Challenges and prospects of 3D micro-supercapacitors

Energy and Environmental Science 12, 96-115 DOI: 10.1039/c8ee02029a

Citation Report

#	Article	IF	CITATIONS
1	A Nonaqueous Naâ€lon Hybrid Microâ€6upercapacitor with Wide Potential Window and Ultrahigh Areal Energy Density. Batteries and Supercaps, 2019, 2, 918-923.	4.7	30
2	Scalable fabrication of high-performance micro-supercapacitors by embedding thick interdigital microelectrodes into microcavities. Nanoscale, 2019, 11, 19772-19782.	5.6	7
3	α-Fe2O3 hollow meso–microspheres grown on graphene sheets function as a promising counter electrode in dye-sensitized solar cells. RSC Advances, 2019, 9, 24164-24170.	3.6	4
4	Self-Assembly of Integrated Tubular Microsupercapacitors with Improved Electrochemical Performance and Self-Protective Function. ACS Nano, 2019, 13, 8067-8075.	14.6	57
5	One‧tep Synthesis of Monodispersed Mesoporous Carbon Nanospheres for Highâ€Performance Flexible Quasi‧olid‧tate Micro‧upercapacitors. Small, 2019, 15, e1903836.	10.0	45
6	Laser-Graving-Assisted Fabrication of Foldable Supercapacitors for On-Chip Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 42172-42178.	8.0	9
7	A perspective on two-dimensional materials for planar micro-supercapacitors. APL Materials, 2019, 7, .	5.1	28
8	A universal <i>in situ</i> strategy for charging supercapacitors. Journal of Materials Chemistry A, 2019, 7, 15131-15136.	10.3	13
9	Onâ€Chip MXene Microsupercapacitors for ACâ€Line Filtering Applications. Advanced Energy Materials, 2019, 9, 1901061.	19.5	113
10	Fast Electrochemical Storage Process in Sputtered Nb ₂ O ₅ Porous Thin Films. ACS Nano, 2019, 13, 5826-5832.	14.6	29
11	3D Interdigitated Microsupercapacitors with Record Areal Cell Capacitance. Small, 2019, 15, 1901224.	10.0	27
12	Advances on threeâ€dimensional electrodes for microâ€supercapacitors: A miniâ€review. InformaÄnÃ- Materiály, 2019, 1, 74-84.	17.3	129
13	A fluorescent conjugated polymer photocatalyst based on Knoevenagel polycondensation for hydrogen production. New Journal of Chemistry, 2019, 43, 7093-7098.	2.8	14
14	Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Materials, 2019, 19, 212-241.	18.0	163
15	Sputtered tungsten nitride films as pseudocapacitive electrode for on chip micro-supercapacitors. Energy Storage Materials, 2019, 20, 243-252.	18.0	65
16	Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery. Frontiers in Chemistry, 2019, 7, 272.	3.6	140
17	Two-Dimensional Metallic Niobium Diselenide for Sub-micrometer-Thin Antennas in Wireless Communication Systems. ACS Nano, 2019, 13, 14114-14121.	14.6	28
18	Recent Development of Printed Microâ€Supercapacitors: Printable Materials, Printing Technologies, and Perspectives. Advanced Materials, 2020, 32, e1805864.	21.0	142

#	Article	IF	CITATIONS
19	A Network Attack Detection Method Using SDA and Deep Neural Network Based on Internet of Things. International Journal of Wireless Information Networks, 2020, 27, 209-214.	2.7	2
20	Synthesis of porous flowerâ€like Niâ€Coâ€Moâ€S nanostructures on Ni foam for batteryâ€supercapacitor hybrid devices. International Journal of Energy Research, 2020, 44, 2864-2874.	4.5	17
21	3D printing-based cellular microelectrodes for high-performance asymmetric quasi-solid-state micro-pseudocapacitors. Journal of Materials Chemistry A, 2020, 8, 1749-1756.	10.3	35
22	Facile and Scalable Preparation of Ruthenium Oxideâ€Based Flexible Microâ€Supercapacitors. Advanced Energy Materials, 2020, 10, 1903136.	19.5	74
23	Performance modulation of energy storage devices: A case of Ni-Co-S electrode materials. Chemical Engineering Journal, 2020, 392, 123651.	12.7	97
24	Synthesis of self-assembled micro/nano structured manganese carbonate for high performance, long lifespan asymmetric supercapacitors and investigation of atomic-level intercalation properties of OHâ~' ions via first principle calculation. Journal of Energy Storage, 2020, 27, 101138.	8.1	53
25	Stretchable Supercapacitors as Emergent Energy Storage Units for Health Monitoring Bioelectronics. Advanced Energy Materials, 2020, 10, 1902769.	19.5	93
26	Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination. Water Research, 2020, 170, 115367.	11.3	60
27	Silicon-nanoforest-based solvent-free micro-supercapacitors with ultrahigh spatial resolution <i>via</i> IC-compatible <i>in situ</i> fabrication for on-chip energy storage. Journal of Materials Chemistry A, 2020, 8, 22736-22744.	10.3	12
28	Structural Engineering and Coupling of Two-Dimensional Transition Metal Compounds for Micro-Supercapacitor Electrodes. ACS Central Science, 2020, 6, 1901-1915.	11.3	53
29	Micro-supercapacitors powered integrated system for flexible electronics. Energy Storage Materials, 2020, 32, 402-417.	18.0	47
30	Monolithic Heterogeneous Integration of 3D Radio Frequency Lâ^'C Elements by Selfâ€Rolledâ€Up Membrane Nanotechnology. Advanced Functional Materials, 2020, 30, 2004034.	14.9	19
31	True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small, 2020, 16, e2002806.	10.0	405
32	High performance stretchable Li-ion microbattery. Energy Storage Materials, 2020, 33, 108-115.	18.0	34
33	Binder-assisted electrostatic spray deposition of LiCoO2 and graphite films on coplanar interdigitated electrodes for flexible/wearable lithium-ion batteries. Journal of Power Sources, 2020, 472, 228573.	7.8	7
34	Laser Pyrolysis of Imprinted Furan Pattern for the Precise Fabrication of Microsupercapacitor Electrodes. Micromachines, 2020, 11, 746.	2.9	3
35	Perspectives for electrochemical capacitors and related devices. Nature Materials, 2020, 19, 1151-1163.	27.5	1,187
36	Facile Fabrication of Flexible Graphene-Based Micro-Supercapacitors with Ultra-High Areal Performance. ACS Applied Energy Materials, 2020, 3, 8415-8422.	5.1	11

