Hydrogel bioelectronics

Chemical Society Reviews 48, 1642-1667 DOI: 10.1039/c8cs00595h

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	One-Step Preparation of a Highly Stretchable, Conductive, and Transparent Poly(vinyl alcohol)–Phytic Acid Hydrogel for Casual Writing Circuits. ACS Applied Materials & Interfaces, 2019, 11, 32441-32448.	4.0	106
2	Mechanical Strengths of Hydrogels of Poly(<i>N</i> , <i>N</i> â€Dimethylacrylamide)/Alginate with IPN and of Poly(<i>N</i> , <i>N</i> â€Dimethylacrylamide)/Chitosan with Semiâ€IPN Microstructures. Macromolecular Materials and Engineering, 2019, 304, 1900309.	1.7	7
3	Modularized Field-Effect Transistor Biosensors. Nano Letters, 2019, 19, 6658-6664.	4.5	38
4	Highly Photostable and Two-Photon Active Quantum Dot–Polymer Multicolor Hybrid Coacervate Droplets. Langmuir, 2019, 35, 11764-11773.	1.6	8
5	An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels. Advanced Materials, 2019, 31, e1902869.	11.1	139
6	Ultrastretchable and Wireless Bioelectronics Based on Allâ€Hydrogel Microfluidics. Advanced Materials, 2019, 31, e1902783.	11.1	118
7	Polyelectrolyte and Antipolyelectrolyte Effects for Dual Salt-Responsive Interpenetrating Network Hydrogels. Biomacromolecules, 2019, 20, 3524-3534.	2.6	42
8	Biomimetic Extremeâ€Temperature―and Environmentâ€Adaptable Hydrogels. ChemPhysChem, 2019, 20, 2139-2154.	1.0	86
9	Photoâ€Driven Ion Transport for a Photodetector Based on an Asymmetric Carbon Nitride Nanotube Membrane. Angewandte Chemie - International Edition, 2019, 58, 12574-12579.	7.2	75
10	Photoâ€Driven Ion Transport for a Photodetector Based on an Asymmetric Carbon Nitride Nanotube Membrane. Angewandte Chemie, 2019, 131, 12704-12709.	1.6	8
11	Diffusion-determined assembly of all-climate supercapacitors <i>via</i> bioinspired aligned gels. Journal of Materials Chemistry A, 2019, 7, 19753-19760.	5.2	25
12	A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nature Communications, 2019, 10, 3429.	5.8	297
13	Molecular Staples for Tough and Stretchable Adhesion in Integrated Soft Materials. Advanced Healthcare Materials, 2019, 8, e1900810.	3.9	20
14	Soft medical microrobots: Design components and system integration. Applied Physics Reviews, 2019, 6, 041305.	5.5	40
15	Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	11.1	936
16	PANI-CNT nanocomposites. , 2019, , 143-163.		9
17	Recent Progress in Wireless Sensors for Wearable Electronics. Sensors, 2019, 19, 4353.	2.1	99
18	Highly Stretchable, Adhesive, and Mechanical Zwitterionic Nanocomposite Hydrogel Biomimetic Skin. ACS Applied Materials & Interfaces, 2019, 11, 40620-40628.	4.0	120

#	Article	IF	CITATIONS
19	3D Fluorescent Hydrogel Origami for Multistage Data Security Protection. Advanced Functional Materials, 2019, 29, 1905514.	7.8	145
20	Facile synthesis of malachite green incorporated conducting polymers: A comparison of theoretical and experimental studies. Synthetic Metals, 2019, 257, 116184.	2.1	9
21	Bioinspired Dynamic Cross-Linking Hydrogel Sensors with Skin-like Strain and Pressure Sensing Behaviors. Chemistry of Materials, 2019, 31, 9522-9531.	3.2	195
22	Multiresponsive and Self-Healing Hydrogel via Formation of Polymer–Nanogel Interfacial Dynamic Benzoxaborole Esters at Physiological pH. ACS Applied Materials & Interfaces, 2019, 11, 44742-44750.	4.0	35
23	Dry double-sided tape for adhesion of wet tissues and devices. Nature, 2019, 575, 169-174.	13.7	798
24	Properties of conductive polymer hydrogels and their application in sensors. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1606-1621.	2.4	71
25	Recent advances in supramolecular hydrogels for biomedical applications. Materials Today Advances, 2019, 3, 100021.	2.5	93
26	Stretchable Polymer Composite with a 3D Segregated Structure of PEDOT:PSS for Multifunctional Touchless Sensing. ACS Applied Materials & amp; Interfaces, 2019, 11, 45301-45309.	4.0	47
27	The Rise of Bioinspired Ionotronics. Advanced Intelligent Systems, 2019, 1, 1900073.	3.3	43
28	Bioinspired Synergistic Fluorescenceâ€Colorâ€Switchable Polymeric Hydrogel Actuators. Angewandte Chemie, 2019, 131, 16389-16397.	1.6	42
29	PEDOT-Based Conducting Polymer Actuators. Frontiers in Robotics and AI, 2019, 6, 114.	2.0	89
30	Bioinspired Synergistic Fluorescence olorâ€6witchable Polymeric Hydrogel Actuators. Angewandte Chemie - International Edition, 2019, 58, 16243-16251.	7.2	212
31	Semicrystalline Conductive Hydrogels for High-Energy and Stable Flexible Supercapacitors. ACS Applied Energy Materials, 2019, 2, 8163-8172.	2.5	25
32	Gelatin-hydrogel based organic synaptic transistor. Organic Electronics, 2019, 75, 105409.	1.4	36
33	A wet adhesion strategy <i>via</i> synergistic cation–π and hydrogen bonding interactions of antifouling zwitterions and mussel-inspired binding moieties. Journal of Materials Chemistry A, 2019, 7, 21944-21952.	5.2	66
34	Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing. ACS Applied Materials & Interfaces, 2019, 11, 37147-37155.	4.0	81
35	Numerical Simulation of Electroactive Hydrogels for Cartilage–Tissue Engineering. Materials, 2019, 12, 2913.	1.3	10
36	Fabrication of agarose hydrogel with patterned silver nanowires for motion sensor. Bio-Design and Manufacturing, 2019, 2, 269-277.	3.9	27

#	Article	IF	CITATIONS
37	Electroconductive PEDOT:PSS-based hydrogel prepared by freezing-thawing method. Heliyon, 2019, 5, e02498.	1.4	27
38	Probing Surface Hydration and Molecular Structure of Zwitterionic and Polyacrylamide Hydrogels. Langmuir, 2019, 35, 13292-13300.	1.6	25
39	Carbon nanotube, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and Ag nanoparticle doped gelatin based electro-active hydrogel systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123751.	2.3	14
40	Ingestible hydrogel device. Nature Communications, 2019, 10, 493.	5.8	168
41	Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors. ACS Applied Materials & Interfaces, 2019, 11, 7755-7763.	4.0	264
42	Voltaglue Electroceutical Adhesive Patches for Localized Voltage Stimulation. ACS Applied Bio Materials, 2019, 2, 2633-2642.	2.3	16
43	Skin-Inspired Surface-Microstructured Tough Hydrogel Electrolytes for Stretchable Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 21895-21903.	4.0	80
44	Stretchable, Injectable, and Self-Healing Conductive Hydrogel Enabled by Multiple Hydrogen Bonding toward Wearable Electronics. Chemistry of Materials, 2019, 31, 4553-4563.	3.2	321
45	Cell-based biosensors: Recent trends, challenges and future perspectives. Biosensors and Bioelectronics, 2019, 141, 111435.	5.3	194
46	Conductive Tough Hydrogels with a Staggered Ion-Coordinating Structure for High Self-Recovery Rate. ACS Applied Materials & Interfaces, 2019, 11, 24598-24608.	4.0	55
47	Gas-Permeable, Irritation-Free, Transparent Hydrogel Contact Lens Devices with Metal-Coated Nanofiber Mesh for Eye Interfacing. ACS Nano, 2019, 13, 7920-7929.	7.3	59
48	Electroconductive hydrogels for biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1568.	3.3	52
49	Covalent Topological Adhesion. ACS Macro Letters, 2019, 8, 754-758.	2.3	65
50	Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chemical Science, 2019, 10, 6232-6244.	3.7	139
51	Design Molecular Topology for Wet–Dry Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 24802-24811.	4.0	76
52	Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Tissue Engineering - Part B: Reviews, 2019, 25, 398-411.	2.5	65
53	Muscle-like fatigue-resistant hydrogels by mechanical training. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10244-10249.	3.3	318
54	Sustainable Electro-Responsive Semi-Interpenetrating Starch/Ionic Liquid Copolymer Networks for the Controlled Sorption/Release of Biomolecules. ACS Sustainable Chemistry and Engineering, 2019, 7, 10516-10532.	3.2	10

#	Article	IF	CITATIONS
55	Nanostructured electrically conductive hydrogels obtained <i>via</i> ultrafast laser processing and self-assembly. Nanoscale, 2019, 11, 9176-9184.	2.8	31
56	Development of Adhesive and Conductive Resilin-Based Hydrogels for Wearable Sensors. Biomacromolecules, 2019, 20, 3283-3293.	2.6	64
57	Anisotropic tough multilayer hydrogels with programmable orientation. Materials Horizons, 2019, 6, 1504-1511.	6.4	106
58	Mussel-Inspired Nanocomposite Hydrogel-Based Electrodes with Reusable and Injectable Properties for Human Electrophysiological Signals Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 7918-7925.	3.2	83
59	Pure PEDOT:PSS hydrogels. Nature Communications, 2019, 10, 1043.	5.8	528
60	Highly fluorescent triazolopyridine–thiophene D–A–D oligomers for efficient pH sensing both in solution and in the solid state. Physical Chemistry Chemical Physics, 2019, 21, 7174-7182.	1.3	26
61	A Versatile Approach for Direct Patterning of Liquid Metal Using Magnetic Field. Advanced Functional Materials, 2019, 29, 1901370.	7.8	123
62	Interesting core–shell structure and "V-shape―shift: The property and formation mechanism of structural heterogeneity in cellulose hydrogel. Carbohydrate Polymers, 2019, 217, 110-115.	5.1	5
63	Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT:sulfonated lignin as conductive materials. Chemical Engineering Journal, 2019, 370, 1039-1047.	6.6	230
64	Electrochromic iontronic devices based on nanoscale cell membrane-inspired hydrated ion channels in Nafion solid polyelectrolyte. Europhysics Letters, 2019, 128, 68001.	0.7	1
65	Visual Evoked Potentials Used to Evaluate a Commercially Available Superabsorbent Polymer as a Cheap and Efficient Material for Preparation-Free Electrodes for Recording Electrical Potentials of the Human Visual Cortex. Sensors, 2019, 19, 4890.	2.1	1
66	Adhesive, Transparent Tannic Acid@ Sulfonated Lignin-PAM Ionic Conductive Hydrogel Electrode with Anti-UV, Antibacterial and Mild Antioxidant Function. Materials, 2019, 12, 4135.	1.3	18
67	Ionic–Covalent Hybrid Tough Hydrogels Enabled by the in Situ Release of Metal Ions from Insoluble Salts or Alkalis. ACS Applied Polymer Materials, 2019, 1, 3222-3226.	2.0	10
68	Development of improved dual-diazonium reagents for faster crosslinking of tobacco mosaic virus to form hydrogels. RSC Advances, 2019, 9, 29070-29077.	1.7	4
69	Fatigue of hydrogels. European Journal of Mechanics, A/Solids, 2019, 74, 337-370.	2.1	206
70	Flexible Hybrid Electronics for Digital Healthcare. Advanced Materials, 2020, 32, e1902062.	11.1	345
71	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	7.8	507
72	Progress on intelligent hydrogels based on RAFT polymerization: Design strategy, fabrication and the applications for controlled drug delivery. Chinese Chemical Letters, 2020, 31, 19-27.	4.8	49

# 73	ARTICLE Stretchable and fatigue-resistant materials. Materials Today, 2020, 34, 7-16.	IF 8.3	CITATIONS
74	Ionic Tactile Sensors for Emerging Humanâ€Interactive Technologies: A Review of Recent Progress. Advanced Functional Materials, 2020, 30, 1904532.	7.8	122
75	Structural Design and Applications of Stereoregular Fused Thiophenes and Their Oligomers and Polymers. Polymer Reviews, 2020, 60, 318-358.	5.3	27
76	Interfacial modification for heightening the interaction between PEDOT and substrate towards enhanced flexible solid supercapacitor performance. Chemical Engineering Journal, 2020, 379, 122326.	6.6	52
77	A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties. Chemical Engineering Journal, 2020, 379, 122271.	6.6	171
78	Ferromagnetic xyloglucan–Fe3O4 green nanocomposites: sonochemical synthesis, characterization and application in removal of methylene blue from water. Environmental Sustainability, 2020, 3, 15-22.	1.4	6
79	Roomâ€Temperatureâ€Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics. Advanced Materials, 2020, 32, e1904752.	11.1	158
80	Pros and Cons: Supramolecular or Macromolecular: What Is Best for Functional Hydrogels with Advanced Properties?. Advanced Materials, 2020, 32, e1906012.	11.1	78
81	Gamma Ray-Induced Polymerization and Cross-Linking for Optimization of PPy/PVP Hydrogel as Biomaterial. Polymers, 2020, 12, 111.	2.0	38
82	Ultrasoundâ€Triggered Enzymatic Gelation. Advanced Materials, 2020, 32, e1905914.	11.1	38
83	Soft ionic devices by perfusable all-hydrogel microfluidics. Journal of Materials Chemistry C, 2020, 8, 2320-2325.	2.7	5
84	Customization of Conductive Elastomer Based on PVA/PEI for Stretchable Sensors. Small, 2020, 16, e1904758.	5.2	107
85	Fully physically cross-linked double network hydrogels with strong mechanical properties, good recovery and self-healing properties. Soft Matter, 2020, 16, 1840-1849.	1.2	23
86	Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Materials Horizons, 2020, 7, 919-927.	6.4	289
87	Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Materials Horizons, 2020, 7, 912-918.	6.4	248
88	Tough hydrogel module towards an implantable remote and controlled release device. Biomaterials Science, 2020, 8, 960-972.	2.6	19
89	Human-tissue-inspired anti-fatigue-fracture hydrogel for a sensitive wide-range human–machine interface. Journal of Materials Chemistry A, 2020, 8, 2074-2082.	5.2	94
90	Photoâ€Crosslinking Strategy Constructs Adhesive, Superabsorbent, and Tough PVAâ€Based Hydrogel through Controlling the Balance of Cohesion and Adhesion. Macromolecular Materials and Engineering, 2020, 305, 1900623.	1.7	27

