Performance of Polyaniline Support on Electrochemical Activated Carbon Fiber. Journal of Materials Engineering and Performance, 2022, 31, 1949-1955.	1.2	14
206	Hollow Ti ₃ C ₂ MXene/Carbon Nanofibers as an Advanced Anode Material for Lithiumâ€lon Batteries. ChemElectroChem, 2022, 9, .	1.7	18
207	Self-assembled S,N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid- and all-solid-state supercapacitors. Journal of Power Sources, 2021, 516, 230682.	4.0	51
208	Two-Dimensional Metal–Organic Framework Nanosheets Grown on Carbon Fiber Paper Interwoven with Polyaniline as an Electrode for Supercapacitors. Energy & Fuels, 2021, 35, 19818-19826.	2.5	22
209	A Review of Supercapacitors: Materials Design, Modification, and Applications. Energies, 2021, 14, 7779.	1.6	94
210	Superelastic and Fire-Retardant Nano-/Microfibrous Sponges for High-Efficiency Warmth Retention. ACS Applied Materials & Interfaces, 2021, 13, 58027-58035.	4.0	15
211	Boosted electrochemical properties of polyimide-based carbon nanofibers containing micro/mesopore for high-performance supercapacitors by thermal rearrangement. Journal of Energy Storage, 2022, 47, 103672.	3.9	11
212	Design of open-porous three-dimensional starfish-like Co3O4/Ni forest electrode for efficient energy storage devices. Journal of Alloys and Compounds, 2022, 896, 163070.	2.8	11
213	DFT computation of quantum capacitance of transition-metals and vacancy doped Sc2CF2 MXene for supercapacitor applications. Journal of Molecular Liquids, 2022, 345, 118263.	2.3	9
214	Supercapacitors operated at extremely low environmental temperatures. Journal of Materials Chemistry A, 2021, 9, 26603-26627.	5.2	25
216	MXene nanofibers confining MnO _{<i>x</i>} nanoparticles: a flexible anode for high-speed lithium ion storage networks. Dalton Transactions, 2022, 51, 1423-1433.	1.6	8
217	Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coordination Chemistry Reviews, 2022, 454, 214339.	9.5	71
218	MXenes and their composites for flexible electronics. , 2022, , 423-447.		0
219	Introduction to 2D MXenes: fundamental aspects, MAX phases and MXene derivatives, current challenges, and future prospects. , 2022, , 1-47.		0
220	Synthesis of Ti ₃ C ₂ T _x MXene from the Ti ₃ AlC ₂ MAX phase with enhanced optical and morphological properties by using ammonia solution with the in-situ HF forming method. Physica Scripta, 2022, 97, 025807.	1.2	12
221	Steady-state stability improvement of reduced graphene oxide thermo behavior via polymer film encapsulation. Diamond and Related Materials, 2022, 121, 108792.	1.8	2

ARTICLE IF CITATIONS Electrospun Ti₃C₂T_x MXene and silicon embedded in carbon 222 1.3 6 nanofibers for lithium-ion batteries. Journal Physics D: Applied Physics, 2022, 55, 204002. New insights on MXene and its advanced hybrid materials for lithium-ion batteries. Sustainable Energy 2.5 and Fuels, 2022, 6, 971-1013. Effective synergy between palladium nanoparticles and nitrogen-doped porous carbon fiber for 224 2.6 6 hydrogen evolution reaction. Electrochimica Acta, 2022, 409, 139959. Two-dimensional V2C@Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Energy Storage Materials, 2022, 46, 138-146. Highly flexible, freestanding supercapacitor electrodes based on hollow hierarchical porous carbon 226 6.6 44 nanofibers bridged by carbon nanotubes. Chemical Engineering Journal, 2022, 434, 134662. L-lysine functionalized Ti3C2Tx coated polyurethane sponge for high-throughput oil–water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128396. 