#	Article	IF	CITATIONS
37	Recent Advances in Highâ€Performance Microbatteries: Construction, Application, and Perspective. Small, 2020, 16, e2003251.	10.0	48
38	3D direct ink writing fabrication of high-performance all-solid-state micro-supercapacitors. Molecular Crystals and Liquid Crystals, 2020, 705, 105-111.	0.9	14
39	Silicon-Based 3D All-Solid-State Micro-Supercapacitor with Superior Performance. ACS Applied Materials & amp; Interfaces, 2020, 12, 43864-43875.	8.0	48
40	3D Bicontinuous Structure of a Pseudocapacitive Ultrathin Shell/Carbon Core: A Novel Electrode for Thin-Film Supercapacitors with High Areal Energy Density. ACS Sustainable Chemistry and Engineering, 2020, 8, 14711-14717.	6.7	10
41	Deciphering the Influence of Electrolytes on the Energy Storage Mechanism of Vertically-Oriented Graphene Nanosheet Electrodes by Using Advanced Electrogravimetric Methods. Nanomaterials, 2020, 10, 2451.	4.1	0
42	Femtosecond Laserâ€Etched MXene Microsupercapacitors with Doubleâ€Side Configuration via Arbitrary On―and Throughâ€Substrate Connections. Advanced Energy Materials, 2020, 10, 2000470.	19.5	40
43	Tailoring Surface Chemistry and Morphology of Titanium Nitride Electrode for On-Chip Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 7869-7878.	6.7	27
44	Facile Preparation of an Excellent Mechanical Property Electroactive Biopolymer-Based Conductive Composite Film and Self-Enhancing Cellulose Hydrogel to Construct a High-Performance Wearable Supercapacitor. ACS Sustainable Chemistry and Engineering, 2020, 8, 7879-7891.	6.7	36
45	Bilayered microelectrodes based on electrochemically deposited MnO ₂ /polypyrrole towards fast charge transport kinetics for micro-supercapacitors. RSC Advances, 2020, 10, 18245-18251.	3.6	10
46	3D Crumpled Ultrathin 1T MoS ₂ for Inkjet Printing of Mg-Ion Asymmetric Micro-supercapacitors. ACS Nano, 2020, 14, 7308-7318.	14.6	100
47	Beyond Conventional Activating Methods, a Green Approach for the Synthesis of Biocarbon and Its Supercapacitor Electrode Performance. Energy & Fuels, 2020, 34, 7658-7665.	5.1	67
48	Buckypapers of carbon nanotubes and cellulose nanofibrils: Foldable and flexible electrodes for redox supercapacitors. Electrochimica Acta, 2020, 349, 136241.	5.2	25
49	Flexible and transparent graphene-based supercapacitors decorated with nanohybrid of tungsten oxide nanoflakes and nitrogen-doped-graphene quantum dots. Ceramics International, 2020, 46, 23145-23154.	4.8	28
50	Recent Progress in 3D Printing of 2D Materialâ€Based Macrostructures. Advanced Materials Technologies, 2020, 5, 1901066.	5.8	27
51	Reflow Soldering-Resistant Solid-State 3D Micro-Supercapacitors Based on Ionogel Electrolyte for Powering the Internet of Things. Journal of the Electrochemical Society, 2020, 167, 100551.	2.9	20
52	A high performance and flexible in-plane asymmetric micro-supercapacitor (MSC) fabricated with functional electrochemical-exfoliated graphene. Journal of Electroanalytical Chemistry, 2020, 866, 114169.	3.8	9
53	Electrochemically deposited graphene oxide thin film supercapacitors: Comparing liquid and solid electrolytes. Applied Surface Science, 2020, 528, 146801.	6.1	12
54	Electric field assisted assembly of 1D supramolecular nanofibres for enhanced supercapacitive performance. Journal of Materials Chemistry A, 2020, 8, 13106-13113.	10.3	8

#	Article	IF	CITATIONS
55	Direct Conversion of Fe ₂ O ₃ to 3D Nanofibrillar PEDOT Microsupercapacitors. Advanced Functional Materials, 2020, 30, 2003394.	14.9	30
56	Wearable Textileâ€Based Coâ^'Zn Alkaline Microbattery with High Energy Density and Excellent Reliability. Small, 2020, 16, e2000293.	10.0	47
57	A high-energy aqueous on-chip lithium-ion capacitor based on interdigital 3D carbon microelectrode arrays. Journal of Power Sources, 2020, 455, 227987.	7.8	14
58	Energy optimization of the configurable service portfolio for IoT systems. Computer Communications, 2020, 154, 491-500.	5.1	8
59	Recent Developments of Planar Microâ€ s upercapacitors: Fabrication, Properties, and Applications. Advanced Functional Materials, 2020, 30, 1910000.	14.9	86
60	Photo-Rechargeable Zinc-Ion Capacitor Using 2D Graphitic Carbon Nitride. Nano Letters, 2020, 20, 5967-5974.	9.1	106
61	High Areal Capacity Porous Sn-Au Alloys with Long Cycle Life for Li-ion Microbatteries. Scientific Reports, 2020, 10, 10405.	3.3	9
62	In-situ growth of flexible 3D hollow tubular Cu2S nanorods on Cu foam for high electrochemical performance supercapacitor. Journal of Materiomics, 2020, 6, 192-199.	5.7	15
63	Homogeneous Fe ₂ O ₃ coatings on carbon nanotube structures for supercapacitors. Dalton Transactions, 2020, 49, 4136-4145.	3.3	16
64	Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials, 2020, 28, 160-187.	18.0	113
65	Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy and Environmental Science, 2020, 13, 821-829.	30.8	82
66	Maximizing power generation from ambient stray magnetic fields around smart infrastructures enabling self-powered wireless devices. Energy and Environmental Science, 2020, 13, 1462-1472.	30.8	59
67	Review of MXene electrochemical microsupercapacitors. Energy Storage Materials, 2020, 27, 78-95.	18.0	223
68	Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Materials, 2020, 28, 307-314.	18.0	279
69	Large Power Amplification in Magnetoâ€Mechanoâ€Electric Harvesters through Distributed Forcing. Advanced Energy Materials, 2020, 10, 1903689.	19.5	50
70	A Printable Metallic Current Collector for Allâ€Printed Highâ€Voltage Microâ€Supercapacitors: Instantaneous Surface Passivation by Flashâ€Lightâ€Sintering Reaction. Advanced Functional Materials, 2020, 30, 2000715.	14.9	22
71	A self-charging device with bionic self-cleaning interface for energy harvesting. Nano Energy, 2020, 73, 104738.	16.0	65
72	Restricted lithiation into a layered V ₂ O ₅ cathode towards building "rocking-chair―type Li-ion batteries and beyond. Journal of Materials Chemistry A, 2020, 8, 9483-9495.	10.3	25