#	Article	IF	CITATIONS
91	Recent advances in tough and self-healing nanocomposite hydrogels for shape morphing and soft actuators. European Polymer Journal, 2020, 124, 109448.	2.6	32
92	Nanocomposite Grafted Stretchable and Conductive Ionic Hydrogels for Use as Soft Electrode in a Wearable Electrocardiogram Monitoring Device. ACS Applied Polymer Materials, 2020, 2, 618-625.	2.0	30
93	Graphene Oxideâ€Templated Conductive and Redoxâ€Active Nanosheets Incorporated Hydrogels for Adhesive Bioelectronics. Advanced Functional Materials, 2020, 30, 1907678.	7.8	225
94	Highâ€Resolution Patterning of Liquid Metal on Hydrogel for Flexible, Stretchable, and Selfâ€Healing Electronics. Advanced Electronic Materials, 2020, 6, 1900721.	2.6	76
95	A novel folic acid hydrogel loading β-cyclodextrin/camptothecin inclusion complex with effective antitumor activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 169-179.	0.9	6
96	Emerging intraoral biosensors. Journal of Materials Chemistry B, 2020, 8, 3341-3356.	2.9	11
97	Hollow Polyaniline Microsphere Functionalized Paper with Multimodal Sensitivity to Strain, Humidity, and Pressure. ACS Applied Electronic Materials, 2020, 2, 247-253.	2.0	6
98	Th4+ tuned aggregation-induced emission: A novel strategy for sequential ultrasensitive detection and separation of Th4+ and Hg2+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117926.	2.0	13
99	Characterization of elastic, thermo-responsive, self-healable supramolecular hydrogel made of self-assembly peptides and guar gum. Materials and Design, 2020, 186, 108370.	3.3	38
100	Transcranial Electrical Stimulation and Recording of Brain Activity using Freestanding Plantâ€Based Conducting Polymer Hydrogel Composites. Advanced Materials Technologies, 2020, 5, 1900652.	3.0	22
101	Emerging Soft Conductors for Bioelectronic Interfaces. Advanced Functional Materials, 2020, 30, 1907184.	7.8	70
102	Wrinkled double network hydrogel <i>via</i> simple stretch-recovery. Chemical Communications, 2020, 56, 13587-13590.	2.2	12
103	Contact Modulated Ionic Transfer Doping in Allâ€Solidâ€State Organic Electrochemical Transistor for Ultraâ€High Sensitive Tactile Perception at Low Operating Voltage. Advanced Functional Materials, 2020, 30, 2006186.	7.8	42
104	Recent development of implantable and flexible nerve electrodes. Smart Materials in Medicine, 2020, 1, 131-147.	3.7	61
105	Bioinspired tissue-compliant hydrogels with multifunctions for synergistic surgery–photothermal therapy. Journal of Materials Chemistry B, 2020, 8, 10117-10125.	2.9	8
106	Self-Adherent Biodegradable Gelatin-Based Hydrogel Electrodes for Electrocardiography Monitoring. Sensors, 2020, 20, 5737.	2.1	19
107	Stress Relaxation and Underlying Structure Evolution in Tough and Self-Healing Hydrogels. ACS Macro Letters, 2020, 9, 1582-1589.	2.3	31
108	Superior mechanical and optical properties of a heterogeneous library of cross-linked biomimetic self-assembling peptides. Materials and Design, 2020, 194, 108901.	3.3	9

#	ARTICLE	IF	CITATIONS
109	Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions. Journal of Materials Chemistry B, 2020, 8, 10549-10558.	2.9	31
110	Organic Bioelectronics: Using Highly Conjugated Polymers to Interface with Biomolecules, Cells, and Tissues in the Human Body. Advanced Materials Technologies, 2020, 5, 2000384.	3.0	38
111	Biocompatible hydrogel ostomy adhesive. Medical Devices & Sensors, 2020, 3, e10132.	2.7	4
112	Mechanical properties of temperature-responsive gels containing ethylene glycol in their side chains. Soft Matter, 2020, 16, 10946-10953.	1.2	8
113	Antibacterial Zwitterionic Polyelectrolyte Hydrogel Adhesives with Adhesion Strength Mediated by Electrostatic Mismatch. ACS Applied Materials & Interfaces, 2020, 12, 46816-46826.	4.0	77
114	Conductive Hydrogel for a Photothermal-Responsive Stretchable Artificial Nerve and Coalescing with a Damaged Peripheral Nerve. ACS Nano, 2020, 14, 16565-16575.	7.3	77
115	Visible-light-assisted multimechanism design for one-step engineering tough hydrogels in seconds. Nature Communications, 2020, 11, 4694.	5.8	56
116	Multiscale engineering of functional organic polymer interfaces for neuronal stimulation and recording. Materials Chemistry Frontiers, 2020, 4, 3444-3471.	3.2	6
117	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	18.7	54
118	Ionic spiderwebs. Science Robotics, 2020, 5, .	9.9	38
119	Caudicles in vandoid orchids: A carotenoid-based soft material with unique properties. Acta Biomaterialia, 2020, 113, 478-487.	4.1	2
120	Pristine Titanium Carbide MXene Hydrogel Matrix. ACS Nano, 2020, 14, 10471-10479.	7.3	87
121	Nanostructured conducting polymers and their composites: synthesis methodologies, morphologies and applications. Journal of Materials Chemistry C, 2020, 8, 10136-10159.	2.7	53
122	Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezingâ€Tolerant Ionic Conductive Organohydrogel for Multiâ€Functional Sensors. Advanced Functional Materials, 2020, 30, 2003430.	7.8	477
123	Muscle-like Ultratough Hybrid Hydrogel Constructed by Heterogeneous Inorganic Polymerization on an Organic Network. ACS Applied Materials & amp; Interfaces, 2020, 12, 54212-54221.	4.0	25
124	Design and analysis of 2D/3D negative hydration expansion Metamaterial driven by hydrogel. Materials and Design, 2020, 196, 109084.	3.3	22
125	Advances in Soft Bioelectronics for Brain Research and Clinical Neuroengineering. Matter, 2020, 3, 1923-1947.	5.0	48
126	Engineering Kinetics-Favorable Carbon Sheets with an Intrinsic Network for a Superior Supercapacitor Containing a Dual Cross-linked Hydrogel Electrolyte. ACS Applied Materials & Interfaces 2020 12 53164-53173	4.0	23

#	Article	IF	CITATIONS
127	Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Acta Biomaterialia, 2022, 139, 91-104.	4.1	56
128	A Review of the Use of GPEs in Zinc-Based Batteries. A Step Closer to Wearable Electronic Gadgets and Smart Textiles. Polymers, 2020, 12, 2812.	2.0	33
129	Tough Gel-Fibers as Strain Sensors Based on Strain–Optics Conversion Induced by Anisotropic Structural Evolution. Chemistry of Materials, 2020, 32, 9675-9687.	3.2	24
130	Design Strategies of Conductive Hydrogel for Biomedical Applications. Molecules, 2020, 25, 5296.	1.7	69
131	A Compliant Ionic Adhesive Electrode with Ultralow Bioelectronic Impedance. Advanced Materials, 2020, 32, e2003723.	11.1	86
132	Hydrogel soft robotics. Materials Today Physics, 2020, 15, 100258.	2.9	216
133	Design of twisted conjugated molecular systems towards stable multi-colored electrochromic polymers. Dyes and Pigments, 2020, 183, 108648.	2.0	16
134	Selfâ€healing Polyol/Borax Hydrogels: Fabrications, Properties and Applications. Chemical Record, 2020, 20, 1142-1162.	2.9	35
135	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
136	An L012@PAni-PAAm hydrogel composite based-electrochemiluminescence biosensor for in situ detection of H2O2 released from cardiomyocytes. Electrochimica Acta, 2020, 354, 136763.	2.6	28
137	Topological adhesion II. Stretchable adhesion. Extreme Mechanics Letters, 2020, 40, 100891.	2.0	25
138	Effects of conductivity-enhancement reagents on self-healing properties of PEDOT:PSS films. Synthetic Metals, 2020, 268, 116503.	2.1	14
139	An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. Journal of Materials Chemistry A, 2020, 8, 17498-17506.	5.2	53
140	Vertical nanowire array-based biosensors: device design strategies and biomedical applications. Journal of Materials Chemistry B, 2020, 8, 7609-7632.	2.9	21
141	A constitutive model for multi network elastomers pre-stretched by swelling. Extreme Mechanics Letters, 2020, 40, 100926.	2.0	21
142	Highly Conductive, Stretchable, Adhesive, and Selfâ€Healing Polymer Hydrogels for Strain and Pressure Sensor. Macromolecular Materials and Engineering, 2020, 305, 2000479.	1.7	21
143	Eco-friendly Carboxymethyl Cellulose Nanofiber Hydrogels Prepared via Freeze Cross-Linking and Their Applications. ACS Applied Polymer Materials, 2020, 2, 5482-5491.	2.0	41
144	Device Based on Polymer Schottky Junctions and Their Applications: A Review. IEEE Access, 2020, 8, 189646-189660.	2.6	9

#	Article	IF	CITATIONS
145	Interfacial Electrofabrication of Freestanding Biopolymer Membranes with Distal Electrodes. Langmuir, 2020, 36, 11034-11043.	1.6	9
146	Electroconductive Hydrogels for Tissue Engineering: Current Status and Future Perspectives. Bioelectricity, 2020, 2, 279-292.	0.6	31
147	Electron and X-ray Focused Beam-Induced Cross-Linking in Liquids: Toward Rapid Continuous 3D Nanoprinting and Interfacing using Soft Materials. ACS Nano, 2020, 14, 12982-12992.	7.3	16
148	Engineering hydrogels by soaking: from mechanical strengthening to environmental adaptation. Chemical Communications, 2020, 56, 13731-13747.	2.2	30
149	Machine Learningâ€Driven Bioelectronics for Closed‣oop Control of Cells. Advanced Intelligent Systems, 2020, 2, 2000140.	3.3	29
150	Conducting polymer hydrogels for electrically responsive drug delivery. Journal of Controlled Release, 2020, 328, 192-209.	4.8	67
151	Nondrying, Sticky Hydrogels for the Next Generation of High-Resolution Conformable Bioelectronics. ACS Applied Electronic Materials, 2020, 2, 3390-3401.	2.0	23
152	Totally transparent hydrogel-based subdural electrode with patterned salt bridge. Biomedical Microdevices, 2020, 22, 57.	1.4	9
153	Functional Conductive Hydrogels for Bioelectronics. , 2020, 2, 1287-1301.		193
154	Solvent-Resistant and Nonswellable Hydrogel Conductor toward Mechanical Perception in Diverse Liquid Media. ACS Nano, 2020, 14, 13709-13717.	7.3	128
155	Bioelectronic control of chloride ions and concentration with Ag/AgCl contacts. APL Materials, 2020, 8, .	2.2	18
156	MXene hydrogels: fundamentals and applications. Chemical Society Reviews, 2020, 49, 7229-7251.	18.7	368
157	Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications. National Science Review, 2021, 8, nwaa209.	4.6	36
158	A one-step aqueous route to prepare polyacrylonitrile-based hydrogels with excellent ionic conductivity and extreme low temperature tolerance. Journal of Materials Chemistry A, 2020, 8, 22090-22099.	5.2	40
159	Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables. Advanced Functional Materials, 2020, 30, 2003601.	7.8	112
160	A Review of Conductive Hydrogel Used in Flexible Strain Sensor. Materials, 2020, 13, 3947.	1.3	121
161	Highly stretchable supramolecular conductive self-healable gels for injectable adhesive and flexible sensor applications. Journal of Materials Chemistry A, 2020, 8, 19954-19964.	5.2	52
162	Organic electronics for neuroprosthetics. Healthcare Technology Letters, 2020, 7, 52-57.	1.9	10

#	Article	IF	CITATIONS
163	Recent Advances in Biomolecule–Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications. Materials, 2020, 13, 3520.	1.3	3
164	Stimuli-responsive functional materials for soft robotics. Journal of Materials Chemistry B, 2020, 8, 8972-8991.	2.9	118
165	A Hydrogel-Based Ultrasonic Backscattering Wireless Biochemical Sensing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 596370.	2.0	6
166	Stretchable, Healable, and Degradable Soft Ionic Microdevices Based on Multifunctional Soaking-Toughened Dual-Dynamic-Network Organohydrogel Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 56393-56402.	4.0	47
167	Stretchable, Stable, and Room-Temperature Gas Sensors Based on Self-Healing and Transparent Organohydrogels. ACS Applied Materials & Interfaces, 2020, 12, 52070-52081.	4.0	57
168	A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. Journal of Materials Chemistry B, 2020, 8, 11010-11020.	2.9	66
169	Interface Deformable, Thermally Sensitive Hydrogel–Elastomer Hybrid Fiber for Versatile Underwater Sensing. Advanced Materials Technologies, 2020, 5, 2000515.	3.0	16
170	Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors. Journal of Materials Chemistry A, 2020, 8, 24718-24733.	5.2	128
171	The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Materials Today, 2020, 41, 219-242.	8.3	125
172	Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 51969-51977.	4.0	79
173	Freezing-Tolerant, Highly Sensitive Strain and Pressure Sensors Assembled from Ionic Conductive Hydrogels with Dynamic Cross-Links. ACS Applied Materials & Interfaces, 2020, 12, 25334-25344.	4.0	189
174	Integrated multifunctional flexible electronics based on tough supramolecular hydrogels with patterned silver nanowires. Journal of Materials Chemistry C, 2020, 8, 7688-7697.	2.7	32
175	Orthogonally Regulated Mechanical Strength and Molecular Delivery Capabilities Achieved in a Double Network Hydrogel Matrix. ChemistrySelect, 2020, 5, 5781-5787.	0.7	3
176	Synthesis and Characterization of Anionic Poly(cyclopentadienylene vinylene) and Its Use in Conductive Hydrogels. Angewandte Chemie - International Edition, 2020, 59, 13430-13436.	7.2	3
177	Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures. Nature Communications, 2020, 11, 2183.	5.8	47
178	Mussel-inspired hydrogels: from design principles to promising applications. Chemical Society Reviews, 2020, 49, 3605-3637.	18.7	346
179	Modeling the mechanics, kinetics, and network evolution of photopolymerized hydrogels. Journal of the Mechanics and Physics of Solids, 2020, 142, 104041.	2.3	9
180	Electrophoretic Adhesion of Conductive Hydrogels. Macromolecular Rapid Communications, 2020, 41, 2000169.	2.0	8