2.3 Synergy of ferric vanadate and MXene for high performance Li- and Na-ion batteries. Chemical 228 6.6 30 Engineering Journal, 2022, 436, 135012. Sandwich-like MXene/α-Fe₂O₃–C–MoS₂-PEDOT:PSS/MXene Film Electrodes with Ultrahigh Area Capacitance for Flexible Supercapacitors. ACS Applied Materials & amp; 229 Interfaces, 2022, 14, 9172-9182. Ti₃C₂T_{<i>x</i>} MXene-Based Flexible Piezoresistive Physical 230 7.3 177 Sensors. ACS Nano, 2022, 16, 1734-1758. Synergy of Ferric Vanadate AndÂMxene for High Performance Li and Na Ion Batteries. SSRN Electronic 0.4 Journal, 0, , . A strategic review of MXenes as emergent building blocks for future two-dimensional materials: 232 2.7 18 recent progress and perspectives. Journal of Materials Chemistry C, 2022, 10, 4096-4123. Inner-OuterÂSynergistic Strategy: Embedding Nis Nanoflakes in Electrospun Carbon Fibers Encapsulated Nis Nanoparticles for Advanced Hybrid Supercapacitors. SSRN Electronic Journal, 0, , . 0.4 Two-dimensional transition metal carbide (MXene) for enhanced energy storage., 2022, , 255-283. 234 0 Three-Dimensional Ordered and Porous Ti3c2tx@Chitosan Film Enabled by Self-Assembly Strategy for High-Rate Pseudocapacitive Energy Storage. SSRN Electronic Journal, 0, , . 0.4 Novel Trends in MXene/Conducting Polymeric Hybrid Nanoclusters. Journal of Cluster Science, 2023, 236 23 1.7 34, 45-76. <scp>Twoâ€dimensional MXenes</scp>: New frontier of wearable and flexible electronics. InformaÄnÃ-MateriÃily, 2022, 4, . MXene/ZIF-67/PAN Nanofiber Film for Ultra-sensitive Pressure Sensors. ACS Applied Materials & amp; 238 4.0 38 Interfaces, 2022, 14, 12367-12374. Emerging Advancements in Polypyrrole MXene Hybrid Nanoarchitectonics for Capacitive Energy Storage Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 239 1521-1540

#	Article	IF	CITATIONS
240	Roles of MXene in Pressure Sensing: Preparation, Composite Structure Design, and Mechanism. Advanced Materials, 2022, 34, e2110608.	11,1	90
241	Three-dimensional ordered and porous Ti3C2Tx@Chitosan film enabled by self-assembly strategy for high-rate pseudocapacitive energy storage. Chemical Engineering Journal, 2022, 442, 136255.	6.6	12
242	Synthesis of Nb2C MXene-based 2D layered structure electrode material for high-performance battery-type supercapacitors. Electrochimica Acta, 2022, 413, 140144.	2.6	34
243	Every bite of Supercap: A brief review on construction and enhancement of supercapacitor. Journal of Energy Storage, 2022, 50, 104599.	3.9	97
244	Co-MOF@MXene-carbon nanofiber-based freestanding electrodes for a flexible and wearable quasi-solid-state supercapacitor. Chemical Engineering Journal, 2022, 437, 135338.	6.6	58
245	Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature. Sensors and Actuators B: Chemical, 2022, 362, 131789.	4.0	31
246	MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives. Coordination Chemistry Reviews, 2022, 462, 214518.	9.5	148
247	Applications of 2D MXenes for Electrochemical Energy Conversion and Storage. Energies, 2021, 14, 8183.	1.6	9
248	Liquid metal polymer composite: Flexible, conductive, biocompatible, and antimicrobial scaffold. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1131-1139.	1.6	12
251	Interfacial Polymetallic Oxides and Hierarchical Porous Core–Shell Fibres for High Energyâ€Đensity Electrochemical Supercapacitors. Angewandte Chemie, 2022, 134, .	1.6	6
252	Photoelectronic properties and devices of 2D Xenes. Journal of Materials Science and Technology, 2022, 126, 44-59.	5.6	7
253	Interfacial Polymetallic Oxides and Hierarchical Porous Coreâ€Shell Fibres for High Energyâ€Density Electrochemical Supercapacitors. Angewandte Chemie - International Edition, 2022, , .	7.2	27
254	NiS Nanoflake-Coated Carbon Nanofiber Electrodes for Supercapacitors. ACS Applied Nano Materials, 2022, 5, 6192-6200.	2.4	37
255	MXenes: state-of-the-art synthesis, composites and bioapplications. Journal of Materials Chemistry B, 2022, 10, 4331-4345.	2.9	8
256	Self-supported Li ₃ VO ₄ /N doped C fibers for superb high-rate and long-life Li-ion storage. Journal of Materials Chemistry A, 2022, 10, 11488-11497.	5.2	13