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
73	Recent advances in off-grid electrochemical capacitors. Energy Storage Materials, 2021, 34, 53-75.	18.0	26
74	Laser Scribing of Fluorinated Polyimide Films to Generate Microporous Structures for High-Performance Micro-supercapacitor Electrodes. ACS Applied Energy Materials, 2021, 4, 208-214.	5.1	39
75	Microsupercapacitor with a 500Ânm gap between MXene/CNT electrodes. Nano Energy, 2021, 81, 1056	16. 16.0	61
76	Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Materials, 2021, 36, 56-76.	18.0	214
77	Porous RuO _{<i>x</i>} N _{<i>y</i>} S _{<i>z</i>} Electrodes for Microsupercapacitors and Microbatteries with Enhanced Areal Performance. ACS Energy Letters, 2021, 6, 131-139.	17.4	19
78	Green Precursors and Soft Templating for Printing Porous Carbonâ€Based Microâ€supercapacitors. Chemistry - A European Journal, 2021, 27, 1356-1363.	3.3	6
79	All Types of Flexible Solid-State Supercapacitors. Springer Series in Materials Science, 2021, , 81-117.	0.6	4
80	Exploring the significant applications of Internet of Things (IoT) with 3D printing using advanced materials in medical field. Materials Today: Proceedings, 2021, 45, 4844-4851.	1.8	32
81	Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chemical Society Reviews, 2021, 50, 6734-6789.	38.1	93
82	Laser-assisted fabrication of flexible monofilament fiber supercapacitors. Journal of Materials Chemistry A, 2021, 9, 4841-4850.	10.3	20
83	A high-performance asymmetric supercapacitor-based (CuCo)Se ₂ /GA cathode and FeSe ₂ /GA anode with enhanced kinetics matching. Nanoscale, 2021, 13, 6489-6498.	5.6	30
84	Solid-state integrated micro-supercapacitor array construction with low-cost porous biochar. Materials Chemistry Frontiers, 2021, 5, 4772-4779.	5.9	5
85	<i>In situ</i> polymerization process: an essential design tool for lithium polymer batteries. Energy and Environmental Science, 2021, 14, 2708-2788.	30.8	140
86	Energetic carbon precursors for micro-supercapacitor printing. Materials Advances, 2021, 2, 6380-6387.	5.4	4
87	History and Perspectives on Ultrafast Supercapacitors for AC Line Filtering. Advanced Energy Materials, 2021, 11, 2003306.	19.5	32
88	RF Sputter-Deposited Nanostructured CuO Films for Micro-Supercapacitors. Applied Nano, 2021, 2, 46-66.	2.0	17
89	Emerging Technologies for Green Energy Conversion and Storage. Advanced Sustainable Systems, 2021, 5, 2000152.	5.3	17
90	Piezoelectric Inkjet Printing of Nanoporous Carbons for Micro-supercapacitor Devices. ACS Applied Energy Materials, 2021, 4, 1560-1567.	5.1	37

#	Article	IF	CITATIONS
91	A First Outlook of Sputtered FeWO ₄ Thin Films for Micro-Supercapacitor Electrodes. Journal of the Electrochemical Society, 2021, 168, 030524.	2.9	13
92	Hybrid printed three-dimensionally integrated micro-supercapacitors for compact on-chip application. Applied Physics Reviews, 2021, 8, .	11.3	10
93	Understanding the Coffee ring Effect on Selfâ€discharge Behavior of Printed micro‣upercapacitors. Energy and Environmental Materials, 2022, 5, 321-326.	12.8	6
94	A Review of Compact Carbon Design for Supercapacitors with High Volumetric Performance. Small, 2021, 17, e2007548.	10.0	47
95	Threeâ€dimensional printing of highâ€mass loading electrodes for energy storage applications. InformaÄnÃ- Materiály, 2021, 3, 631-647.	17.3	50
96	Additive Manufacturing of Electrochemical Energy Storage Systems Electrodes. Advanced Energy and Sustainability Research, 2021, 2, 2000111.	5.8	15
97	Materials and technologies for multifunctional, flexible or integrated supercapacitors and batteries. Materials Today, 2021, 48, 176-197.	14.2	66
98	Direct Utilization of Photoinduced Charge Carriers to Promote Electrochemical Energy Storage. Small, 2021, 17, e2008047.	10.0	23
99	Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 17957-17970.	8.0	10
101	Integrating Flexible Ultralight 3D Ni Micromesh Current Collector with NiCo Bimetallic Hydroxide for Smart Hybrid Supercapacitors. Advanced Functional Materials, 2021, 31, 2100290.	14.9	95
102	Influence of ion implantation on the charge storage mechanism of vanadium nitride pseudocapacitive thin films. Electrochemistry Communications, 2021, 125, 107016.	4.7	5
103	In situ 3D printing of implantable energy storage devices. Chemical Engineering Journal, 2021, 409, 128213.	12.7	21
104	Asymmetric micro-supercapacitors based on electrodeposited Ruo2 and sputtered VN films. Energy Storage Materials, 2021, 37, 207-214.	18.0	64
106	Low Temperature Deposition of Highly Cyclable Porous Prussian Blue Cathode for Lithium″on Microbattery. Small, 2021, 17, e2101615.	10.0	12
107	Airâ€Stable Conductive Polymer Ink for Printed Wearable Microâ€Supercapacitors. Small, 2021, 17, e2100956.	10.0	51
108	Rational design of MXene-based films for energy storage: Progress, prospects. Materials Today, 2021, 46, 183-211.	14.2	83
109	On chip MnO2-based 3D micro-supercapacitors with ultra-high areal energy density. Energy Storage Materials, 2021, 38, 520-527.	18.0	39
110	Amorphous molybdenum sulfide@carbon nanowalls hierarchical structures electrode with large areal capacitance for micro-supercapacitors. Applied Physics A: Materials Science and Processing, 2021, 127. 1.	2.3	1