#	ARTICLE Biocompatible pH-Responsive Luminescent Coacervate Nanodroplets from Carbon Dots and	IF	CITATIONS
181	Poly(diallyldimethylammonium chloride) toward Theranostic Applications. ACS Applied Nano Materials, 2020, 3, 5826-5837.	2.4	14
182	Multiple-responsive supramolecular vesicle based on azobenzene–cyclodextrin host–guest interaction. RSC Advances, 2020, 10, 18572-18580.	1.7	5
183	Performance characterization of ionic-hydrogel based strain sensors. Science China Technological Sciences, 2020, 63, 923-930.	2.0	12
184	4D Printing of Hydrogels: A Review. Advanced Functional Materials, 2020, 30, 1910606.	7.8	224
185	Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. Journal of Materials Chemistry B, 2020, 8, 6624-6666.	2.9	41
186	Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14667-14675.	3.3	48
187	Eumelanin Precursor 2-Carboxy-5,6-Dihydroxyindole (DHICA) as Doping Factor in Ternary (PEDOT:PSS/Eumelanin) Thin Films for Conductivity Enhancement. Materials, 2020, 13, 2108.	1.3	6
188	Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking. Carbohydrate Polymers, 2020, 246, 116586.	5.1	51
189	Liquid metal enabled injectable biomedical technologies and applications. Applied Materials Today, 2020, 20, 100722.	2.3	49
190	Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polymer Chemistry, 2020, 11, 4355-4381.	1.9	32
191	Materials and manufacturing strategies for mechanically transformative electronics. Materials Today Advances, 2020, 7, 100089.	2.5	15
192	Solution-processable, hypercrosslinked polymer via post-crosslinking for electrochromic supercapacitor with outstanding electrochemical stability. Solar Energy Materials and Solar Cells, 2020, 215, 110661.	3.0	28
193	Biocompatible In Situ Polymerization of Multipurpose Polyacrylamide-Based Hydrogels on Skin via Silver Ion Catalyzation. ACS Applied Materials & Interfaces, 2020, 12, 31079-31089.	4.0	36
194	Dynamic wrinkling of a hydrogel–elastomer hybrid microtube enables blood vessel-like hydraulic pressure sensing and flow regulation. Materials Horizons, 2020, 7, 2150-2157.	6.4	30
195	Bioinspired Ionic Sensory Systems: The Successor of Electronics. Advanced Materials, 2020, 32, e2000218.	11.1	99
196	Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. Advanced Functional Materials, 2020, 30, 2000639.	7.8	51
197	Fatigue-resistant adhesion I. Long-chain polymers as elastic dissipaters. Extreme Mechanics Letters, 2020, 39, 100813.	2.0	29
198	A Solvent Co-cross-linked Organogel with Fast Self-Healing Capability and Reversible Adhesiveness at Extreme Temperatures. ACS Applied Materials & Interfaces, 2020, 12, 29757-29766.	4.0	29

#	Article	IF	CITATIONS
199	Hofmeisterâ€Effectâ€Guided Ionohydrogel Design as Printable Bioelectronic Devices. Advanced Materials, 2020, 32, e2000189.	11.1	31
200	Liquid metal–enabled cybernetic electronics. Materials Today Physics, 2020, 14, 100245.	2.9	29
201	Polymer nanocomposite meshes for flexible electronic devices. Progress in Polymer Science, 2020, 107, 101279.	11.8	119
202	Stepwise enhancement on optoelectronic performances of polyselenophene via electropolymerization of mono-, bi-, and tri-selenophene. Electrochimica Acta, 2020, 340, 135974.	2.6	11
203	Highly conductive PEDOT:PSS electrode obtained via post-treatment with alcoholic solvent for ITO-free organic solar cells. Journal of Industrial and Engineering Chemistry, 2020, 86, 205-210.	2.9	19
204	Highly Transparent, Self-Healable, and Adhesive Organogels for Bio-Inspired Intelligent Ionic Skins. ACS Applied Materials & Interfaces, 2020, 12, 15657-15666.	4.0	95
205	Fluorescent Imprintable Hydrogels via Organic/Inorganic Supramolecular Coassembly. ACS Applied Materials & Interfaces, 2020, 12, 15491-15499.	4.0	31
206	A nonswellable gradient hydrogel with tunable mechanical properties. Journal of Materials Chemistry B, 2020, 8, 2702-2708.	2.9	15
207	Soft Bimodal Sensor Array Based on Conductive Hydrogel for Driving Status Monitoring. Sensors, 2020, 20, 1641.	2.1	13
208	Designer Selfâ€Assembling Peptide Hydrogels to Engineer 3D Cell Microenvironments for Cell Constructs Formation and Precise Oncology Remodeling in Ovarian Cancer. Advanced Science, 2020, 7, 1903718.	5.6	77
209	Strong adhesion of wet conducting polymers on diverse substrates. Science Advances, 2020, 6, eaay5394.	4.7	141
210	3D printing of conducting polymers. Nature Communications, 2020, 11, 1604.	5.8	568
211	Stretchable Cephalopodâ€Inspired Multimodal Camouflage Systems. Advanced Materials, 2020, 32, e1905717.	11.1	62
212	A facile template-free strategy for synthesizing hydroxymethyl-poly(3,4-ethylenedioxythiophene) nanospheres. Scientific Reports, 2020, 10, 4035.	1.6	1
213	Toward Nontransient Silk Bioelectronics: Engineering Silk Fibroin for Bionic Links. Small Methods, 2020, 4, 2000274.	4.6	24
214	Aromatic vapor responsive molecular packing rearrangement in supramolecular gels. Materials Chemistry Frontiers, 2020, 4, 2452-2461.	3.2	11
215	Challenges in engineering conductive protein fibres: Disentangling the knowledge. Canadian Journal of Chemical Engineering, 2020, 98, 2081-2095.	0.9	6
216	The Potential of Electrospinning/Electrospraying Technology in the Rational Design of Hydrogel Structures. Macromolecular Materials and Engineering, 2020, 305, 2000285.	1.7	29

ARTICLE IF CITATIONS # NIR-responsive multi-healing HMPAM/dextran/AgNWs hydrogel sensor with recoverable mechanics and 217 5.1 34 conductivity for human-machine interaction. Carbohydrate Polymers, 2020, 247, 116686. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Applied Materials & amp; Interfaces, 2020, 12, 34235-34244. Tunable Interpenetrating Polymer Network Hydrogels Based on Dynamic Covalent Bonds and 219 2.2 51 Metal–Ligand Bonds. Macromolecules, 2020, 53, 6956-6967. Flexible and wearable sensor based on graphene nanocomposite hydrogels. Smart Materials and 1.8 Structures, 2020, 29, 075027. Edible and Nutritive Electronics: Materials, Fabrications, Components, and Applications. Advanced 221 3.0 37 Materials Technologies, 2020, 5, 2000100. Phase Separation Behavior in Tough and Self-Healing Polyampholyte Hydrogels. Macromolecules, 2020, 53, 5116-5126. 2.2 Synthesis and Characterization of Anionic Poly(cyclopentadienylene vinylene) and Its Use in 223 1.6 0 Conductive Hydrogels. Angewandte Chemie, 2020, 132, 13532-13538. A Thermochromic Hydrogel for Camouflage and Soft Display. Advanced Optical Materials, 2020, 8, 224 3.6 39 2000031. A multidimensional nanostructural design towards electrochemically stable and mechanically 225 2.8 49 strong hydrogel electrodes. Nanoscale, 2020, 12, 6637-6643. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603. Redoxâ€Active Ironâ€Citrate Complex Regulated Robust Coatingâ€Free Hydrogel Microfiber Net with High 227 7.8 72 Environmental Tolerance and Sensitivity. Advanced Functional Materials, 2020, 30, 1910387. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543. 14.8 494 Highly Stretchable and Compressible Carbon Nanofiber–Polymer Hydrogel Strain Sensor for Human 229 1.7 28 Motion Detection. Macromolecular Materials and Engineering, 2020, 305, 1900813. Super tough, ultra-stretchable, and fast recoverable double network hydrogels physically crosslinked by triple non-covalent interactions. Polymer, 2020, 192, 122319. 1.8 Degradable piezoelectric biomaterials for wearable and implantable bioelectronics. Current Opinion 231 5.6 87 in Solid State and Materials Science, 2020, 24, 100806. Recent Advances in Mechano-Responsive Hydrogels for Biomedical Applications. ACS Applied Polymer 59 Materials, 2020, 2, 1092-1107. Synthesis and characterization of PEDOT-PEGDA blends for bioelectronic applications: surface 233 1.56 properties and effects on cell morphology. Flexible and Printed Electronics, 2020, 5, 014012. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical 234 18.7 applications. Chemical Society Reviews, 2020, 49, 433-464.

#	Article	IF	CITATIONS
235	Strategies for Designing Stretchable Strain Sensors and Conductors. Advanced Materials Technologies, 2020, 5, 1900908.	3.0	94
236	Flexible, Reconfigurable, and Self-Healing TPU/Vitrimer Polymer Blend with Copolymerization Triggered by Bond Exchange Reaction. ACS Applied Materials & Interfaces, 2020, 12, 8740-8750.	4.0	47
237	Injectable and Sprayable Polyphenol-Based Hydrogels for Controlling Hemostasis. ACS Applied Bio Materials, 2020, 3, 1258-1266.	2.3	66
238	Mechanically strong and tough hydrogels with pH-triggered self-healing and shape memory properties based on a dual physically crosslinked network. Polymer Chemistry, 2020, 11, 1906-1918.	1.9	30
239	Topological prime. Science China Technological Sciences, 2020, 63, 1314-1322.	2.0	9
240	Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B, 2020, 8, 3437-3459.	2.9	372
241	Eco-friendly extraction of cellulose nanocrystals from grape pomace and construction of self-healing nanocomposite hydrogels. Cellulose, 2020, 27, 2541-2553.	2.4	54
242	Programmed Multiresponsive Hydrogel Assemblies with Lightâ€Tunable Mechanical Properties, Actuation, and Fluorescence. Advanced Functional Materials, 2020, 30, 1909359.	7.8	43
243	Ultrasensitive, Lowâ€Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications. Advanced Functional Materials, 2020, 30, 1909616.	7.8	29
244	Soft and Ionâ€Conducting Materials in Bioelectronics: From Conducting Polymers to Hydrogels. Advanced Healthcare Materials, 2020, 9, e1901372.	3.9	71
245	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	11.1	64
246	Tuning optoelectronic performances for 3-methylselenophene-EDOT hybrid polymer. Materials Chemistry and Physics, 2020, 244, 122699.	2.0	10
247	Mechanically Interlocked Hydrogel–Elastomer Hybrids for On‧kin Electronics. Advanced Functional Materials, 2020, 30, 1909540.	7.8	120
248	Fabrication of macrocyclic organogel utilizing solvent balance and its application in vascular supporting materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124432.	2.3	1
249	Bioprintable tough hydrogels for tissue engineering applications. Advances in Colloid and Interface Science, 2020, 281, 102163.	7.0	73
250	4D Printed Hydrogels: Fabrication, Materials, and Applications. Advanced Materials Technologies, 2020, 5, 2000034.	3.0	75
251	Recent advances in designing conductive hydrogels for flexible electronics. InformaÄnÃ-Materiály, 2020, 2, 843-865.	8.5	150
252	Fracture of tough and stiff metallosupramolecular hydrogels. Materials Today Physics, 2020, 13, 100202.	2.9	18

#	Article	IF	CITATIONS
253	Bionic composite hydrogel with a hybrid covalent/noncovalent network promoting phenotypic maintenance of hyaline cartilage. Journal of Materials Chemistry B, 2020, 8, 4402-4411.	2.9	21
254	Injectable Click Polypeptide Hydrogels via Tetrazine-Norbornene Chemistry for Localized Cisplatin Release. Polymers, 2020, 12, 884.	2.0	10
255	¹⁹ F magnetic resonance imaging enabled real-time, non-invasive and precise localization and quantification of the degradation rate of hydrogel scaffolds <i>in vivo</i> . Biomaterials Science, 2020, 8, 3301-3309.	2.6	16
256	Recent advances in coordination-driven polymeric gel materials: design and applications. Dalton Transactions, 2020, 49, 7658-7672.	1.6	37
257	Graphene Oxide–Based Nanomaterials: An Insight into Retinal Prosthesis. International Journal of Molecular Sciences, 2020, 21, 2957.	1.8	19
258	Nanofibrillar Poly(vinyl alcohol) Ionic Organohydrogels for Smart Contact Lens and Human-Interactive Sensing. ACS Applied Materials & Interfaces, 2020, 12, 23514-23522.	4.0	59
259	Soft–Hard Composites for Bioelectric Interfaces. Trends in Chemistry, 2020, 2, 519-534.	4.4	21
260	PEDOT: PSS hydrogel film for supercapacitors via AlCl3-induced cross-linking and subsequent organic solvent treatments. Materials Today Communications, 2020, 24, 101090.	0.9	7
261	Biocompatible and antibacterial gelatin-based polypyrrole cryogels. Polymer, 2020, 197, 122491.	1.8	26
262	Musselâ€Inspired Hydrogels for Selfâ€Adhesive Bioelectronics. Advanced Functional Materials, 2020, 30, 1909954.	7.8	285
263	Tuning the Rigidity of Silk Fibroin for the Transfer of Highly Stretchable Electronics. Advanced Functional Materials, 2020, 30, 2001518.	7.8	34
264	Celluloseâ€Based Flexible Functional Materials for Emerging Intelligent Electronics. Advanced Materials, 2021, 33, e2000619.	11.1	425
265	Double-Network Hierarchical-Porous Piezoresistive Nanocomposite Hydrogel Sensors Based on Compressive Cellulosic Hydrogels Deposited with Silver Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 7480-7488.	3.2	48
266	Oriented bacteriorhodopsin/polyaniline hybrid bio-nanofilms as photo-assisted electrodes for high performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 8268-8272.	5.2	16
267	Materials engineering, processing, and device application of hydrogel nanocomposites. Nanoscale, 2020, 12, 10456-10473.	2.8	52
268	Direct Current Stimulation for Improved Osteogenesis of MC3T3 Cells Using Mineralized Conductive Polyaniline. ACS Biomaterials Science and Engineering, 2021, 7, 852-861.	2.6	14
269	Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chemical Engineering Journal, 2021, 403, 126307.	6.6	110
270	Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review. Materials Horizons, 2021, 8, 383-400.	6.4	91