257	Review on Microfluidic Construction of Advanced Nanomaterials for High-Performance Energy Storage Applications. Energy & Fuels, 2022, 36, 4708-4727.	2.5	10
258	Tailoring surface capacitance of Ti3C2Tx-PANI@CNTs nanoarchitecture for tunable energy storage and high-performance micro-supercapacitor. Ceramics International, 2022, 48, 21935-21944.	2.3	7
259	Ultrasensitive aptasensor using electrospun MXene/polyvinylidene fluoride nanofiber composite for Ochratoxin A detection. Food Chemistry, 2022, 390, 133105.	4.2	29

#	Article	IF	CITATIONS
260	Preparation and application of heterojunction KH570–TiO2/MXene/PAN membranes with photocatalytic degradation and photothermal conversion properties. Journal of Solid State Chemistry, 2022, 312, 123142.	1.4	4
261	Rational design of MXene/activated carbon/polyoxometalate triple hybrid electrodes with enhanced capacitance for organic-electrolyte supercapacitors. Journal of Colloid and Interface Science, 2022, 623, 947-961.	5.0	21
262	Recent trends of silicon elastomer-based nanocomposites and their sensing applications. Journal of Polymer Research, 2022, 29, .	1.2	11
263	Biomass-derived S, P, Cl tri-doped porous carbon for high-performance supercapacitor. Diamond and Related Materials, 2022, 126, 109061.	1.8	10
264	Wet chemical synthesis of Gd+3 doped vanadium Oxide/MXene based mesoporous hierarchical architectures as advanced supercapacitor material. Ceramics International, 2022, 48, 24840-24849.	2.3	24
267	Three-Dimensional Ti3c2 Mxene@Silicon@Nitrogen-Doped Carbon Foam as High Performance Self-Standing Lithium-Ion Battery Anodes. SSRN Electronic Journal, 0, , .	0.4	0
268	Recent progress in Ti3C2Tx-based materials: From fundamentals to emerging applications. Materials Science in Semiconductor Processing, 2022, 148, 106835.	1.9	9
269	Embedding NiS nanoflakes in electrospun carbon fibers containing NiS nanoparticles for hybrid supercapacitors. Chemical Engineering Journal, 2022, 446, 137262.	6.6	66
270	3D MXenes as promising alternatives for potential electrocatalysis applications: opportunities and challenges. Journal of Materials Chemistry C, 2022, 10, 9669-9690.	2.7	8
271	Fibrous asymmetric supercapacitor based on wet spun MXene/PAN Fiber-derived multichannel porous MXene/CF negatrode and NiCo2S4 electrodeposited MXene/CF positrode. Chemical Engineering Journal, 2022, 449, 137732.	6.6	44
272	The Perfect Imperfections in Electrocatalysts. Chemical Record, 2022, 22, .	2.9	9
273	Review—Recent Trends on the Synthesis and Different Characterization Tools for MXenes and their Emerging Applications. Journal of the Electrochemical Society, 2022, 169, 077501.	1.3	9
274	MXenes for magnesium-based hydrides: A review. Applied Materials Today, 2022, 29, 101570.	2.3	8
275	Electrospinning-Based Carbon Nanofibers for Energy and Sensor Applications. Applied Sciences (Switzerland), 2022, 12, 6048.	1.3	19
276	Flexible MXeneâ€Based Composite Films: Synthesis, Modification, and Applications as Electrodes of Supercapacitors. Small, 2022, 18, .	5.2	41
277	Scalable manufacturing of leafâ€like <scp>MXene</scp> /Ag <scp>NWs</scp> /cellulose composite paper electrode for allâ€solidâ€state supercapacitor. EcoMat, 2022, 4, .	6.8	32
278	MXenes for electrocatalysis applications: Modification and hybridization. Chinese Journal of Catalysis, 2022, 43, 2057-2090.	6.9	76
280	Si Nanoparticles Embedded in Porous N-Doped Carbon Fibers as a Binder-Free and Flexible Anode for High-Performance Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
281	Advances and emerging challenges in MXenes and their nanocomposites for biosensing applications. RSC Advances, 2022, 12, 19590-19610.	1.7	35
282	A Water-Soluble Epoxy-Based Green Crosslinking System for Stabilizing PVA Nanofibers. Molecules, 2022, 27, 4177.	1.7	4