		CITATION REPORT	
#	Article	IF	CITATIONS
111	Tuning the Mechanical and Electrical Properties of Porous Electrodes for Architecting 3D Microsupercapacitors with Batteries‣evel Energy. Advanced Science, 2021, 8, e2004957.	11.2	16
112	Advances in Si and SiC Materials for Highâ€Performance Supercapacitors toward Integrated Energy Storage Systems. Small, 2021, 17, e2101775.	10.0	30
113	Enhanced Capacitive Performance of Mesoporous Vanadium Nitride Nanobelts. Journal of the Electrochemical Society, 2021, 168, 070529.	2.9	5
114	MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance. Electrochimica Acta, 2021, 386, 138420.	5.2	34
115	Updated Insights into 3D Architecture Electrodes for Micropower Sources. Advanced Materials, 2021, 33, e2103304.	21.0	28
116	Nickel Sulfide Microrockets as Selfâ€Propelled Energy Storage Devices to Power Electronic Circuits "Onâ€Demand― Small Methods, 2021, 5, e2100511.	8.6	16
117	Development of high performance alpha-Co(OH)2/reduced graphene oxide microfilm for flexible in-sandwich and planar micro-supercapacitors. Journal of Colloid and Interface Science, 2021, 598, 1-13.	9.4	19
118	Controlled Aerosol-based Synthesis of Vanadium Oxides Nanoparticle for Supercapacitor Applications. Journal of the Taiwan Institute of Chemical Engineers, 2021, 128, 220-226.	5.3	6
119	A Durable Ni–Zn Microbattery with Ultrahighâ€Rate Capability Enabled by In Situ Reconstructed Nanoporous Nickel with Epitaxial Phase. Small, 2021, 17, e2103136.	10.0	11
120	3D-printed solid-state electrolytes for electrochemical energy storage devices. Journal of Materials Research, 2021, 36, 4547-4564.	2.6	11
121	Preparation of binder-free three-dimensional N-doped carbon framework/nickel cobaltate composite for all-solid supercapacitor application. Applied Surface Science, 2021, 561, 149893.	6.1	11
122	All-3D-printed solid-state microsupercapacitors. Energy Storage Materials, 2021, 40, 1-9.	18.0	26
123	Self-standing graphitized hybrid Nanocarbon electrodes towards high-frequency supercapacitors. Carbon, 2021, 185, 630-640.	10.3	25
124	Scalable fabrication of vanadium carbide/graphene electrodes for high-energy and flexible microsupercapacitors. Carbon, 2021, 183, 840-849.	10.3	16
125	3D printable ink for double-electrical-layer-enhanced electrode of microsupercapaitors. Journal of Power Sources, 2021, 512, 230468.	7.8	3
126	Possibility of large-scale patterning of a printed circuit board to produce copper oxide nanowire all-solid-state micro-supercapacitors array with high specific capacity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115436.	3.5	3
127	Silicon nanowire-hydrogenated TiO2 core-shell arrays for stable electrochemical micro-capacitors. Electrochimica Acta, 2021, 396, 139198.	5.2	6
128	Ultra-high areal capacitance and high rate capability RuO2 thin film electrodes for 3D micro-supercapacitors. Energy Storage Materials, 2021, 42, 259-267.	18.0	41

#	ARTICLE Heterostructured NiSe2/CoSe2 hollow microspheres as battery-type cathode for hybrid	IF	CITATIONS
129	supercapacitors: Electrochemical kinetics and energy storage méchanism. Chemical Engineering Journal, 2021, 426, 131328.	12.7	109
130	Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. Nanoscale Advances, 2021, 3, 6271-6293.	4.6	27
131	A large-scale study of ionic liquids employed in chemistry and energy research to reveal cytotoxicity mechanisms and to develop a safe design guide. Green Chemistry, 2021, 23, 6414-6430.	9.0	22
132	Photo-powered integrated supercapacitors: a review on recent developments, challenges and future perspectives. Journal of Materials Chemistry A, 2021, 9, 8248-8278.	10.3	63
133	Additive manufacturing for functionalized nanomaterials breaks limits. , 2021, , 1-34.		5
134	Supercapacitor: Evolution and Potential in Energy-Related Applications. , 2021, , .		0
135	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	10.3	37
136	3Dâ€Printed Stretchable Microâ€Supercapacitor with Remarkable Areal Performance. Advanced Energy Materials, 2020, 10, 1903794.	19.5	177
137	Applications of Supercapacitors. Springer Series in Materials Science, 2020, , 463-481.	0.6	15
138	Journey from supercapacitors to supercapatteries: recent advancements in electrochemical energy storage systems. Emergent Materials, 2020, 3, 347-367.	5.7	59
139	Recent progress in aqueous based flexible energy storage devices. Energy Storage Materials, 2020, 30, 260-286.	18.0	87
140	Assessing the potential of LiPON-based electrical double layer microsupercapacitors for on-chip power storage. Journal of Power Sources, 2020, 451, 227786.	7.8	13
141	Novel insights into the charge storage mechanism in pseudocapacitive vanadium nitride thick films for high-performance on-chip micro-supercapacitors. Energy and Environmental Science, 2020, 13, 949-957.	30.8	78
142	Nearest Neighbor Gaussian Process Emulation for Multi-Dimensional Array Responses in Freeze Nano 3D Printing of Energy Devices. Journal of Computing and Information Science in Engineering, 2020, 20, .	2.7	8
143	Interfacial Engineering of Self-Supported SnO2Nanorod Arrays as Anode for Flexible Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 120515.	2.9	9
144	Free-standing carbon nanotube film for high efficiency monopole antenna. Carbon, 2022, 187, 22-28.	10.3	8
145	Materials under research: Nanomaterials, aerogels, biomaterials, composites, inks. , 2022, , 3-31.		0
146	Characterization of microsupercapacitors. , 2022. , 117-162.		Ο