#	Article	IF	CITATIONS
271	Electrical bioadhesive interface for bioelectronics. Nature Materials, 2021, 20, 229-236.	13.3	361
272	A Highlyâ€Adhesive and Selfâ€Healing Elastomer for Bioâ€Interfacial Electrode. Advanced Functional Materials, 2021, 31, .	7.8	91
273	Endogenous Electric Signaling as a Blueprint for Conductive Materials in Tissue Engineering. Bioelectricity, 2021, 3, 27-41.	0.6	23
274	3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nature Reviews Materials, 2021, 6, 27-47.	23.3	140
275	Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces. Biosensors and Bioelectronics, 2021, 171, 112687.	5.3	62
276	Molybdenum disulfide enhanced polyacrylamide-acrylic acid-Fe3+ ionic conductive hydrogel with high mechanical properties and anti-fatigue abilities as strain sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125692.	2.3	13
277	Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC - Trends in Analytical Chemistry, 2021, 134, 116130.	5.8	207
278	Materials, Devices, and Systems of On‧kin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Advanced Science, 2021, 8, 2001938.	5.6	168
279	3D Interfacing between Soft Electronic Tools and Complex Biological Tissues. Advanced Materials, 2021, 33, e2004425.	11.1	48
280	Hydrogel facilitated bioelectronic integration. Biomaterials Science, 2021, 9, 23-37.	2.6	17
281	High strength and toughness of double physically crossâ€linked hydrogels composed of polyvinyl alcohol and calcium alginate. Journal of Applied Polymer Science, 2021, 138, 49987.	1.3	9
282	Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. Journal of Materials Chemistry A, 2021, 9, 875-883.	5.2	119
283	Ultra‣tretchable, Selfâ€Healing, Conductive, and Transparent PAA/DES Ionic Gel. Macromolecular Rapid Communications, 2021, 42, e2000445.	2.0	31
284	Molybdenum disulfide (MoS2) nanosheets-based hydrogels with light-triggered self-healing property for flexible sensors. Journal of Colloid and Interface Science, 2021, 586, 601-612.	5.0	40
285	Bioâ€Inspired Ionic Skin for Theranostics. Advanced Functional Materials, 2021, 31, 2008020.	7.8	99
286	Ionic conductive hydrogels toughened by latex particles for strain sensors. Science China Technological Sciences, 2021, 64, 827-835.	2.0	11
287	Thermoelectric Converters Based on Ionic Conductors. Chemistry - an Asian Journal, 2021, 16, 129-141.	1.7	50
288	Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Research, 2021, 14, 1135-1140.	5.8	65

#	Article	IF	CITATIONS
289	Fruit-battery-inspired self-powered stretchable hydrogel-based ionic skin that works effectively in extreme environments. Journal of Materials Chemistry A, 2021, 9, 3968-3975.	5.2	42
290	On the intersection of molecular bioelectronics and biosensors: 20ÂYears of C3B. Biosensors and Bioelectronics, 2021, 176, 112889.	5.3	3
291	Dual-Cross-Linked Network Hydrogels with Multiresponsive, Self-Healing, and Shear Strengthening Properties. Biomacromolecules, 2021, 22, 800-810.	2.6	29
292	Soft elastic hydrogel couplants for ultrasonography. Materials Science and Engineering C, 2021, 119, 111609.	3.8	13
293	Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing. Journal of Hazardous Materials, 2021, 406, 124330.	6.5	66
294	Transparency Change Mechanochromism Based on a Robust PDMSâ€Hydrogel Bilayer Structure. Macromolecular Rapid Communications, 2021, 42, e2000446.	2.0	21
295	A Ureaseâ€Containing Fluorescent Hydrogel for Transient Information Storage. Angewandte Chemie, 2021, 133, 3684-3690.	1.6	15
296	A Ureaseâ€Containing Fluorescent Hydrogel for Transient Information Storage. Angewandte Chemie - International Edition, 2021, 60, 3640-3646.	7.2	137
297	Freezeâ€drying and mechanical redispersion of aqueous <scp>PEDOT</scp> : <scp>PSS</scp> . Journal of Applied Polymer Science, 2021, 138, 49774.	1.3	11
298	Advanced Surfaces by Anchoring Thin Hydrogel Layers of Functional Polymers. Chinese Journal of Polymer Science (English Edition), 2021, 39, 14-34.	2.0	12
299	3D printing of nanomaterials using inkjet printing. , 2021, , 155-192.		2
300	Hydrogel-derived luminescent scaffolds for biomedical applications. Materials Chemistry Frontiers, 2021, 5, 3524-3548.	3.2	12
301	Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances, 2021, 11, 5659-5697.	1.7	517
302	Recent Advances in Wearable Devices for Non-Invasive Sensing. Applied Sciences (Switzerland), 2021, 11, 1235.	1.3	23
303	Plasmonic Nanostructures for Photothermal Conversion. Small Science, 2021, 1, 2000055.	5.8	93
304	Touch-sensing fabric encapsulated with hydrogel for human–computer interaction. Soft Matter, 2021, 17, 9014-9018.	1.2	11
305	Hydrogel: Diversity of Structures and Applications in Food Science. Food Reviews International, 2021, 37, 313-372.	4.3	81
306	Conductive Hydrogel- and Organohydrogel-Based Stretchable Sensors. ACS Applied Materials & Interfaces, 2021, 13, 2128-2144.	4.0	214

#	Article	IF	CITATIONS
307	Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chemical Reviews, 2021, 121, 2109-2146.	23.0	199
308	Achieving complementary resistive switching and multi-bit storage goals by modulating the dual-ion reaction through supercritical fluid-assisted ammoniation. Nanoscale, 2021, 13, 14035-14040.	2.8	7
309	Multiple local therapeutics based on nano-hydrogel composites in breast cancer treatment. Journal of Materials Chemistry B, 2021, 9, 1521-1535.	2.9	32
310	Advance of Electroconductive Hydrogels for Biomedical Applications in Orthopedics. Advances in Materials Science and Engineering, 2021, 2021, 1-13.	1.0	7
311	Pectin-based self-healing hydrogel with NaHCO3 degradability for drug loading and release. Journal of Polymer Research, 2021, 28, 1.	1.2	11
312	A fully hydrophobic ionogel enables highly efficient wearable underwater sensors and communicators. Materials Horizons, 2021, 8, 2761-2770.	6.4	138
313	Interpenetrating PAA-PEDOT conductive hydrogels for flexible skin sensors. Journal of Materials Chemistry C, 2021, 9, 11794-11800.	2.7	32
314	Fabrication of conducting polymer microelectrodes and microstructures for bioelectronics. Journal of Materials Chemistry C, 2021, 9, 9730-9760.	2.7	23
315	High toughness fully physical cross-linked double network organohydrogels for strain sensors with anti-freezing and anti-fatigue properties. Materials Advances, 2021, 2, 6655-6664.	2.6	22
316	Energy Harvesting and Storage with Soft and Stretchable Materials. Advanced Materials, 2021, 33, e2004832.	11.1	91
317	Facile solvent-free synthesis of multifunctional and recyclable ionic conductive elastomers from small biomass molecules for green wearable electronics. Journal of Materials Chemistry A, 2021, 9, 13115-13124.	5.2	43
318	Tissue adhesive hydrogel bioelectronics. Journal of Materials Chemistry B, 2021, 9, 4423-4443.	2.9	129
319	Controllable Fibrillization Reinforces Genetically Engineered Rubberlike Protein Hydrogels. Biomacromolecules, 2021, 22, 961-970.	2.6	7
320	Extremely stretchable and tough hybrid hydrogels based on gelatin, κ-carrageenan and polyacrylamide. Soft Matter, 2021, 17, 9708-9715.	1.2	11
321	Functional silk fibroin hydrogels: preparation, properties and applications. Journal of Materials Chemistry B, 2021, 9, 1238-1258.	2.9	174
322	Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. Soft Matter, 2021, 17, 8786-8804.	1.2	17
323	Heterogeneous structured tough conductive gel fibres for stable and high-performance wearable strain sensors. Journal of Materials Chemistry A, 2021, 9, 12265-12275.	5.2	29
324	Fluorescent, electrically responsive and ultratough self-healing hydrogels <i>via</i> bioinspired all-in-one hierarchical micelles. Materials Horizons, 2021, 8, 3096-3104.	6.4	21

#	Article	IF	CITATIONS
325	Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn–air batteries working from â^'50 to 100 °C. Energy and Environmental Science, 0, , .	15.6	100
326	Toughened Hydrogels through UV Grafting of Cellulose Nanofibers. ACS Sustainable Chemistry and Engineering, 2021, 9, 1507-1511.	3.2	8
327	Redox-Active Polymeric Ionic Liquids with Pendant N-Substituted Phenothiazine. ACS Applied Materials & Interfaces, 2021, 13, 5319-5326.	4.0	3
328	3D printing of highly flexible, cytocompatible nanocomposites for thermal management. Journal of Materials Science, 2021, 56, 6385-6400.	1.7	14
329	Strain-stiffening composite hydrogels through UV grafting of cellulose nanofibers. Cellulose, 2021, 28, 1489-1497.	2.4	5
330	Conductive Cellulose Bioâ€Nanosheets Assembled Biostable Hydrogel for Reliable Bioelectronics. Advanced Functional Materials, 2021, 31, 2010465.	7.8	74
331	Tuning multilayered polymeric self-standing films for controlled release of L-lactate by electrical stimulation. Journal of Controlled Release, 2021, 330, 669-683.	4.8	13
332	Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules, 2021, 26, 748.	1.7	134
333	Elastic, Conductive, and Mechanically Strong Hydrogels from Dual-Cross-Linked Aramid Nanofiber Composites. ACS Applied Materials & Interfaces, 2021, 13, 7539-7545.	4.0	25
334	Programming Multistate Aggregationâ€Induced Emissive Polymeric Hydrogel into 3D Structures for Onâ€Demand Information Decryption and Transmission. Advanced Intelligent Systems, 2021, 3, 2000239.	3.3	56
335	Rapid and scalable fabrication of ultraâ€stretchable, antiâ€freezing conductive gels by cononsolvency effect. EcoMat, 2021, 3, e12085.	6.8	26
336	Electricâ€Fieldâ€Induced Gradient Ionogels for Highly Sensitive, Broadâ€Rangeâ€Response, and Freeze/Heatâ€Resistant Ionic Fingers. Advanced Materials, 2021, 33, e2008486.	11.1	134
337	Highâ€Throughput Screening of Selfâ€Healable Polysulfobetaine Hydrogels and their Applications in Flexible Electronics. Advanced Functional Materials, 2021, 31, 2100489.	7.8	26
338	Selfâ€Healing Soft Sensors: From Material Design to Implementation. Advanced Materials, 2021, 33, e2004190.	11.1	106
339	A perspective on intelligent design of engineered materials and structures by interface mechanics. Mechanics Research Communications, 2021, , 103668.	1.0	3
340	Fatigue-resistant adhesion II: Swell tolerance. Extreme Mechanics Letters, 2021, 43, 101182.	2.0	8
341	A Superconcentrated Waterâ€inâ€Salt Hydrogel Electrolyte for Highâ€Voltage Aqueous Potassiumâ€ion Batteries. ChemElectroChem, 2021, 8, 1451-1454.	1.7	10
342	Highly Stretchable, Tough, Resilient, and Antifatigue Hydrogels Based on Multiple Hydrogen Bonding Interactions Formed by Phenylalanine Derivatives. Biomacromolecules, 2021, 22, 1297-1304.	2.6	26

#	Article	IF	CITATIONS
343	Wearable and Implantable Electroceuticals for Therapeutic Electrostimulations. Advanced Science, 2021, 8, 2004023.	5.6	73
344	3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review. Polymers, 2021, 13, 474.	2.0	74
345	Integration of Soft Electronics and Biotissues. Innovation(China), 2021, 2, 100074.	5.2	14
346	Three-Dimensional Printable, Extremely Soft, Stretchable, and Reversible Elastomers from Molecular Architecture-Directed Assembly. Chemistry of Materials, 2021, 33, 2436-2445.	3.2	16
347	Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomaterialia, 2021, 123, 1-30.	4.1	72
348	A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nature Communications, 2021, 12, 1689.	5.8	114
349	3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. ACS Applied Materials & Interfaces, 2021, 13, 13714-13723.	4.0	50
350	Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nature Nanotechnology, 2021, 16, 688-697.	15.6	56
351	PEDOT and PEDOT:PSS conducting polymeric hydrogels: A report on their emerging applications. Synthetic Metals, 2021, 273, 116709.	2.1	42
352	The rectification mechanism in polyelectrolyte gel diodes. Physics of Fluids, 2021, 33, .	1.6	15
353	Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomaterials Science and Engineering, 2021, 7, 4136-4163.	2.6	66
354	Healable, Degradable, and Conductive MXene Nanocomposite Hydrogel for Multifunctional Epidermal Sensors. ACS Nano, 2021, 15, 7765-7773.	7.3	259
355	Influence of direct electric field on PMCG-alginate-based microcapsule. Emergent Materials, 2021, 4, 769-779.	3.2	5
356	Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers. Polymers, 2021, 13, 805.	2.0	8
357	An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nature Electronics, 2021, 4, 185-192.	13.1	269
358	Assessing Green Methods for Pectin Extraction from Waste Orange Peels. Molecules, 2021, 26, 1766.	1.7	34
359	Fabrication of Wearable Hydrogel Sensors With Simple Ionic-Digital Conversion and Inherent Water Retention. IEEE Sensors Journal, 2021, 21, 6802-6810.	2.4	8
360	Direct Construction of Catechol Lignin for Engineering Longâ€Acting Conductive, Adhesive, and UVâ€Blocking Hydrogel Bioelectronics. Small Methods, 2021, 5, e2001311.	4.6	59