283	Role of ZnO in ZnO Nanoflake/Ti ₃ C ₂ MXene Composites in Photocatalytic and Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 9319-9333.	2.4	29
284	Functionalized carbon fibers with MXene via electrochemistry aryl diazonium salt reaction to improve the interfacial properties of carbon fiber/epoxy composites. Journal of Materials Research and Technology, 2022, 19, 3699-3712.	2.6	9
285	Dopamine monomer functionalized Ti3C2 nanosheets and their anticorrosion improvement for waterborne epoxy coatings. Journal of Materials Research and Technology, 2022, 20, 210-220.	2.6	10
286	Two-Dimensional Hybrid Nanosheet-Based Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications. ACS Nano, 2022, 16, 10130-10155.	7.3	47
287	All-cellulose-based high-rate performance solid-state supercapacitor enabled by nitrogen doping and porosity tuning. Diamond and Related Materials, 2022, 128, 109238.	1.8	21
288	Spatially confined Bi2O3–Ti3C2T hybrids reinforced epoxy composites for gamma radiation shielding. Composites Communications, 2022, 34, 101252.	3.3	20
289	Nitrogen-Doped Porous MXene (Ti3C2) for Flexible Supercapacitors with Enhanced Storage Performance. Molecules, 2022, 27, 4890.	1.7	10
290	Synergistic effect of noble metal doping and composite formation to boost the electrochemical properties of vanadium pentoxide. Ceramics International, 2022, 48, 33306-33314.	2.3	17
292	2D/0D/1D Construction of Ti ₃ C ₂ @ZnCo ₂ O ₄ @Carbon Nanofibers for High-Capacity Lithium Storage. Industrial & Engineering Chemistry Research, 2022, 61, 12555-12566.	1.8	4
293	Three-dimensional Ti3C2 MXene@silicon@nitrogen-doped carbon foam for high performance self-standing lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2022, 921, 116664.	1.9	3
294	Recent progress of Ti3C2Tx-based MXenes for fabrication of multifunctional smart textiles. Applied Materials Today, 2022, 29, 101612.	2.3	13
295	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e470" altimg="si2.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> nanostructures and their enoxy composites for potential FMI shielding in the Ku band. Nano Structures Nano Objects, 2022, 32	1.9	7
296	100912. MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications. Chinese Journal of Catalysis, 2022, 43, 2484-2499.	6.9	33
297	Ascorbic acid-induced fiber-scrolling of titanium carbide Ti ₃ C ₂ T _{<i>x</i>}	1.7	0
298	2D MXene nanocomposites: electrochemical and biomedical applications. Environmental Science: Nano, 2022, 9, 4038-4068.	2.2	26
299	Industrial applications of MXene nanocomposites. , 2022, , 481-503.		5

#	Article	IF	CITATIONS
300	Interface Coupling Strategy for Mxene-Wrapped Sic/C Nanofibers with Excellent Electromagnetic Wave Absorption and Photothermal Conversion. SSRN Electronic Journal, 0, , .	0.4	0
301	Conformal and Transparent Al2o3 Passivation Coating Via Atomic Layer Deposition for High Aspect Ratio Ag Network Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
302	Recent Advances in 2Dâ€MXene Based Nanocomposites for Optoelectronics. Advanced Materials Interfaces, 2022, 9, .	1.9	20
303	MXenes serving aqueous supercapacitors: Preparation, energy storage mechanism and electrochemical performance enhancement. Sustainable Materials and Technologies, 2022, 33, e00490.	1.7	7
304	Covalent-architected molybdenum disulfide arrays on Ti3C2T MXene fiber towards robust capacitive energy storage. Journal of Materials Science and Technology, 2023, 139, 23-30.	5.6	16
305	Cactus-like NiCo2O4@Nickel-plated fabric nano-flowers as flexible free-standing supercapacitor electrode. Applied Surface Science, 2023, 609, 155189.	3.1	15
306	Sensing mechanism of a flexible strain sensor developed directly using electrospun composite nanofiber yarn with ternary carbon nanomaterials. IScience, 2022, 25, 105162.	1.9	13