#	Article	IF	CITATIONS
147	The role and the necessary features of electrolytes for microsupercapacitors. , 2022, , 47-116.		3
148	Carbon Nanotubes for Microsupercapacitors. , 2022, , 434-440.		0
149	Design and technology processes used for microsupercapacitors. , 2022, , 215-255.		0
150	Supercapacitors based on electrospun metal oxide nanofibers. , 2022, , 361-393.		2
151	Needle-like NiSχ@MnCoOχ core–shell nanoarrays with high charge storage performance for application in hybrid supercapacitors. Journal of Energy Storage, 2022, 47, 103563.	8.1	8
152	Laser-Induced Interdigital Structured Graphene Electrodes Based Flexible Micro-Supercapacitor for Efficient Peak Energy Storage. Molecules, 2022, 27, 329.	3.8	21
153	Ultrathick MoS ₂ Films with Exceptionally High Volumetric Capacitance. Advanced Energy Materials, 2022, 12, .	19.5	44
154	Wafer-Scale Fabrication and Encapsulation of Micro Supercapacitor. IEEE Electron Device Letters, 2022, 43, 474-477.	3.9	7
155	On-chip integration of bulk micromachined three-dimensional Si/C/CNT@TiC micro-supercapacitors for alternating current line filtering. RSC Advances, 2022, 12, 2048-2056.	3.6	3
156	Photopatternable Porous Separators for Microâ€Electrochemical Energy Storage Systems. Advanced Materials, 2022, 34, e2108792.	21.0	3
157	Tailored 3D Foams Decorated with Nanostructured Manganese Oxide for Asymmetric Electrochemical Capacitors. Journal of the Electrochemical Society, 2022, 169, 020511.	2.9	2
158	"One for two―strategy of fully integrated textile based supercapacitor powering an ultra-sensitive pressure sensor for wearable applications. Journal of Energy Storage, 2022, 48, 103994.	8.1	15
159	Emerging smart design of electrodes for microâ€ s upercapacitors: A review. SmartMat, 2022, 3, 447-473.	10.7	16
160	Thickness Effect of Yttria-Stabilized Zirconia as the Electrolyte in All-Solid-State Thin-Film Supercapacitor with a Wide Operating Temperature Range. SSRN Electronic Journal, 0, , .	0.4	0
161	Flexible solid-state hybrid supercapacitors for the internet of everything (IoE). Energy and Environmental Science, 2022, 15, 2233-2258.	30.8	76
162	3D LiMn ₂ O ₄ Thin Film Deposited by ALD: A Road toward High apacity Electrode for 3D Liâ€ion Microbatteries. Small, 2022, 18, e2107054.	10.0	10
163	A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors. Nano-Micro Letters, 2022, 14, 64.	27.0	65
164	Three-Dimensional TiO ₂ Film Deposited by ALD on Porous Metallic Scaffold for 3D Li-Ion Micro-Batteries: A Road towards Ultra-High Capacity Electrode. Journal of the Electrochemical Society 2022 169 040523	2.9	2

ARTICLE IF CITATIONS # A perspective on laser-induced graphene for micro-supercapacitor application. Applied Physics Letters, 3.3 19 166 2022, 120, . Ultrafast high-energy micro-supercapacitors based on open-shell polymer-graphene composites. Cell 5.6 Reports Physical Science, 2022, 3, 100792. On-demand solid-state artistic ultrahigh areal energy density microsupercapacitors. Energy Storage 168 18.0 3 Materials, 2022, 47, 569-578. Synthesis of three-dimensional boron carbon nitrogen/reduced grapheme oxide broccoli as electrode material for flexible micro-supercapacitors. Surfaces and Interfaces, 2022, 30, 101873. Recent progress in research on multifunctional graphitic carbon nitride: An emerging wonder 170 10.3 35 material beyond catalyst. Carbon, 2022, 192, 308-331. Controllable electrochemical activation of Mn3O4: Anion effect on phase transition, morphology and 171 5.2 capacitive performance. Electrochimica Acta, 2022, 416, 140281. Optimal surface/diffusion-controlled kinetics of bimetallic selenide nanotubes for hybrid 172 9.4 18 supercapacitors. Journal of Colloid and Interface Science, 2022, 617, 304-314. Improved solid interfacial kinetics and electrochemical performance for LiCoO2(110) textured 6.1 thin-film lithium batteries. Applied Surface Science, 2022, 591, 153174. Large-Pore Ordered Mesoporous Turbostratic Carbon Films Prepared Using Rapid Thermal Annealing 174 for High-Performance Micro-pseudocapacitors. ACS Applied Materials & amp; Interfaces, 2021, 13, 8.0 10 61027-61038. Ionic Liquid-Based Gels for Applications in Electrochemical Energy Storage and Conversion Devices: A 4.5 Review of Recent Progress and Future Prospects. Gels, 2022, 8, 2 Direct-ink writing 3D printed energy storage devices: From material selectivity, design and 176 14.2 66 optimization strategies to diverse applications. Materials Today, 2022, 54, 110-152. Direct ink writing of conductive materials for emerging energy storage systems. Nano Research, 2022, 10.4 15,6091-6111. 2.4 V ultrahigh-voltage aqueous MXene-based asymmetric micro-supercapacitors with high volumetric 178 3.3 13 energy density toward a self-sufficient integrated microsystem. Fundamental Research, 2024, 4, 307-314. On-Chip 3D Zn/NiOOH Helical Electrodes for High-Energy-Density Microbattery. ACS Applied Energy 179 5.1 Materials, 2022, 5, 6282-6290. Thickness effect of Yttria-Stabilized Zirconia as the electrolyte in all-solid-state thin-film 180 7.8 6 supercapacitor with a wide operating temperature range. Journal of Power Sources, 2022, 537, 231555. V2O5@RuO2 core–shell heterojunction nano-arrays as electrode material for supercapacitors. Chemical Engineering Journal, 2022, 446, 136922. Planar Microsupercapacitors Based on Oblique Angle Deposited Highly Porous TiN Thin Films. ACS 183 8.0 9 Applied Materials & amp; Interfaces, 2022, 14, 26162-26170. Engineering of Transition Metal Sulfide Nanostructures as Efficient Electrodes for High-Performance 184 5.1 Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6481-6498.