#	Article	IF	CITATIONS
361	Durable and Fatigueâ€Resistant Soft Peripheral Neuroprosthetics for In Vivo Bidirectional Signaling. Advanced Materials, 2021, 33, e2007346.	11.1	37
362	Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel–Montmorillonite-Based Translucent Matrix. Soft Robotics, 2022, 9, 98-118.	4.6	9
363	Development of Conductive Gelatine-Methacrylate Inks for Two-Photon Polymerisation. Polymers, 2021, 13, 1038.	2.0	10
364	Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. European Polymer Journal, 2021, 146, 110253.	2.6	81
365	A Morphable Ionic Electrode Based on Thermogel for Nonâ€Invasive Hairy Plant Electrophysiology. Advanced Materials, 2021, 33, e2007848.	11.1	51
366	An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 21693-21702.	4.0	91
367	Conducting Polymerâ€Based Granular Hydrogels for Injectable 3D Cell Scaffolds. Advanced Materials Technologies, 2021, 6, 2100162.	3.0	27
368	Convergent synthesis of diversified reversible network leads to liquid metal-containing conductive hydrogel adhesives. Nature Communications, 2021, 12, 2407.	5.8	70
369	Self-Adhesive, Stretchable, Biocompatible, and Conductive Nonvolatile Eutectogels as Wearable Conformal Strain and Pressure Sensors and Biopotential Electrodes for Precise Health Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 20735-20745.	4.0	86
370	Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chemical Reviews, 2021, 121, 4309-4372.	23.0	472
371	Catalytic Reduction of Organic Dyes by Multilayered Graphene Platelets and Silver Nanoparticles in Polyacrylic Acid Hydrogel. Materials, 2021, 14, 2274.	1.3	4
372	Ion Conductive Phytic Acidâ€G Quadruplex Hydrogel as Electrolyte for Flexible Electrochromic Device. ChemNanoMat, 2021, 7, 613-619.	1.5	6
373	Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomaterialia, 2022, 139, 4-21.	4.1	33
374	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	8.3	65
375	Toughening Mechanism of Unidirectional Stretchable Composite. Frontiers in Robotics and AI, 2021, 8, 673307.	2.0	5
376	Recent advances in electronic devices for monitoring and modulation of brain. Nano Research, 2021, 14, 3070-3095.	5.8	18
377	Ligament-Inspired Tough and Anisotropic Fibrous Gel Belt with Programed Shape Deformations <i>via</i> Dynamic Stretching. ACS Applied Materials & Interfaces, 2021, 13, 19291-19300.	4.0	22
378	Conductive Hydrogels with Dynamic Reversible Networks for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2100012.	3.9	47

#	Article	IF	CITATIONS
379	In situ 3D printing of implantable energy storage devices. Chemical Engineering Journal, 2021, 409, 128213.	6.6	21
380	Bioinspired Structural Composite Hydrogels with a Combination of High Strength, Stiffness, and Toughness. Advanced Functional Materials, 2021, 31, 2101095.	7.8	22
381	Progress and challenges of implantable neural interfaces based on nature-derived materials. Bioelectronic Medicine, 2021, 7, 6.	1.0	29
382	Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels. Nature Communications, 2021, 12, 2082.	5.8	96
383	A novel one-step mechanically strengthened hyaluronic acid hydrogel assisted by a small molecular agent. Chemical Papers, 2021, 75, 4093-4098.	1.0	1
384	Conjugated Polymer for Implantable Electronics toward Clinical Application. Advanced Healthcare Materials, 2021, 10, e2001916.	3.9	47
385	A highly elastic, Room-temperature repairable and recyclable conductive hydrogel for stretchable electronics. Journal of Colloid and Interface Science, 2021, 588, 295-304.	5.0	36
386	Natural biopolymers as proton conductors in bioelectronics. Biopolymers, 2021, 112, e23433.	1.2	26
387	Ultrafast Fabrication of Self-Healing and Injectable Carboxymethyl Chitosan Hydrogel Dressing for Wound Healing. ACS Applied Materials & Interfaces, 2021, 13, 24095-24105.	4.0	126
388	Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Science Advances, 2021, 7, .	4.7	144
389	Transparent, smooth, and sustainable cellulose-derived conductive film applied for the flexible electronic device. Carbohydrate Polymers, 2021, 260, 117820.	5.1	16
390	PEDOT:PSSâ€Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Advanced Healthcare Materials, 2021, 10, e2100061.	3.9	92
391	Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel. ACS Biomaterials Science and Engineering, 2021, 7, 2279-2295.	2.6	29
392	Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 725-745.	1.5	6
393	Electrode Materials for Chronic Electrical Microstimulation. Advanced Healthcare Materials, 2021, 10, e2100119.	3.9	36
394	Soft Wearable Healthcare Materials and Devices. Advanced Healthcare Materials, 2021, 10, e2100577.	3.9	71
395	Environmentally Compatible Wearable Electronics Based on Ionically Conductive Organohydrogels for Health Monitoring with Thermal Compatibility, Antiâ€Dehydration, and Underwater Adhesion. Small, 2021, 17, e2101151.	5.2	70
396	Hydrogelâ€based composites: Unlimited platforms for biosensors and diagnostics. View, 2021, 2, 20200165.	2.7	31

#	Article	IF	CITATIONS
397	Anomalous Loss of Stiffness with Increasing Reinforcement in a Photoâ€Activated Nanocomposite. Macromolecular Rapid Communications, 2021, 42, 2100147.	2.0	0
398	In Situ Synthesis of Mechanically Robust, Transparent Nanofiberâ€Reinforced Hydrogels for Highly Sensitive Multiple Sensing. Advanced Functional Materials, 2021, 31, 2103117.	7.8	100
399	Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chemical Engineering Journal, 2021, 411, 128564.	6.6	168
400	Recent Strategies for Strengthening and Stiffening Tough Hydrogels. Advanced NanoBiomed Research, 2021, 1, 2100026.	1.7	34
401	Advanced Materials and Assembly Strategies for Wearable Biosensors: A Review. , 0, , .		2
402	Stretchable and Soft Organic–Ionic Devices for Bodyâ€Integrated Electronic Systems. Advanced Materials Technologies, 2022, 7, 2001273.	3.0	16
403	Selfâ€Powerbility in Electrical Stimulation Drug Delivery System. Advanced Materials Technologies, 2022, 7, 2100055.	3.0	40
404	Multifaceted Design and Emerging Applications of Tissue Adhesives. Advanced Materials, 2021, 33, e2007663.	11.1	117
405	Ingestible, Biofriendly, and Flexible Flour-Based Humidity Sensors with a Wide Sensing Range. ACS Applied Electronic Materials, 2021, 3, 2798-2806.	2.0	9
406	Fluidic Infiltrative Assembly of 3D Hydrogel with Heterogeneous Composition and Function. Advanced Functional Materials, 2021, 31, 2103288.	7.8	9
407	Promotion of Color-Changing Luminescent Hydrogels from Thermo to Electrical Responsiveness toward Biomimetic Skin Applications. ACS Nano, 2021, 15, 10415-10427.	7.3	64
408	A bio-adhesive ion-conducting organohydrogel as a high-performance non-invasive interface for bioelectronics. Chemical Engineering Journal, 2022, 427, 130886.	6.6	29
409	Transparent, Conductive Hydrogels with High Mechanical Strength and Toughness. Polymers, 2021, 13, 2004.	2.0	13
410	Three-Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications. Biomacromolecules, 2021, 22, 3084-3098.	2.6	46
411	Biomedical Implants with Chargeâ€Transfer Monitoring and Regulating Abilities. Advanced Science, 2021, 8, e2004393.	5.6	18
412	A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair. Biomaterials, 2021, 273, 120811.	5.7	79
413	Nano―and Microscale Optical and Electrical Biointerfaces and Their Relevance to Energy Research. Small, 2021, 17, e2100165.	5.2	7
414	High water content hydrogels with instant mechanical recovery, anti-high temperature and anti-high ionic strength properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126456.	2.3	2

#	Article	IF	CITATIONS
415	Fabrication of Conductive, Adhesive, and Stretchable Agarose-Based Hydrogels for a Wearable Biosensor. ACS Applied Bio Materials, 2021, 4, 6148-6156.	2.3	11
416	Design and Synthesis of Quick Setting Nonswelling Hydrogels via Brush Polymers. Advanced Science, 2021, 8, 2100968.	5.6	11
417	Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. Light: Science and Applications, 2021, 10, 128.	7.7	40
418	Enzyme-induced mineralization of hydrogels with amorphous calcium carbonate for fast synthesis of ultrastiff, strong and tough organic–inorganic double networks. Journal of Materials Science, 2021, 56, 15299-15312.	1.7	19
419	Facile Fabrication of Robust and Reusable PDMS Supported Graphene Dry Electrodes for Wearable Electrocardiogram Monitoring. Advanced Materials Technologies, 2021, 6, 2100262.	3.0	32
420	Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nature Materials, 2021, 20, 1559-1570.	13.3	114
421	Tailoring of conducting polymers via copolymerization – A review. European Polymer Journal, 2021, 155, 110561.	2.6	23
422	A Stretchable and Transparent Electrode Based on PECylated Silk Fibroin for In Vivo Dualâ€Modal Neuralâ€Vascular Activity Probing. Advanced Materials, 2021, 33, e2100221.	11.1	43
423	Ionotronic Tough Adhesives with Intrinsic Multifunctionality. ACS Applied Materials & Interfaces, 2021, 13, 37849-37861.	4.0	16
424	Superhydrophobicâ€Substrateâ€Assisted Construction of Freeâ€Standing Microcavityâ€Patterned Conducting Polymer Films. Advanced Science, 2021, 8, e2100949.	5.6	15
425	Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Advanced Intelligent Systems, 2021, 3, 2000282.	3.3	111
426	Transforming nature into the next generation of bio-based flexible devices: New avenues using deep eutectic systems. Matter, 2021, 4, 2141-2162.	5.0	47
427	Fatigue behaviors of physical hydrogels based on hydrogen bonds. Extreme Mechanics Letters, 2021, 46, 101320.	2.0	13
428	Silica-based Janus nanosheets for self-healing nanocomposite hydrogels. European Polymer Journal, 2021, 155, 110580.	2.6	8
429	3D printed super-anti-freezing self-adhesive human-machine interface. Materials Today Physics, 2021, 19, 100404.	2.9	37
430	Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 2021, 33, e2007977.	11.1	34
431	Mixed Ionic-Electronic Transport in Polymers. Annual Review of Materials Research, 2021, 51, 73-99.	4.3	49
433	Engineering "JiaoJiao―(maltose syrup) with chopsticks: From traditional Chinese sweet food to skin-like iontronics. Science China Materials, 2021, 64, 3059-3068.	3.5	3

#	Article	IF	CITATIONS
434	Lignin sulfonate induced ultrafast polymerization of double network hydrogels with anti-freezing, high strength and conductivity and their sensing applications at extremely cold conditions. Composites Part B: Engineering, 2021, 217, 108879.	5.9	52
435	Underwater flexible mechanoreceptors constructed by anti-swelling self-healable hydrogel. Science China Materials, 2021, 64, 3069-3078.	3.5	26
436	Stimuli-Responsive Toughening of Hydrogels. Chemistry of Materials, 2021, 33, 7633-7656.	3.2	68
437	Selfâ€5haping Soft Electronics Based on Patterned Hydrogel with Stencilâ€Printed Liquid Metal. Advanced Functional Materials, 2021, 31, 2105481.	7.8	83
438	Hydrogel optical fibers functionalized with lumogallion as aluminum ions sensing platform. Optik, 2021, 240, 166875.	1.4	6
439	Selection of hydrogel electrolytes for flexible zinc–air batteries. Materials Today Chemistry, 2021, 21, 100538.	1.7	30
440	Polypyrrole/sulfonated multi-walled carbon nanotubes conductive hydrogel for electrochemical sensing of living cells. Chemical Engineering Journal, 2021, 418, 129483.	6.6	43
441	Exchange Counterion in Polycationic Hydrogels: Tunability of Hydrophobicity, Water State, and Floating Capability for a Floating pH Device. Gels, 2021, 7, 109.	2.1	6
442	Self-healing Hydrogels and Underlying Reversible Intermolecular Interactions. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1246-1261.	2.0	15
443	Materials Perspectives for Self-Powered Cardiac Implantable Electronic Devices toward Clinical Translation. Accounts of Materials Research, 2021, 2, 739-750.	5.9	16
444	Hydrophilicityâ€Hydrophobicity Transformation, Thermoresponsive Morphomechanics, and Crack Multifurcation Revealed by AlEgens in Mechanically Strong Hydrogels. Advanced Materials, 2021, 33, e2101500.	11.1	46
445	A stretchable and adhesive ionic conductor based on polyacrylic acid and deep eutectic solvents. Npj Flexible Electronics, 2021, 5, .	5.1	52
446	Implantable application of polymerâ€based biosensors. Journal of Polymer Science, 2022, 60, 328-347.	2.0	24
447	Stretchable and self-healable hydrogel artificial skin. National Science Review, 2022, 9, .	4.6	40
448	Tough and Antifreezing Organohydrogel Electrolyte for Flexible Supercapacitors with Wide Temperature Stability. ACS Applied Energy Materials, 2021, 4, 9353-9361.	2.5	23
449	Skin-electrode iontronic interface for mechanosensing. Nature Communications, 2021, 12, 4731.	5.8	72
450	Flaw-sensitivity of a tough hydrogel under monotonic and cyclic loads. Journal of the Mechanics and Physics of Solids, 2021, 153, 104483.	2.3	20
451	SIROF stabilized PEDOT/PSS allows biocompatible and reversible direct current stimulation capable of driving electrotaxis in cells. Biomaterials, 2021, 275, 120949.	5.7	19

#	Article	IF	CITATIONS
452	Natural Polysaccharides as Multifunctional Components for Oneâ€6tep 3D Printing Tough Hydrogels. Macromolecular Materials and Engineering, 2021, 306, 2100433.	1.7	4
453	MXene hydrogel for wearable electronics. Matter, 2021, 4, 2655-2658.	5.0	82
454	Injectable Nanocomposite Hydrogels for Cancer Therapy. Macromolecular Bioscience, 2021, 21, e2100186.	2.1	20
455	Advances in versatile anti-swelling polymer hydrogels. Materials Science and Engineering C, 2021, 127, 112208.	3.8	93
456	Ultrastretchable, Highly Transparent, Self-Adhesive, and 3D-Printable Ionic Hydrogels for Multimode Tactical Sensing. Chemistry of Materials, 2021, 33, 6731-6742.	3.2	48
457	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	1.9	103
458	Skin-like Transparent Polymer-Hydrogel Hybrid Pressure Sensor with Pyramid Microstructures. Polymers, 2021, 13, 3272.	2.0	12
459	Editorial: Special Issue on Advanced Biomedical Hydrogels. ACS Biomaterials Science and Engineering, 2021, 7, 3993-3996.	2.6	3
460	A green MXene-based organohydrogel with tunable mechanics and freezing tolerance for wearable strain sensors. Chinese Chemical Letters, 2022, 33, 2205-2211.	4.8	21
461	A fluid-supported 3D hydrogel bioprinting method. Biomaterials, 2021, 276, 121034.	5.7	18
462	Multiple Stimuliâ€Responsive Supramolecular Hydrogels Constructed by Decamethylcucurbit[5]urilâ€ <i>para</i> â€phenylenediamine Exclusion Complex. Macromolecular Rapid Communications, 2021, 42, e2100431.	2.0	4
463	Rational engineering and applications of functional bioadhesives in biomedical engineering. Biotechnology Journal, 2021, 16, e2100231.	1.8	9
464	Remote Spatiotemporal Control of a Magnetic and Electroconductive Hydrogel Network via Magnetic Fields for Soft Electronic Applications. ACS Applied Materials & Interfaces, 2021, 13, 42486-42501.	4.0	11
465	Bifunctional Smart Hydrogel Dressing with Strain Sensitivity and NIR-Responsive Performance. ACS Applied Materials & Interfaces, 2021, 13, 46938-46950.	4.0	51
466	An adhesive and self-healable hydrogel with high stretchability and compressibility for human motion detection. Composites Science and Technology, 2021, 213, 108948.	3.8	31
467	Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors. ACS Applied Materials & Interfaces, 2021, 13, 44868-44877.	4.0	49
468	Photogated Coordination Switching of Silver Nanoparticles for Reversible Coloration/Discoloration of Hydrogel. Advanced Optical Materials, 0, , 2101505.	3.6	3
469	A kelpâ€inspired polyester fabric surface of <scp>UV</scp> grafted hydrogel for drag reduction. Journal of Applied Polymer Science, 2022, 139, 51634.	1.3	2