307	MXene based hybrid materials for supercapacitors: Recent developments and future perspectives. Journal of Energy Storage, 2022, 55, 105765.	3.9	39
308	Two dimensional (2D) MXenes as an emerging class of materials for antimicrobial applications: properties and mechanisms. Journal of Environmental Chemical Engineering, 2022, 10, 108663.	3.3	6
309	3D Porous Compact 1D/2D Fe ₂ O ₃ /MXene Composite Aerogel Film Electrodes for Allâ€Solidâ€State Supercapacitors. Small, 2022, 18, .	5.2	20
310	Recent progress on freestanding carbon electrodes for flexible supercapacitors. New Carbon Materials, 2022, 37, 875-897.	2.9	13
311	Recent progress on hybrid fibrous electromagnetic shields: Key protectors of living species against electromagnetic radiation. Matter, 2022, 5, 3807-3868.	5.0	19
312	Covalent alteration of Ti3C2Tx MXene layers by selenium decoration for enhanced electrochemical capacitance. Journal of Energy Storage, 2022, 56, 105918.	3.9	8
313	Advances in electrospun nanofibers for triboelectric nanogenerators. Nano Energy, 2022, 104, 107884.	8.2	38
314	Interface-engineered molybdenum disulfide/porous graphene microfiber for high electrochemical energy storage. Energy Storage Materials, 2023, 54, 30-39.	9.5	16
315	Lignin modified Ti3C2Tx assisted construction of functionalized interface for separation of oil/water mixture and dye wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130371.	2.3	5
316	MOFs meet electrospinning: New opportunities for water treatment. Chemical Engineering Journal, 2023, 453, 139669.	6.6	30
317	Carbon Nanotubes Embedded in Polymer Nanofibers by Electrospinning. , 2022, , 943-977.		0

#	Article	IF	CITATIONS
318	Robust N-doping porous carbon nanofiber membranes with inter-fiber cross-linked structures for supercapacitors. Carbon, 2023, 202, 13-25.	5.4	16
319	Removal of Interlayer Water of two Ti ₃ C ₂ T _x MXenes as a Versatile Tool for Controlling the Fermiâ€Level Pinningâ€Free Schottky Diodes with Nb:SrTiO ₃ . Advanced Functional Materials, 2023, 33, .	7.8	3
320	Emerging MXeneâ€Based Memristors for Inâ€Memory, Neuromorphic Computing, and Logic Operation. Advanced Functional Materials, 2023, 33, .	7.8	32
321	Atmospheric pressure plasma jet treatment of PLA/PAni solutions: Enhanced morphology, improved yield of electrospun nanofibers and concomitant doping behaviour. Polymer, 2022, 262, 125502.	1.8	3
322	High electrolyte uptake of MXene integrated membrane separators for Zn-ion batteries. Scientific Reports, 2022, 12, .	1.6	12
323	Electrostatic self-assembly of citrus based carbon nanosheets and MXene: Flexible film electrodes and patterned interdigital electrodes for all-solid supercapacitors. Journal of Energy Storage, 2023, 58, 106392.	3.9	7
324	Si nanoparticles embedded in porous N-doped carbon fibers as a binder-free and flexible anode for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2023, 936, 168256.	2.8	7
325	A synergistic strategy for SiC/C nanofibers@MXene with core-sheath microstructure toward efficient electromagnetic wave absorption and photothermal conversion. Applied Surface Science, 2023, 613, 155998.	3.1	7
326	MXenes and MXene-supported nanocomposites: a novel materials for aqueous environmental remediation. RSC Advances, 2022, 12, 34766-34789.	1.7	7
327	3-D Electrodes for Electrochemical Sensors: Review in Different Approaches. IEEE Sensors Journal, 2022, 22, 23620-23632.	2.4	2
328	2D MXene Ti3C2Tx nanosheets in the development of a mechanically enhanced and efficient antibacterial dental resin composite. Frontiers in Chemistry, 0, 10, .	1.8	7
329	Wearable energy storage with MXene textile supercapacitors for real world use. Journal of Materials Chemistry A, 2023, 11, 3514-3523.	5.2	28
330	Continuous spinning of polymer nanofibers with uniform diameters using an anodic porous alumina spinneret with holes of different diameters. Materials Advances, 0, , .	2.6	0