#	Article	IF	Citations
185	A carbon nanotube@silicon-based three-dimensional porous photo-supercapacitor for self-powered UV detection. Materials Today Energy, 2022, 28, 101054.	4.7	1
186	Solid-state 3D micro-supercapacitors based on ionogel electrolyte: Influence of adding lithium and sodium salts to the ionic liquid. Energy Storage Materials, 2022, 50, 606-617.	18.0	14
187	Multifunctional Co3O4/Ti3C2Tx MXene nanocomposites for integrated all solid-state asymmetric supercapacitors and energy-saving electrochemical systems of H2 production by urea and alcohols electrolysis. International Journal of Hydrogen Energy, 2022, 47, 22663-22679.	7.1	15
188	On-chip high-energy interdigital micro-supercapacitors with 3D nanotubular array electrodes. Journal of Materials Chemistry A, 2022, 10, 14051-14059.	10.3	13
189	Microsupercapacitive Stone Module for Natural Energy Storage. ACS Nano, 2022, 16, 11708-11719.	14.6	4
190	Ionic Transport and Charge Distribution in Miniaturized Electrochemical Energy Storage Devices byModeling Investigation. Journal of the Electrochemical Society, 0, , .	2.9	1
191	Highâ€Voltage Energy Harvesting and Storage System for Internet of Things Indoor Application. Solar Rrl, 2022, 6, .	5.8	6
192	Femtosecond laser induced one-step nanopatterning and preparation of rGO/RuO2 electrodes for high-performance micro-supercapacitors. Journal of Electroanalytical Chemistry, 2022, 919, 116501.	3.8	7
193	Ï€-Conjugated polymeric materials for cutting-edge electrochemical energy storage devices. , 2022, , 145-173.		0
194	Laserâ€Scribed Graphene–Polyaniline Microsupercapacitor for Internetâ€ofâ€Things Applications. Advanced Functional Materials, 2022, 32, .	14.9	27
195	Polymer-ion interactions in PVDF@ionic liquid polymer electrolytes: A combined experimental and computational study. Electrochimica Acta, 2022, 427, 140831.	5.2	9
196	Three-dimensional micro/nano-interconnected scaffold graphene-based micro-supercapacitors with high electrochemical performance. Electrochimica Acta, 2022, 427, 140864.	5.2	3
197	The applications of Internet of Things in the automotive industry: A review of the batteries, fuel cells, and engines. Internet of Things (Netherlands), 2022, 19, 100579.	7.7	25
198	Fabrication of Zn-Cu-Ni Ternary Oxides in Nanoarrays for Photo-Enhanced Pseudocapacitive Charge Storage. Nanomaterials, 2022, 12, 2457.	4.1	1
199	3D printed solid-state composite electrodes and electrolytes for high-energy-density flexible microsupercapacitors. Journal of Energy Storage, 2022, 53, 105206.	8.1	3
200	Micro-heat sink based on silicon nanowires formed by metal-assisted chemical etching for heat dissipation enhancement to improve performance of micro-thermoelectric generator. Energy Conversion and Management, 2022, 267, 115923.	9.2	5
201	Boosting the lifespan of magneto-mechano-electric generator via vertical installation for sustainable powering of Internet of Things sensor. Nano Energy, 2022, 101, 107567.	16.0	10
202	Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Materials, 2022, 51, 500-526.	18.0	58

#	Article	IF	CITATIONS
203	Current Collector-Free Interdigitated Nb2O5 // LiFePO4 Micro-Batteries Prepared by a Simple Laser-Writing Process. Journal of the Electrochemical Society, 0, , .	2.9	1
204	Femtosecond Laser Bessel Beam Fabrication of a Supercapacitor with a Nanoscale Electrode Gap for High Specific Volumetric Capacitance. ACS Applied Materials & Interfaces, 2022, 14, 39220-39229.	8.0	10
205	Photo-assisted charging of carbon fiber paper-supported CeO2/MnO2 heterojunction and its long-lasting capacitance enhancement in dark. Journal of Advanced Ceramics, 2022, 11, 1735-1750.	17.4	9
206	Spatial-Interleaving Graphene Supercapacitor with High Area Energy Density and Mechanical Flexibility. ACS Nano, 2022, 16, 12813-12821.	14.6	31
207	Zn–Co–S coatings with a rough and porous nano-dendrite structure for high-performance asymmetric supercapacitors without binder. Electrochimica Acta, 2022, 429, 141048.	5.2	5
208	Micro-electrochemical capacitors: Progress and future status. Journal of Energy Storage, 2022, 55, 105702.	8.1	7
209	Investigation of protic ionic liquid electrolytes for porous RuO2 micro-supercapacitors. Journal of Power Sources, 2022, 548, 232040.	7.8	13
210	Potential energy-assisted coupling of phase change materials with triboelectric nanogenerator enabling a thermally triggered, smart, and self-powered IoT thermal and fire hazard sensor: Design, fabrication, and applications. Nano Energy, 2022, 103, 107790.	16.0	8
211	Superhigh energy storage density on-chip capacitors with ferroelectric Hf _{0.5} Zr _{0.5} O ₂ /antiferroelectric Hf _{0.25} Zr _{0.75} O ₂ bilayer nanofilms fabricated by plasma-enhanced atomic layer deposition. Nanoscale Advances, 2022, 4, 4648-4657.	4.6	7
212	Microsized Electrochemical Energy Storage Devices and Their Fabrication Techniques For Portable Applications. Advanced Materials Technologies, 2023, 8, .	5.8	11
213	Significant Output Power Enhancement in Symmetric Dualâ€Mode Magnetoâ€Mechanoâ€Electric Coupled Resonators. Advanced Energy Materials, 2022, 12, .	19.5	11
214	Recent advance in two-dimensional MXenes: New horizons in flexible batteries and supercapacitors technologies. Energy Storage Materials, 2022, 53, 783-826.	18.0	23
215	Conformal atomic layer deposition of RuO _x on highly porous current collectors for micro-supercapacitor applications. Nanotechnology, 2022, 33, 495404.	2.6	2
216	Progress and prospects of graphene for in-plane micro-supercapacitors. New Carbon Materials, 2022, 37, 781-801.	6.1	5
217	The Role of Interfaces in Ionic Liquidâ€Based Hybrid Materials (Ionogels) for Sensing and Energy Applications. Advanced Materials Interfaces, 2022, 9, .	3.7	15
218	Liquid Metal-Templated Tin-Doped Tellurium Films for Flexible Asymmetric Pseudocapacitors. ACS Applied Materials & Interfaces, 2022, 14, 51519-51530.	8.0	4
219	All-solid-state, self-powered supercapacitors: State-of-the-art and future perspectives. Journal of Energy Storage, 2022, 56, 105882.	8.1	14
220	Biomimetic platinum forest enables 3D micro-supercapacitors with enhanced areal performance. Chemical Engineering Journal, 2023, 454, 140357.	12.7	10