ARTICLE IF CITATIONS # Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and 470 8.6 138 antibacterial bioelectronics. Bioactive Materials, 2021, 6, 2676-2687. Applications of Bioadhesives: A Mini Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 716035. 471 Recent Progress in Bionic Skin Based on Conductive Polymer Gels. Macromolecular Rapid 472 2.0 29 Communications, 2021, 42, e2100480. Materials design for resilience in the biointegration of electronics. MRS Bulletin, 2021, 46, 860. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and 474 4.0 81 Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 43831-43854. Thermo-Responsive Hydrogel-Based Soft Valves with Annular Actuation Calibration and Circumferential Gripping. Bioengineering, 2021, 8, 127. 1.6 Anti-freezing, water-retaining, conductive, and strain-sensitive hemicellulose/polypyrrole composite 476 2.6 34 hydrogels for flexible sensors. Journal of Materials Research and Technology, 2021, 14, 555-566. Waterâ€Resistant Ionogel Electrode with Tailorable Mechanical Properties for Aquatic Ambulatory 477 Physiological Signal Monitoring. Advanced Functional Materials, 2021, 31, 2107226. 478 Conformal electrodes for onâ€skin digitalization. SmartMat, 2021, 2, 252-262. 28 6.4 Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and 479 environmental applications. Science of the Total Environment, 2021, 786, 147430. A hydrogel-like form-stable phase change material with high loading efficiency supported by a three 480 6.6 28 dimensional metal–organic network. Chemical Engineering Journal, 2021, 420, 129898. A Conductive Hydrogel Based on GaIn and PVA/PAA/Fe³⁺ for Strain Sensor and Physiological Signal Detection. ACS Applied Polymer Materials, 2021, 3, 5268-5276. Strategy of Fabricating Flexible Strain Sensor via Layer-by-Layer Assembly of Conductive Hydrogels. 482 2.0 10 ACS Applied Electronic Materials, 2021, 3, 3889-3897. Dynamic swelling performance of hydrophobic hydrogels. Chinese Chemical Letters, 2022, 33, 2178-2182. 483 4.8 A Î²-cyclodextrin/graphene oxide hybrid gel with smart responsiveness. Journal of Inclusion Phenomena 484 0.9 0 and Macrocyclic Chemistry, 2022, 102, 109-116. Biomaterials-based bioengineering strategies for bioelectronic medicine. Materials Science and 485 14.8 Engineering Reports, 2021, 146, 100630. Fracture and fatigue of ideal polymer networks. Extreme Mechanics Letters, 2021, 48, 101399. 486 2.0 24 Development of halloysite nanotube-based hydrogel with colorimetric H2O2-responsive character. Applied Clay Science, 2021, 212, 106230.

		CITATION REPORT		
#	Article		IF	Citations
488	Cellulose ionogels, a perspective of the last decade: A review. Carbohydrate Polymers,	2021, 274, 118663.	5.1	32
489	Stable SERS substrate based on highly reflective metal liquid-like films wrapped hydrog determination of small molecules in a high protein matrix. Talanta, 2021, 234, 122678	els for direct	2.9	9
490	Electrical monitoring approaches in 3-dimensional cell culture systems: Toward label-fr spatiotemporal resolution, and high-content data collection in vitro. Organs-on-a-Chip, 100006.		1.8	14
491	Progress in conducting polymers for biointerfacing and biorecognition applications. Se Actuators Reports, 2021, 3, 100035.	nsors and	2.3	35
492	The Rise of Soft Neural Electronics. Giant, 2021, 8, 100075.		2.5	5
493	Self-repairable and recyclable self-powered human motion sensor with NIR/pH-responsi Stretchable, Conductive, and Self-Healable hydrogel. Chemical Engineering Journal, 20		6.6	26
494	Influence of water content on the mechanical behavior of gelatin based hydrogels: Syn characterization, and modeling. International Journal of Solids and Structures, 2021, 2	ithesis, 33, 111219.	1.3	27
495	A ionic liquid enhanced conductive hydrogel for strain sensing applications. Journal of Interface Science, 2022, 606, 192-203.	Colloid and	5.0	64
496	Mimicking skin cellulose hydrogels for sensor applications. Chemical Engineering Journ 130921.	ıal, 2022, 427,	6.6	64
497	Love wave propagation in piezoelectric structures bonded with conductive polymer file Ultrasonics, 2022, 118, 106559.	ms.	2.1	5
498	Hydrogels obtained from aniline and piperazine: Synthesis, characterization and their a hybrid supercapacitors. Journal of Molecular Structure, 2022, 1248, 131445.	application in	1.8	15
499	A hydra tentacle-inspired hydrogel with underwater ultra-stretchability for adhering ad surfaces. Chemical Engineering Journal, 2022, 428, 131049.	ipose	6.6	24
500	Spinning continuous high-strength bacterial cellulose hydrogel fibers for multifunction bioelectronic interfaces. Journal of Materials Chemistry A, 2021, 9, 12574-12583.	al	5.2	22
501	3D hollow-structured hydrogels with editable macrostructure, function, and mechanica induced by segmented adjustments. RSC Advances, 2021, 11, 26876-26882.	al properties	1.7	3
502	Food Waste Durian Rind-Derived Cellulose Organohydrogels: Toward Anti-Freezing and Wound Dressing. ACS Sustainable Chemistry and Engineering, 2021, 9, 1304-1312.	d Antimicrobial	3.2	24
503	Balancing the mechanical, electronic, and self-healing properties in conductive self-hea for wearable sensor applications. Materials Horizons, 2021, 8, 1795-1804.	ling hydrogel	6.4	176
504	Bioinspired 3D Printable, Self-Healable, and Stretchable Hydrogels with Multiple Condu Skin-like Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 2	ictivities for 2952-2960.	4.0	125
505	Stretchable multifunctional hydrogels for sensing electronics with effective EMI shieldi properties. Soft Matter, 2021, 17, 9057-9065.	ng	1.2	13

#	Article	IF	CITATIONS
506	Anisotropic bacterial cellulose hydrogels with tunable high mechanical performances, non-swelling and bionic nanofluidic ion transmission behavior. Nanoscale, 2021, 13, 8126-8136.	2.8	23
507	Polymeric Tissue Adhesives. Chemical Reviews, 2021, 121, 11336-11384.	23.0	306
508	Self-assembled Hydrogels: An Overview. Gels Horizons: From Science To Smart Materials, 2021, , 247-261.	0.3	4
509	An on-demand plant-based actuator created using conformable electrodes. Nature Electronics, 2021, 4, 134-142.	13.1	81
510	Tunable, conductive, self-healing, adhesive and injectable hydrogels for bioelectronics and tissue regeneration applications. Journal of Materials Chemistry B, 2021, 9, 6260-6270.	2.9	29
511	Functional hydrogel-based supercapacitors for wearable bioelectronic devices. Materials Chemistry Frontiers, 2021, 5, 7479-7498.	3.2	20
512	Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast <i>in situ</i> adhesion and flexible electrochromic behaviour. Materials Horizons, 2021, 8, 2520-2532.	6.4	60
513	<scp>Polymerâ€assisted</scp> fully recyclable flexible sensors. EcoMat, 2021, 3, e12083.	6.8	32
514	Dopamine-Triggered Hydrogels with High Transparency, Self-Adhesion, and Thermoresponse as Skinlike Sensors. ACS Nano, 2021, 15, 1785-1794.	7.3	190
515	Wearable Sensorsâ€Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 2021, 31, 2008936.	7.8	322
516	Superâ€Soft DNA/Dopamineâ€Graftedâ€Dextran Hydrogel as Dynamic Wire for Electric Circuits Switched by a Microbial Metabolism Process. Advanced Science, 2020, 7, 2000684.	5.6	35
517	Conductive Hydrogels for Bioelectronic Interfaces. , 2020, , 237-265.		3
518	Biocompatible and self-healing ionic gel skin as shape-adaptable and skin-adhering sensor of human motions. Chemical Engineering Journal, 2020, 398, 125540.	6.6	46
519	EML webinar overview: Extreme mechanics of soft materials for merging human–machineâ€< intelligence. Extreme Mechanics Letters, 2020, 39, 100784.	2.0	9
520	Reversibly Assembled Electroconductive Hydrogel via a Host–Guest Interaction for 3D Cell Culture. ACS Applied Materials & Interfaces, 2019, 11, 7715-7724.	4.0	69
521	A Modifiable, Spontaneously Formed Polymer Gel with Zwitterionic and <i>N</i> -Hydroxysuccinimide Moieties for an Enzymatic Biofuel Cell. ACS Applied Polymer Materials, 2021, 3, 631-639.	2.0	6
522	Control of pH in bioelectronics and applications. APL Materials, 2020, 8, .	2.2	9
523	An efficient flexible strain sensor based on anhydride-grafted styrene-butadiene-styrene triblock copolymer/carbon black: enhanced electrical conductivity, sensitivity and stability through solvent swelling. Smart Materials and Structures, 2020, 29, 125018.	1.8	10

#	Article	IF	CITATIONS
524	Electrical and spectroelectrochemical investigation of thiophene-based donor-acceptor copolymers with 3,4-ethylenedioxythiophene. Polimeros, 2020, 30, .	0.2	3
525	3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogel for Sensitive Motion and Electrophysiological Signal Monitoring. Research, 2020, 2020, 1426078.	2.8	34
526	Ionâ€Conductive Hydrogelâ€Based Stretchable, Selfâ€Healing, and Transparent NO ₂ Sensor with High Sensitivity and Selectivity at Room Temperature. Small, 2021, 17, e2104997.	5.2	55
527	Enhanced electrochemical performance of neural electrodes based on <scp>PEDOT</scp> : <scp>PSS</scp> hydrogel. Journal of Applied Polymer Science, 2022, 139, 51804.	1.3	10
528	An Insight into Skeletal Networks Analysis for Smart Hydrogels. Advanced Functional Materials, 2022, 32, 2108489.	7.8	10
529	Crosslinking Trends in Multicomponent Hydrogels for Biomedical Applications. Macromolecular Bioscience, 2021, 21, e2100232.	2.1	15
530	Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. Nano Energy, 2022, 91, 106611.	8.2	54
531	Organic–Inorganic Hybrid Luminescent Hydrogel Glued by a Cationic Polymeric Binder. Macromolecular Rapid Communications, 2021, , 2100562.	2.0	1
532	Biobased Stimuli-Responsive Hydrogels That Comprise Supramolecular Interpenetrating Networks and Exhibit Programmed Behaviors. Chemistry of Materials, 2021, 33, 8124-8132.	3.2	11
533	From Glutinousâ€Riceâ€Inspired Adhesive Organohydrogels to Flexible Electronic Devices Toward Wearable Sensing, Power Supply, and Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	101
534	Ionâ€Conducting Hydrogels and Their Applications in Bioelectronics. Advanced Sustainable Systems, 2022, 6, 2100173.	2.7	41
535	Effects of network structures on the fracture of hydrogel. Extreme Mechanics Letters, 2021, 49, 101495.	2.0	15
536	Effects of POSS composition on PEDOT:PSS conductive film. Synthetic Metals, 2021, 282, 116947.	2.1	2
537	Two-step electrochemical modification for improving thermoelectric performance of polypyrrole films. Synthetic Metals, 2021, 282, 116949.	2.1	9
538	Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy, 2021, 90, 106619.	8.2	39
541	A Constitutive Model for Binary-Solvent Gels. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	1
544	Wrinkling behavior of variable thickness films bonded to elastic substrates. Mechanics of Advanced Materials and Structures, 2022, 29, 7316-7328.	1.5	3
545	Swelling and inflation of a toroidal gel balloon. International Journal of Non-Linear Mechanics, 2021, 138, 103838.	1.4	Ο

#	Article	IF	CITATIONS
546	On-Site Supramolecular Adhesion to Wet and Soft Surfaces via Solvent Exchange. ACS Applied Materials & Interfaces, 2021, 13, 53083-53090.	4.0	27
547	Rolling circle amplification (RCA)-based DNA hydrogel. Nature Protocols, 2021, 16, 5460-5483.	5.5	67
548	A Hydrogel Ionic Circuit Based Highâ€Intensity Iontophoresis Device for Intraocular Macromolecule and Nanoparticle Delivery. Advanced Materials, 2022, 34, e2107315.	11.1	18
549	Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain. Micromachines, 2021, 12, 38.	1.4	8
550	Polyelectrolyte-derived adhesive, super-stretchable hydrogel for a stable, wireless wearable sensor. Journal of Materials Chemistry C, 2021, 9, 16778-16787.	2.7	7
551	Perspectives for Seamless Integration of Bioelectronic Systems in Neuromedicine. , 2020, , 365-381.		1
552	Minimally Invasive Technologies for Biosensing. , 2020, , 193-223.		0
553	Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors. Cell Reports Physical Science, 2021, 2, 100623.	2.8	49
554	Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chemical Reviews, 2022, 122, 5277-5316.	23.0	31
555	Multifunctional Organohydrogel-Based Ionic Skin for Capacitance and Temperature Sensing toward Intelligent Skin-like Devices. Chemistry of Materials, 2021, 33, 8623-8634.	3.2	49
556	Underwater and wet adhesion strategies for hydrogels in biomedical applications. Chemical Engineering Journal, 2022, 431, 133372.	6.6	51
557	Drop-on-demand (DOD) inkjet dynamics of printing viscoelastic conductive ink. Additive Manufacturing, 2021, 48, 102451.	1.7	19
558	Ultrafast infrared spectroscopic study of microscopic structural dynamics in pH stimulus-responsive hydrogels. Chinese Journal of Chemical Physics, 2020, 33, 540-546.	0.6	0
559	Liquid Metal Enabled Flexible Sensors for Biomedical Applications. , 2021, , .		0
560	Ionic conductive and stretchable interpenetrating hydrogels prepared with homogenously synthesized acrylamide-modified agar and polyacrylamide for strain sensing. Polymer, 2022, 238, 124387.	1.8	5
561	Self-powered stretchable strain sensors for motion monitoring and wireless control. Nano Energy, 2022, 92, 106754.	8.2	27
562	A wireless and battery-free wound infection sensor based on DNA hydrogel. Science Advances, 2021, 7, eabj1617.	4.7	68
563	Recent Advances in Multiresponsive Flexible Sensors towards Eâ€skin: A Delicate Design for Versatile Sensing. Small, 2022, 18, e2103734.	5.2	76