331	Boosting energy storage performance of Ti3C2Tx composite supercapacitors via decorated chalcogen (S, Se, Te) and new phase-formed binding sites. Materials Today Sustainability, 2023, 21, 100322.	1.9	4
332	Selective Etching of Ti ₃ AlC ₂ MAX Phases Using Quaternary Ammonium Fluorides Directly Yields Ti ₃ C ₂ T <i>_z</i> MXene Nanosheets: Implications for Energy Storage. ACS Applied Nano Materials, 2023, 6, 1093-1105.	2.4	10
333	Nitrogen-doped Ti3C2Tx MXene prepared by thermal decomposition of ammonium salts and its application in flexible quasi-solid-state supercapacitor. Chemical Engineering Journal, 2023, 458, 141338.	6.6	18
334	Highâ€Voltage MXeneâ€Based Supercapacitors: Present Status and Future Perspectives. Small Methods, 2023, 7, .	4.6	14
335	Ti ₃ C ₂ T _{<i>x</i>} MXene embedded metal–organic framework-based porous electrospun carbon nanofibers as a freestanding electrode for supercapacitors. Journal of Materials Chemistry A, 2023, 11, 5001-5014.	5.2	30

#	ARTICLE	IF	Citations
336	lead(<scp>ii</scp>) ions from wastewater. RSC Advances, 2023, 13, 5643-5655.	1.7	4
337	Recent advances in the synthesis and electrocatalytic application of MXene materials. Chemical Communications, 2023, 59, 3968-3999.	2.2	15
338	Recent progress in conductive electrospun materials for flexible electronics: Energy, sensing, and electromagnetic shielding applications. Chemical Engineering Journal, 2023, 465, 142847.	6.6	21
339	A holistic review of MXenes for solar device applications: Synthesis, characterization, properties and stability. FlatChem, 2023, 39, 100493.	2.8	6
340	Thinking green with 2-D and 3-D MXenes: Environment friendly synthesis and industrial scale applications and global impact. Renewable and Sustainable Energy Reviews, 2023, 178, 113238.	8.2	16
341	MXene/carbon composites for electrochemical energy storage and conversion. Materials Today Sustainability, 2023, 22, 100350.	1.9	12
342	Application of titanium carbide/nitride (MXene)-based NPs in adsorption of radionuclides and heavy metal ions for wastewater remediation: A review. Case Studies in Chemical and Environmental Engineering, 2023, 7, 100326.	2.9	3
343	Nanocomposite having hierarchical architecture of MXene-WO3 nanorod@rGOsponge and porous carbon for cathode and anode materials for high-performance flexible all-solid-state asymmetric supercapacitor device. Applied Surface Science, 2023, 623, 157042.	3.1	6
344	Two-dimensional MXene with multidimensional carbonaceous matrix: A platform for general-purpose functional materials. Progress in Materials Science, 2023, 135, 101105.	16.0	43
345	Advancements in MXene-polymer composites for high-performance supercapacitor applications. Journal of Energy Storage, 2023, 63, 106942.	3.9	16
346	Ti ₃ C ₂ T _x /g ₃ N ₄ /CNTs Ternary Hybrid Film for Allâ€solid Flexible Supercapacitors and Superb Bandwidth Electromagnetic Wave Absorber. ChemNanoMat, 2023, 9, .	1.5	2
347	Facile Fabrication of Highly Oriented Dense Ti ₃ C ₂ Fibers with Enhanced Strength and Supercapacitance Performance by Coagulation Condition Tuning. ACS Applied Energy Materials, 2023, 6, 2276-2285.	2.5	2
348	SiO2 anchored stacked-petal structure CoO-NiO/CNF as electrodes for high-rate-performance supercapacitors. Diamond and Related Materials, 2023, 134, 109786.	1.8	6
349	Advanced structure selenium nanosphere@Ti3C2@graphene oxide with dual-channel and multiple protection strategies for Al–Se batteries. Journal of Power Sources, 2023, 564, 232827.	4.0	1
350	Ti ₃ C ₂ T _{<i>x</i>} MXene/carbon nanofiber multifunctional electrode for electrode ionization with antifouling activity. Chemical Science, 2023, 14, 3610-3621.	3.7	13
351	Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	32