#	Article	IF	CITATIONS
221	Advanced Three-Dimensional Microelectrode Architecture Design for High-Performance On-Chip Micro-Supercapacitors. ACS Nano, 2022, 16, 17593-17612.	14.6	25
222	Sputtered (Fe,Mn) ₃ O ₄ Spinel Oxide Thin Films for Micro-Supercapacitor. Journal of the Electrochemical Society, 2022, 169, 110524.	2.9	5
223	Fabrication, properties, and performance of graphene-based textile fabrics for supercapacitor applications: A review. Journal of Energy Storage, 2022, 56, 105988.	8.1	12
224	High-performance environmental adaptive microsupercapacitors from multifunctional hydrogel via modulating ionic hydration and hydrogen bonds. Energy Storage Materials, 2023, 55, 527-537.	18.0	7
225	Recent advances in polyaniline-based micro-supercapacitors. Materials Horizons, 2023, 10, 670-697.	12.2	13
226	Applications of MXenes in human-like sensors and actuators. Nano Research, 2023, 16, 5767-5795.	10.4	15
227	Energy Sustainability in Wireless Sensor Networks: An Analytical Survey. Journal of Low Power Electronics and Applications, 2022, 12, 65.	2.0	10
228	Wide temperature range- and damage-tolerant microsupercapacitors from salt-tolerant, anti-freezing and self-healing organohydrogel via dynamic bonds modulation. Journal of Energy Chemistry, 2023, 78, 283-293.	12.9	5
229	An unprecedented hybrid polyoxometalate based on niobium oligomers: A notable application as redox supercapacitor electrode. Chemical Engineering Journal, 2023, 455, 140511.	12.7	7
230	Inkjet Printing of MnO ₂ Nanoflowers on Surface-Modified A4 Paper for Flexible All-Solid-State Microsupercapacitors. ACS Applied Materials & Interfaces, 2023, 15, 3894-3903.	8.0	15
231	Major Improvement in the Cycling Ability of Pseudocapacitive Vanadium Nitride Films for Microâ€Supercapacitor. Advanced Energy Materials, 2023, 13, .	19.5	15
232	Recent advances in microsupercapacitors: material design, system construction, and applications. , 2023, , 559-584.		0
233	Configurationâ€dependent stretchable allâ€solidâ€state supercapacitors and hybrid supercapacitors. , 2023, 5, .		36
234	Metal–organic framework and MXene-based flexible supercapacitors. , 2023, , 299-324.		0
235	Recent advances and key opportunities on in-plane micro-supercapacitors: From functional microdevices to smart integrated microsystems. Journal of Energy Chemistry, 2023, 81, 410-431.	12.9	6
236	Hybrid multi-mode magneto-mechano-electric generator with enhanced magnetic field energy harvesting performance. Sensors and Actuators A: Physical, 2023, 352, 114194.	4.1	3
237	Passivation of macroporous Si using sputtered TiN coating for on-chip energy storage. Journal of Power Sources, 2023, 561, 232743.	7.8	1
238	Lowâ€Temperature Resistant Stretchable Microâ€Supercapacitor Based on 3D Printed Octetâ€Truss Design. Small, 2023, 19, .	10.0	2

#	Article	IF	CITATIONS
239	Semiconductor process fabrication of multiscale porous carbon thin films for energy storage devices. Energy Storage Materials, 2023, 57, 308-315.	18.0	4
240	Vertical-MXene based micro-supercapacitors with thickness-independent capacitance. Journal of Chemical Physics, 2023, 158, .	3.0	3
241	Nanostructured MnO ₂ Films for 3D Microâ€Supercapacitors: From New Insights of the Growth Mechanism to the Fine Tuning of Areal Capacitance Values. Journal of the Electrochemical Society, 2023, 170, 030530.	2.9	0
242	Review of the role of ionic liquids in two-dimensional materials. Frontiers of Physics, 2023, 18, .	5.0	1
243	Advances on Microsupercapacitors: Real Fast Miniaturized Devices toward Technological Dreams for Powering Embedded Electronics?. ACS Omega, 2023, 8, 8977-8990.	3.5	6
244	Ionogel electrolyte with dynamic metal-ligand interactions enabled self-healable supercapacitor with high energy density. Energy Storage Materials, 2023, 57, 549-556.	18.0	19
245	Direct ink writing of PEDOT:PSS inks for flexible micro-supercapacitors. Journal of Industrial and Engineering Chemistry, 2023, 123, 272-277.	5.8	2
246	A Graphene Oxide–Thioamide Polymer Hybrid for Highâ€Performance Supercapacitor Electrodes. Small Science, 2023, 3, .	9.9	5
247	A Dualâ€Function Microâ€Swissâ€Roll Device: Highâ€Power Supercapacitor and Biomolecule Probe. Advanced Materials Technologies, 2023, 8, .	5.8	1
248	Fully integrated design of a stretchable kirigami-inspired micro-sized zinc–sulfur battery. Journal of Materials Chemistry A, 2023, 11, 10788-10797.	10.3	5
249	Ultrasonically compactified thick MoS2 films with reduced nanosheet size for high performance compact energy storage. Journal of Power Sources, 2023, 571, 233060.	7.8	6
250	Alkaline Ni-Zn Microbattery Based on 3D Hierarchical Porous Ni Microcathode with High-Rate Performance. Micromachines, 2023, 14, 927.	2.9	0
251	Sustainable Approach for the Development of TiO2-Based 3D Electrodes for Microsupercapacitors. Batteries, 2023, 9, 258.	4.5	0
252	Interconnected Vanadyl Pyrophosphate Nanonetworks as a Flexible Electrode for High-Voltage and Long-Life Li-Ion Supercapacitors. ACS Applied Materials & Interfaces, 2023, 15, 25452-25461.	8.0	3
253	High Performance On-Chip Energy Storage Capacitors with Plasma-Enhanced Atomic Layer-Deposited Hf0.5Zr0.5O2/Al-Doped Hf0.25Zr0.75O2 Nanofilms as Dielectrics. Nanomaterials, 2023, 13, 1765.	4.1	1
254	An Electromagnetic-Piezoelectric Hybrid Harvester Based on Magnetic Circuit Switch for Vibration Energy Harvesting. IEEE Access, 2023, , 1-1.	4.2	0
255	Planar micro-supercapacitors toward high performance energy storage devices: design, application and prospects. Energy Advances, 2023, 2, 765-783.	3.3	6
256	3D Macroporous Frame Based Microbattery With Ultrahigh Capacity, Energy Density, and Integrability. Advanced Energy Materials, 2023, 13, .	19.5	4