#	Article	IF	CITATIONS
564	Multiprocess Laser Liftingâ€Off for Nanostructured Semiconductive Hydrogels. Advanced Materials Interfaces, 0, , 2101250.	1.9	7
565	Shaping the future of robotics through materials innovation. Nature Materials, 2021, 20, 1582-1587.	13.3	65
566	Soft features for robotics. Nature Materials, 2021, 20, 1581-1581.	13.3	1
567	Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomaterials Science and Engineering, 2023, 9, 2048-2069.	2.6	27
568	Electrically Conducting Elastomeric Fibers with High Stretchability and Stability. Small, 2022, 18, e2102813.	5.2	3
569	Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. Advanced Materials, 2022, 34, e2106787.	11.1	44
570	Piperine-Loaded PLGA Nanoparticles as Cancer Drug Carriers. ACS Applied Nano Materials, 2021, 4, 14197-14207.	2.4	14
571	Strong and tough cellulose–graphene oxide composite hydrogels by multi-modulus components strategy as photothermal antibacterial platform. Chemical Engineering Journal, 2022, 431, 133964.	6.6	24
572	Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Applied Materials Today, 2021, 25, 101257.	2.3	24
573	Recent advances in recording and modulation technologies for next-generation neural interfaces. IScience, 2021, 24, 103550.	1.9	9
574	Design and performance of an ultra-sensitive and super-stretchable hydrogel for artificial skin. Journal of Materials Chemistry C, 2021, 9, 17042-17049.	2.7	16
576	Flexible and Soft Materials and Devices for Neural Interface. , 2021, , 1-61.		1
577	Strong and crack-resistant hydrogel derived from pomelo peel for highly sensitive wearable sensors. Chemical Engineering Journal, 2022, 431, 134094.	6.6	24
578	Water-resistant and underwater adhesive ion-conducting gel for motion-robust bioelectric monitoring. Chemical Engineering Journal, 2022, 431, 134012.	6.6	52
579	Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coordination Chemistry Reviews, 2022, 455, 214368.	9.5	27
580	Thermoresponsive, magnetic, adhesive and conductive nanocomposite hydrogels for wireless and non-contact flexible sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128113.	2.3	12
581	Stretch induced thermal conduction anisotropy of hydrogel. International Journal of Heat and Mass Transfer, 2022, 185, 122445.	2.5	5
582	Electrode Surface Rebuilding for Electrochemical Assembling of Conductive PEDOT:PSS Hydrogel Towards Biosensing. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
583	Ultra-sensitive, durable and stretchable ionic skins with biomimetic micronanostructures for multi-signal detection, high-precision motion monitoring, and underwater sensing. Journal of Materials Chemistry A, 2021, 9, 26949-26962.	5.2	47
584	Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chemical Reviews, 2022, 122, 5604-5640.	23.0	238
585	Glucose biosensing based on a hydrogel optical fiber immobilized with glucose oxidase. Optik, 2022, 255, 168655.	1.4	4
586	Predicting the Plateau Modulus from Molecular Parameters of Conjugated Polymers. ACS Central Science, 2022, 8, 268-274.	5.3	17
587	Electrostatic Interaction-Based High Tissue Adhesive, Stretchable Microelectrode Arrays for the Electrophysiological Interface. ACS Applied Materials & Interfaces, 2022, 14, 4852-4861.	4.0	20
588	Strategies for interface issues and challenges of neural electrodes. Nanoscale, 2022, 14, 3346-3366.	2.8	18
589	Correlating Ionic Conductivity and Microstructure in Polyelectrolyte Hydrogels for Bioelectronic Devices. Macromolecular Rapid Communications, 2022, 43, e2100687.	2.0	13
591	Soft yet Tough: a Mechanically and Functionally Tissue-like Organohydrogel for Sensitive Soft Electronics. Chemistry of Materials, 2022, 34, 1392-1402.	3.2	50
592	Pseudocapacitive Conjugated Polyelectrolyte/2D Electrolyte Hydrogels with Enhanced Physicoâ€Electrochemical Properties. Advanced Electronic Materials, 2022, 8, .	2.6	13
593	Dualâ€Channel Flexible Strain Sensors Based on Mechanofluorescent and Conductive Hydrogel Laminates. Advanced Optical Materials, 2022, 10, .	3.6	32
594	Highly Flexibility, Powder Self-Healing, and Recyclable Natural Polymer Hydrogels. Gels, 2022, 8, 89.	2.1	4
595	Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 279-310.	7.5	35
596	Biology-guided engineering of bioelectrical interfaces. Nanoscale Horizons, 2022, 7, 94-111.	4.1	5
597	Multifunctional Injectable Hydrogel for <i>In Vivo</i> Diagnostic and Therapeutic Applications. ACS Nano, 2022, 16, 554-567.	7.3	49
598	Smart bioelectronics and biomedical devices. Bio-Design and Manufacturing, 2022, 5, 1-5.	3.9	4
600	Color-tunable, self-healing albumin-based lanthanide luminescent hydrogels fabricated by reductant-triggered gelation. International Journal of Biological Macromolecules, 2022, 195, 530-537.	3.6	11
602	Ultraâ€High Electrical Conductivity in Fillerâ€Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding. Advanced Materials, 2022, 34, e2109904.	11.1	91
603	Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nature Communications, 2022, 13, 358.	5.8	160

#	Article	IF	CITATIONS
604	Tissue‣ike Optoelectronic Neural Interface Enabled by PEDOT:PSS Hydrogel for Cardiac and Neural Stimulation. Advanced Healthcare Materials, 2022, 11, e2102160.	3.9	21
605	Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. Advanced Materials, 2022, 34, e2110024.	11.1	12
606	3D hybrid scaffold with aligned nanofiber yarns embedded in injectable hydrogels for monitoring and repairing chronic wounds. Composites Part B: Engineering, 2022, 234, 109688.	5.9	19
607	Liquid metal polymer composites: from printed stretchable circuits to soft actuators. Flexible and Printed Electronics, 2022, 7, 013002.	1.5	32
608	Functional plasma-polymerized hydrogel coatings for electrochemical biosensing. Applied Surface Science, 2022, 584, 152511.	3.1	12
610	Functional Bioelectronic Materials for Long-Term Biocompatibility and Functionality. ACS Applied Electronic Materials, 2022, 4, 1449-1468.	2.0	15
611	Resilient and Self-Healing Hyaluronic Acid/Chitosan Hydrogel With Ion Conductivity, Low Water Loss, and Freeze-Tolerance for Flexible and Wearable Strain Sensor. Frontiers in Bioengineering and Biotechnology, 2022, 10, 837750.	2.0	8
612	Antibacterial, wearable, transparent tannic acid–thioctic acid–phytic acid hydrogel for adhesive bandages. Soft Matter, 2022, 18, 2814-2828.	1.2	27
613	Recent advances in the 3D printing of electrically conductive hydrogels for flexible electronics. Journal of Materials Chemistry C, 2022, 10, 5380-5399.	2.7	39
614	An Ionically Conductive, Self-Powered and Stable Organogel for Pressure Sensing. Nanomaterials, 2022, 12, 714.	1.9	5
615	Coagulation Bathâ€Assisted 3D Printing of PEDOT:PSS with High Resolution and Strong Substrate Adhesion for Bioelectronic Devices. Advanced Materials Technologies, 2022, 7, .	3.0	13
616	A Soft Sponge Sensor for Multimodal Sensing and Distinguishing of Pressure, Strain, and Temperature. ACS Applied Materials & Interfaces, 2022, 14, 9570-9578.	4.0	35
617	Toughness and elasticity from phase separation. Nature Materials, 2022, 21, 266-268.	13.3	2
618	Flexible and Stretchable Bioelectronics. Materials, 2022, 15, 1664.	1.3	24
619	Hybrid Hydrogels with Stimuli-Responsive Properties to Electric and Magnetic Fields. , 0, , .		3
620	Tough Mechanically Interlocked Transparent Interface of Hydrogel and Elastomer for Biomedical Applications. Macromolecular Materials and Engineering, 0, , 2100931.	1.7	0
621	Highly Conducting and Stretchable Doubleâ€Network Hydrogel for Soft Bioelectronics. Advanced Materials, 2022, 34, e2200261.	11.1	145
622	Sustainable Macromolecular Materials in Flexible Electronics. Macromolecular Materials and Engineering, 2022, 307, .	1.7	4

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
623	Challenges in Materials and Devices of Electronic Skin. , 2022, 4, 577-599.			20
624	Rational design of high-performance wearable tactile sensors utilizing bioinspired structures/functions, natural biopolymers, and biomimetic strategies. Materials Science Engineering Reports, 2022, 148, 100672.	and	14.8	30
625	Topological supramolecular network enabled high-conductivity, stretchable organic bio Science, 2022, 375, 1411-1417.	electronics.	6.0	230
626	Bimetallic Nanocatalysts Immobilized in Nanoporous Hydrogels for Longâ€Term Robust Glucose Monitoring of Smart Contact Lens. Advanced Materials, 2022, 34, e2110536.	Continuous	11.1	48
627	Harnessing the 2D Structureâ€Enabled Viscoelasticity of Grapheneâ€Based Hydrogel M Chronic Neural Interfacing. Small Methods, 2022, 6, e2200022.	embranes for	4.6	12
628	An Electroluminodynamic Flexible Device for Highly Efficient Eradication of Drugâ€Resis Advanced Materials, 2022, 34, e2200334.	tant Bacteria.	11.1	25
629	Hydrogel Transformed from Nanoparticles for Prevention of Tissue Injury and Treatment Inflammatory Diseases. Advanced Materials, 2022, 34, e2109178.	: of	11.1	39
630	Nanocellulose-templated carbon nanotube enhanced conductive organohydrogel for hig strain and temperature sensors. Cellulose, 2022, 29, 3829-3844.	ghly-sensitive	2.4	18
631	Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physic Brain Neural Signals. Advanced Science, 2022, 9, e2201059.	ological and	5.6	64
632	Research Progress on Hydrogel–Elastomer Adhesion. Materials, 2022, 15, 2548.		1.3	6
633	Hostâ€Fueled Transient Supramolecular Hydrogels. ChemSystemsChem, 2022, 4, .		1.1	11
634	Application of conductive polymer hydrogels in flexible electronics. Journal of Polymer S 60, 2635-2662.	cience, 2022,	2.0	25
635	Thermoresponsive PEDOT:PSS/PNIPAM conductive hydrogels as wearable resistive sens breathing pattern detection. Polymer Journal, 2022, 54, 793-801.	ors for	1.3	11
636	Reversibly Stretchable Organohydrogel-Based Soft Electronics with Robust and Redox-A Interfaces Enabled by Polyphenol-Incorporated Double Networks. ACS Applied Materials Interfaces, 2022, 14, 12583-12595.	ctive &	4.0	14
637	Flexible Ionic Diodes with High Rectifying Ratio and Wide Temperature Tolerance. Advar Materials, 2022, 32, .	nced Functional	7.8	14
638	Ion transport property, structural features, and applications of cellulose-based nanofluid platforms — A review. Carbohydrate Polymers, 2022, 289, 119406.	lic	5.1	3
639	A Wearable Strain Sensor Based on Electroconductive Hydrogel Composites for Human Detection. Macromolecular Materials and Engineering, 2022, 307, .	Motion	1.7	12
640	Mixed Ionic and Electronic Conducting Eutectogels for 3Dâ€Printable Wearable Sensor Bioelectrodes. Advanced Materials Technologies, 2022, 7, .	s and	3.0	40

#	Article	IF	CITATIONS
641	Bioinspired sensor system for health care and humanâ \in machine interaction. EcoMat, 2022, 4, .	6.8	54
642	Natural Material Inspired Organic Thin-Film Transistors for Biosensing: Properties and Applications. , 2022, 4, 918-937.		17
643	Flexible Multichannel Neural Probe Developed by Electropolymerization for Localized Stimulation and Sensing. Advanced Materials Technologies, 2022, 7, .	3.0	6
644	An electroactive hybrid biointerface for enhancing neuronal differentiation and axonal outgrowth on bio-subretinal chip. Materials Today Bio, 2022, 14, 100253.	2.6	8
645	Electrode surface rebuilding for electrochemical assembling of conductive PEDOT:PSS hydrogel towards biosensing. Journal of Electroanalytical Chemistry, 2022, 911, 116183.	1.9	11
646	Chitin/Ca solvent-based conductive and stretchable organohydrogel with anti-freezing and anti-drying. International Journal of Biological Macromolecules, 2022, 207, 484-492.	3.6	8
647	Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel cell. Chemical Engineering Journal, 2022, 440, 135719.	6.6	13
648	Halloysite nanotube-based self-healing fluorescence hydrogels in fabricating 3D cube containing UV-sensitive QR code information. Journal of Colloid and Interface Science, 2022, 617, 353-362.	5.0	15
649	Multifunctional hydrogel platform for biofilm scavenging and O2 generating with photothermal effect on diabetic chronic wound healing. Journal of Colloid and Interface Science, 2022, 617, 542-556.	5.0	28
650	High-strain sensitive zwitterionic hydrogels with swelling-resistant and controllable rehydration for sustainable wearable sensor. Journal of Colloid and Interface Science, 2022, 620, 14-23.	5.0	16
651	A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. International Journal of Heat and Mass Transfer, 2022, 191, 122840.	2.5	3
652	Chemically Modified Silk Fibroin Hydrogel for Environment-stable Electronic Skin. Sensors and Actuators Reports, 2022, 4, 100089.	2.3	9
654	Hierarchical Multiscale Hydrogels with Identical Compositions Yet Disparate Properties via Tunable Phase Separation. Advanced Functional Materials, 2022, 32, .	7.8	17
655	Wearable Bioelectronics for Chronic Wound Management. Advanced Functional Materials, 2022, 32, .	7.8	64
656	Investigation of the viscoelastic behavior of PVA-P(AAm/AMPS) IPN hydrogel with enhanced mechanical strength and excellent recoverability. Journal of Polymer Research, 2022, 29, 1.	1.2	7
657	Hydrogelâ€based triboelectric nanogenerators: Properties, performance, and applications. International Journal of Energy Research, 2022, 46, 5603-5624.	2.2	28
658	Hydrophobic association and ionic coordination dual crossedâ€linked conductive hydrogels with selfâ€adhesive and selfâ€healing virtues for conformal strain sensors. Journal of Polymer Science, 2022, 60, 812-824.	2.0	7
659	An Anti‧wellable Hydrogel Strain Sensor for Underwater Motion Detection. Advanced Functional Materials, 2022, 32, .	7.8	137