352	MXene-Based Nanomaterials and Their Applications in Supercapacitors. , 2023, , 1-25.		0
353	Conformal and Transparent Al2O3 Passivation Coating via Atomic Layer Deposition for High Aspect Ratio Ag Network Electrodes. Metals, 2023, 13, 528.	1.0	0

#	Article	IF	CITATIONS
354	Design and synthesis of novel pomegranate-like TiN@MXene microspheres as efficient sulfur hosts for advanced lithium sulfur batteries. RSC Advances, 2023, 13, 9322-9332.	1.7	5
355	Emerging MXeneâ€Based Flexible Tactile Sensors for Health Monitoring and Haptic Perception. Small, 2023, 19, .	5.2	31
356	Engineering chemical-bonded Ti3C2 MXene@carbon composite films with 3D transportation channels for promoting lithium-ion storage in hybrid capacitors. Science China Materials, 2023, 66, 944-954.	3.5	6
357	Synthesis and applications of MXene-based composites: a review. Nanotechnology, 2023, 34, 262001.	1.3	14
358	Three-dimensional N-doped mesoporous carbon–MXene hybrid architecture for supercapacitor applications. RSC Advances, 2023, 13, 9983-9997.	1.7	8
360	Three-Dimensional MXene-Based Functional Materials for Water Treatment: Preparation, Functional Tailoring, and Applications. Industrial & Engineering Chemistry Research, 2023, 62, 7297-7335.	1.8	3
362	A review on accelerated development of skin-like MXene electrodes: from experimental to machine learning. Nanoscale, 2023, 15, 8110-8133.	2.8	2
363	Recent advancements in zero- to three-dimensional carbon networks with a two-dimensional electrode material for high-performance supercapacitors. Nanoscale Advances, 2023, 5, 3146-3176.	2.2	14
367	Recent Advances in MXene-Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices Applications. ACS Applied Electronic Materials, 2023, 5, 4704-4725.	2.0	3
378	Nanostructured MXenes for Hydrogen Storage and Energy Applications. , 2023, , 155-171.		0
381	High-Temperature Supercapacitors Based on MXene with Ultrahigh Volumetric Capacitance. , 2023, 5, 2084-2095.		11
395	MXene and their integrated composite-based acetone sensors for monitoring of diabetes. Materials Advances, 2023, 4, 3989-4010.	2.6	8
396	MXene-based wearable supercapacitors and their transformative impact on healthcare. Materials Advances, 2023, 4, 4317-4332.	2.6	4
397	Solar-to-Fuel Conversion: Application of Two-Dimensional Ti ₃ C ₂ T _{ <i>x</i>} MXene as Cocatalyst. ACS Symposium Series, 0, , 83-103.	0.5	0
401	2D-Transition Metal Carbides and Nitrides: Prospects and Challenges. ACS Symposium Series, 0, , 1-42.	0.5	0
403	2D MXenes: A Promising Functionality as an Electrocatalyst. ACS Symposium Series, 0, , 43-58.	0.5	0
404	An Extensive Review on MXenes as Emergent Photovoltaic Materials. ACS Symposium Series, 0, , 59-82.	0.5	0
405	MXenes in Membrane-Based Water Treatment Applications. ACS Symposium Series, 0, , 121-139.	0.5	0

#	Article	IF	CITATIONS
406	The Flourishing Application of MXenes for Dielectric-Based Microwave Absorption. ACS Symposium Series, 0, , 141-176.	0.5	0
414	Role of MXene as a Catalyst for Hydrogen Synthesis. ACS Symposium Series, 0, , 105-119.	0.5	0
426	MXenes <i>vs.</i> clays: emerging and traditional 2D layered nanoarchitectonics. Nanoscale, 2023, 15, 18959-18979.	2.8	1
427	Ti ₃ C ₂ T _{<i>x</i>} MXene-embedded MnO ₂ -based hydrophilic electrospun carbon nanofibers as a freestanding electrode for supercapacitors. Chemical Communications, 2023, 59, 14309-14312.	2.2	1
444	MXene–carbon based hybrid materials for supercapacitor applications. Energy Advances, 2024, 3, 341-365.	1.4	0
446	Scope, evaluation and current perspectives of MXene synthesis strategies for state of the art applications. Journal of Materials Chemistry A, 2024, 12, 7351-7395.	5.2	2
447	2D Metal Carbides and Nitrides (MXenes) in Water Treatment. Engineering Materials, 2024, , 141-168.	0.3	0
453	MXene-based hybrid nanostructures for strain sensors. , 2024, , 377-415.		0