ARTICLE IF CITATIONS # Ferroelectric Supercapacitors by Combining Polarization Switching and Negative Capacitance Effects 257 3.9 0 for On-Chip Energy Storage. IEEE Electron Device Letters, 2023, 44, 1579-1582. Rechargeable zinc-ammonium hybrid microbattery with ultrahigh energy and power density. Matter, 10.0 2023, 6, 3006-3020. Fully Printed, Highâ€Temperature Microâ€Supercapacitor Arrays Enabled by a Hexagonal Boron Nitride 259 21.0 6 Ionogel Electrolyte. Advanced Materials, 0, , . Small wind turbines and their potential for internet of things applications. IScience, 2023, 26, 107674. Substrate Versatile Roller Ball Pen Writing of Nanoporous MoS₂ for Energy Storage 261 8.0 2 Devices. ACS Applied Materials & amp; Interfaces, 2023, 15, 41447-41456. Fabrication of Fe–Fe_{1â^'<i>x</i>}O based 3D coplanar microsupercapacitors by electric discharge rusting of pure iron substrates. RSC Advances, 2023, 13, 26995-27005. 3.6 In-situ crosslinking of polysiloxane electrolyte within Al2O3@SiNWs for quasi-solid-state 263 5.2 0 micro-supercapacitors. Electrochimica Acta, 2023, 465, 142925. Decoration of laser induced graphene with MXene and manganese oxide for fabrication of a hybrid 264 5.2 supercapacitor. Electrochimica Acta, 2023, 468, 143163. Tailoring ion dynamics in energy storage conductors for ultra-stable, high-performance solid-state 265 12.7 1 microsupercapacitor array. Chemical Engineering Journal, 2023, 472, 144903. High-Performance Hybrid Triboelectric Generators Based on an Inversely Polarized Ultrahigh Î2-Phase 5.1 PVDF. ACS Applied Énergy Materials, 2023, 6, 9300-9306. Wafer-Scale Performance Mapping of Magnetron-Sputtered Ternary Vanadium Tungsten Nitride for 267 2 6.7 Microsupercapacitors. Chemistry of Materials, 2023, 35, 8654-8663. $\hat{a} \in$ ∞ Additive fabrication of fully-integrated high-performance millimeter-scale microsupercapacitors: Fine-tuning chemistry to maximize performancea∈™a∈™. Journal of Power Sources, 2023, 588, 233738. Powering the Future: Unleashing the Potential of MXeneâ€Based Dualâ€Functional Photoactive Cathodes 269 10.0 0 in Photoã€Rechargeable Zincâ€Ion Capacitor. Small, 0, , . Optimization of Laserâ \in nduced Graphene Electrodes for High Voltage and Highly Stable Microsupercapacitors. Advanced Materials Technologies, 2023, 8, . 270 5.8 Fabrication of Ni-Cr-FeOx ceramic supercapacitor electrodes and devices by one-step electric 271 0 8.1 discharge ablation. Journal of Energy Storage, 2023, 74, 109429. Aromatic polyaroxydiazole pseudocapacitive anode materials with tunable electrochemical performance through side group engineering. Journal of Materials Chemistry A, 2023, 12, 364-374. Recyclable liquid metal – Graphene supercapacitor. Chemical Engineering Journal, 2024, 479, 147894. 274 12.7 1 Picosecond ultraviolet laser patterned in-plane asymmetric micro-supercapacitors with high-precision capacity matching. Energy Storage Materials, 2024, 65, 103132.

#	Article	IF	CITATIONS
277	Oneâ€Meter‣ong, Allâ€3Dâ€Printed Supercapacitor Fibers Based on Structurally Engineered Electrode for Wearable Energy Storage. Advanced Energy Materials, 2024, 14, .	19.5	0
278	Stretchable Znâ€ion Hybrid Capacitor with Hydrogel Encapsulated 3D Interdigital Structure. Advanced Energy Materials, 2024, 14, .	19.5	Ο
279	A new frontier of flexible energy devices: Aqueous proton supercapacitors. Applied Physics Reviews, 2024, 11, .	11.3	0
280	Largeâ€Scale Production and Integrated Application of Microâ€Supercapacitors. Chemistry - A European Journal, 2024, 30, .	3.3	0
281	Nanoengineered micro-supercapacitors based on graphene nanowalls for self-powered wireless sensing system. Journal of Energy Storage, 2024, 81, 110446.	8.1	0
282	Shear exfoliation of DMSO intercalated Ti3C2Tx during 3D printing process and its performance as a supercapacitor at high and low temperatures. Ceramics International, 2024, 50, 11949-11955.	4.8	0
283	Control of microstructure and composition of reactively sputtered vanadium nitride thin films based on hysteresis curves and application to microsupercapacitors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2024, 42, .	2.1	0
284	Giant tridimensional power responses in a T-shaped magneto–mechano–electric energy harvester. Energy and Environmental Science, 2024, 17, 1426-1435.	30.8	0
285	1.8 V all-solid-state flexible asymmetric microsupercapacitors based on direct-writing electrodes. Nanoscale, 2024, 16, 4281-4288.	5.6	0
286	Recent progress of high-performance in-plane zinc ion hybrid micro-supercapacitors: design, achievements, and challenges. Nanoscale, 2024, 16, 4542-4562.	5.6	1
287	MXene-Based Micro-Supercapacitors: Ink Rheology, Microelectrode Design and Integrated System. ACS Nano, 2024, 18, 4651-4682.	14.6	0
288	Impact of Li, Na and Zn metal cation concentration in EMIM–TFSI ionic liquids on ion clustering, structure and dynamics. Physical Chemistry Chemical Physics, 2024, 26, 7049-7059.	2.8	0
289	Advancement in Supercapacitors for IoT Applications by Using Machine Learning: Current Trends and Future Technology. Sustainability, 2024, 16, 1516.	3.2	0
290	Three-dimensional multi-layer carbon tube electrodes for AC line-filtering capacitors. Joule, 2024, 8, 1080-1091.	24.0	0
291	Graphene coating-modified LiCoO2 films as high-performance cathode material in quasi-solid-state thin-film lithium batteries. Applied Surface Science, 2024, 657, 159769.	6.1	0
292	A Review on IoT Energy Storage with Nanocarbon Materials: Requirements, State-of-the-Art, Challenges, and Future Scope. Engineering Materials, 2024, , 41-69.	0.6	0
293	Nanofeather ruthenium nitride electrodes for electrochemical capacitors. Nature Materials, 2024, 23, 670-679.	27.5	0
294	Laser-directed energy deposition to achieve high-aspect-ratio micropillar arrays for 3D interdigitated microsupercapacitors. Energy Storage Materials, 2024, 67, 103312.	18.0	0

#	Article	IF	CITATIONS
295	Deformable micro-supercapacitor fabricated via laser ablation patterning of Graphene/liquid metal. Npj Flexible Electronics, 2024, 8, .	10.7	0
296	Scalable preparationÂof 3D microporous interconnected Polyaniline/Hydrothermally Treated Graphite disk: a facile and low-cost option for supercapacitors. Journal of Applied Electrochemistry, 0, , .	2.9	0
297	Multidimensional Nanostructural Engineering of MXene-Based Composite Films for High-Performance Supercapacitors. Energy & Fuels, 2024, 38, 5493-5505.	5.1	0