#	Article	IF	Citations
660	Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. Journal of Functional Biomaterials, 2021, 12, 71.	1.8	25
661	Dual-network hydrogel based on ionic nano-reservoir for gastric perforation sealing. Science China Materials, 2022, 65, 827-835.	3.5	11
662	Portable fluid circuit device containing printed silicone microvessels as a training aid for arterial microanastomosis. International Journal of Oral and Maxillofacial Surgery, 2022, 51, 1022-1026.	0.7	2
663	Organic Synaptic Transistors for Bioâ€Hybrid Neuromorphic Electronics. Advanced Electronic Materials, 2022, 8, .	2.6	31
664	Skin bioelectronics towards long-term, continuous health monitoring. Chemical Society Reviews, 2022, 51, 3759-3793.	18.7	85
665	Biocompatible Conductive Hydrogels: Applications in the Field of Biomedicine. International Journal of Molecular Sciences, 2022, 23, 4578.	1.8	28
666	Waterâ€resistant conductive organogels with sensation and actuation functions for artificial neuroâ€sensory muscular systems. SmartMat, 2022, 3, 632-643.	6.4	12
667	A multi-ion electrophoretic pump for simultaneous on-chip delivery of H+, Na+, and Clâ^. APL Materials, 2022, 10, .	2.2	8
668	Skin stimulation and recording: Moving towards metal-free electrodes. Biosensors and Bioelectronics: X, 2022, , 100143.	0.9	7
669	Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out for Strain Sensors. Sensors, 2022, 22, 3015.	2.1	27
670	Soft Electrodes for Electrochemical and Electrophysiological Monitoring of Beating Cardiomyocytes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
671	Lignin-Inspired Hydrogel Matrixes with Adhesion and Toughness for All-Hydrogel Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
672	Polyphenol derived bioactive carbon quantum dot-incorporated multifunctional hydrogels as an oxidative stress attenuator for antiaging and <i>in vivo</i> wound-healing applications. Biomaterials Science, 2022, 10, 3527-3539.	2.6	21
673	A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. Journal of Materials Chemistry A, 2022, 10, 12092-12103.	5.2	35
675	Ionic Tunability of Conjugated Polyelectrolyte Solutions. Macromolecules, 2022, 55, 3437-3448.	2.2	11
676	From liquid metal to stretchable electronics: Overcoming the surface tension. Science China Materials, 2022, 65, 2072-2088.	3.5	22
677	Electronically Conductive Hydrogels by in Situ Polymerization of a Waterâ€Soluble EDOTâ€Đerived Monomer. Advanced Engineering Materials, 2022, 24, .	1.6	9
678	Soft Electrodes for Electrochemical and Electrophysiological Monitoring of Beating Cardiomyocytes. Angewandte Chemie, 2022, 134, .	1.6	0

#	ARTICLE	IF	CITATIONS
679	Low-voltage flexible organic transistors based on a water-soluble natural gate dielectric exhibiting high-performance and stability. Flexible and Printed Electronics, 2022, 7, 025004.	1.5	9
680	Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and Patterned Liquid Metal. Small, 2022, 18, e2201643.	5.2	40
681	Preparation and application of poly(α-L-lysine)-based interpenetrating network hydrogel via synchronous free-radical polymerization and amine-anhydride reaction in water. Journal of Polymer Research, 2022, 29, 1.	1.2	4
682	Solidâ€State Iontronic Devices: Mechanisms and Applications. Advanced Materials Technologies, 2022, 7, ·	3.0	17
683	Recent Development of Conductive Hydrogels for Tissue Engineering: Review and Perspective. Macromolecular Bioscience, 2022, 22, e2200051.	2.1	18
684	High-Performance Crack-Resistant Elastomer with Tunable "J-Shaped―Stress–Strain Behavior Inspired by the Brown Pelican. ACS Applied Materials & Interfaces, 2022, 14, 22489-22496.	4.0	5
685	Advances in adhesive hydrogels for tissue engineering. European Polymer Journal, 2022, 172, 111241.	2.6	18
686	Torsion of hydrogel cylinder with a chemo-mechanical coupled nonlinear elastic theory. International Journal of Solids and Structures, 2022, 248, 111670.	1.3	1
687	One-step electropolymerized thieno[3,2-b]thiophene-based bifunctional electrode with controlled color conversion for electrochromic energy storage application. Chemical Engineering Journal, 2022, 445, 136731.	6.6	13
688	Zwitterionic dynamic elastomer with high ionic conductivity for self-adhesive and transparent electronic skin. Chemical Engineering Journal, 2022, 445, 136741.	6.6	24
689	3D Printing of Stretchable, Adhesive and Conductive Ti3C2Tx-Polyacrylic Acid Hydrogels. Polymers, 2022, 14, 1992.	2.0	11
690	Patterning meets gels: Advances in engineering functional gels at micro/nanoscales for soft devices. Journal of Polymer Science, 2022, 60, 2679-2700.	2.0	4
691	Oxidized alginate linked tough conjoined-network hydrogel with self-healing and conductive properties for strain sensing. New Journal of Chemistry, 0, , .	1.4	4
692	Strong and Tough Conductive Organoâ€Hydrogels via Freezeâ€Casting Assisted Solution Substitution. Advanced Functional Materials, 2022, 32, .	7.8	57
693	Hybrid Stents Based on Magnetic Hydrogels for Biomedical Applications. ACS Applied Bio Materials, 2022, 5, 2598-2607.	2.3	3
694	Gel scaffolds and emerging applications in biomedicine. RSC Advances, 2022, 12, 15925-15949.	1.7	5
695	Facile preparation of hydrogel glue with high strength and antibacterial activity from physically linked network. International Journal of Pharmaceutics, 2022, 622, 121843.	2.6	1
696	Adhesion mechanism and application progress of hydrogels. European Polymer Journal, 2022, 173, 111277.	2.6	28

CITATION REPC	DRT

#	Article	IF	CITATIONS
697	Recent advances in lignosulfonate filled hydrogel for flexible wearable electronics: A mini review. International Journal of Biological Macromolecules, 2022, 212, 393-401.	3.6	17
698	金基电åçš®é,ÿ"ç©¶éչ›å±•. Scientia Sinica Chimica, 2022, , .	0.2	Ο
699	Novel implantable devices delivering electrical cues for tissue regeneration and functional restoration. Medicine in Novel Technology and Devices, 2022, 16, 100146.	0.9	5
700	Robust Silk Protein Hydrogels Made by a Facile One-Step Method and Their Multiple Applications. ACS Applied Bio Materials, 2022, 5, 3086-3094.	2.3	8
701	On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Science Advances, 2022, 8, .	4.7	58
702	Conductive Hydrogels with Ultrastretchability and Adhesiveness for Flame- and Cold-Tolerant Strain Sensors. ACS Applied Materials & amp; Interfaces, 2022, 14, 26088-26098.	4.0	24
703	Temperature-Responsive Aldehyde Hydrogels with Injectable, Self-Healing, and Tunable Mechanical Properties. Biomacromolecules, 2022, 23, 2552-2561.	2.6	7
704	Superstrong, superstiff, and conductive alginate hydrogels. Nature Communications, 2022, 13, .	5.8	112
705	Conductive hydrogel constructs with three-dimensionally connected graphene networks for biomedical applications. Chemical Engineering Journal, 2022, 446, 137344.	6.6	29
706	Designing Self-floating Anisotropic Macroporous Hydrogel by Step Emulsification and Buoyancy-assisted Microfluidics. Chemical Engineering Journal, 2022, 446, 137348.	6.6	5
707	Molecular Mechanism Underpinning Stable Mechanical Performance and Enhanced Conductivity of Air-Aged Ionic Conductive Elastomers. Macromolecules, 2022, 55, 4665-4674.	2.2	4
708	Temperature-Responsive Ionic Conductive Hydrogel for Strain and Temperature Sensors. ACS Applied Materials & Interfaces, 2022, 14, 26536-26547.	4.0	70
709	Environment-adaptable PAM/PVA Semi-IPN hydrogels reinforced by GO for high electromagnetic shielding performance. Polymer, 2022, 253, 125028.	1.8	13
710	Organic solvent vapor/thermal responsive binary gels with tunable transparency and mechanical strength. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129267.	2.3	1
711	A mechanically adaptive hydrogel neural interface based on silk fibroin for high-efficiency neural activity recording. Materials Horizons, 2022, 9, 2215-2225.	6.4	19
712	PEDOT:PSS hydrogel gate electrodes for OTFT sensors. Journal of Materials Chemistry C, 2022, 10, 13964-13973.	2.7	7
713	Design of hydrogel-based wearable EEG electrodes for medical applications. Journal of Materials Chemistry B, 2022, 10, 7260-7280.	2.9	25
715	Fruit Peel-Inspired Super-Stable Ionic Organohydrogel Electronics with Dense Hydrophobic Skin. ACS Applied Polymer Materials, 2022, 4, 4673-4680.	2.0	2

# 716	ARTICLE Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nature Communications, 2022, 13, .	IF 5.8	CITATIONS
717	Protein Hydrogels with Reversibly Patterned Multidimensional Fluorescent Images for Information Storage. Biomacromolecules, 2022, 23, 3009-3016.	2.6	6
718	Recent Progress in Smart Polymeric Gelâ€Based Information Storage for Antiâ€Counterfeiting. Advanced Materials, 2022, 34, .	11.1	122
719	Cross-Linked, Transient Ionic Conductive Elastomer with Extreme Stretchability, Healability, and Degradability for Detecting Human Motions. ACS Applied Polymer Materials, 2022, 4, 4972-4979.	2.0	13
720	Body Temperature Enhanced Adhesive, Antibacterial, and Recyclable Ionic Hydrogel for Epidermal Electrophysiological Monitoring. Advanced Healthcare Materials, 2022, 11, .	3.9	29
721	Natural polymerâ€based adhesive hydrogel for biomedical applications. Biosurface and Biotribology, 2022, 8, 69-94.	0.6	4
722	Advances in Cellulose-Based Hydrogels for Biomedical Engineering: A Review Summary. Gels, 2022, 8, 364.	2.1	22
723	Recent progress of electroactive interface in neural engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	6
724	A ternary heterogeneous hydrogel with strength elements for resilient, self-healing, and recyclable epidermal electronics. Npj Flexible Electronics, 2022, 6, .	5.1	11
725	A high-conductive, anti-freezing, antibacterial and anti-swelling starch-based physical hydrogel for multifunctional flexible wearable sensors. International Journal of Biological Macromolecules, 2022, 213, 791-803.	3.6	28
726	Flexible porous Gelatin/Polypyrrole/Reduction graphene oxide organohydrogel for wearable electronics. Journal of Colloid and Interface Science, 2022, 625, 197-209.	5.0	23
727	Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nature Communications, 2022, 13, .	5.8	29
728	Smart Hydrogels Based on Self-Assembly of One Short Single-Stranded DNA for Functional Surface Patterning. ACS Applied Polymer Materials, 2022, 4, 5199-5208.	2.0	8
729	Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Science Advances, 2022, 8, .	4.7	63
730	Reentrant-Convex Swelling of Thermoresponsive Gels in Mixtures of Solvents. Industrial & Engineering Chemistry Research, 2022, 61, 9725-9734.	1.8	1
731	Equilibrium Swelling of Thermo-Responsive Gels in Mixtures of Solvents. Chemistry, 2022, 4, 681-700.	0.9	0
732	Strong Interfaces Enable Efficient Load Transfer for Strong, Tough, and Impact-Resistant Hydrogel Composites. ACS Applied Materials & Interfaces, 2022, 14, 33797-33805.	4.0	10
733	Electroconductive, Adhesive, Nonâ€&welling, and Viscoelastic Hydrogels for Bioelectronics. Advanced Materials, 2023, 35, .	11.1	48

	Стл	CITATION REPORT		
#	Article	I	F	Citations
734	Soft Ionics: Governing Physics and State of Technologies. Frontiers in Physics, 0, 10, .	1	.0	5
735	An electrically conductive polyvinyl alcohol/poly (acrylic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 mechanical properties for human movement monitoring. Journal of Materials Science, 2022, 57, 12947-12959.		-co-acry L .7	ylamide)/poly 7
736	Effect of Fiber Geometry on Fracture and Fatigue of Composite Hydrogels. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1	.1	4
737	Brush-Modified Hydrogels: Preparations, Properties, and Applications. Chemistry of Materials, 2022, 34, 6210-6231.	3	3.2	10
738	Fmoc-phenylalanine as a building block for hybrid double network hydrogels with enhanced mechanical properties, self-recovery, and shape memory capability. Polymer, 2022, 255, 125145.	1	.8	4
739	Tissue-nanoengineered hyperbranched polymer based multifunctional hydrogels as flexible "wounpe treatment-health monitoring―bioelectronic implant. Applied Materials Today, 2022, 29, 101576.	ed 2	2.3	9
740	Lignin-containing hydrogel matrices with enhanced adhesion and toughness for all-hydrogel supercapacitors. Chemical Engineering Journal, 2022, 450, 138025.	Ć	5.6	22
741	Fundamentals of Hydrogelâ€Based Valves and Chemofluidic Transistors for Labâ€onâ€aâ€Chip Techno Tutorial Review. Advanced Materials Technologies, 2023, 8, .	logy: A	3.0	10
742	Stretchable Ionic Conductors for Soft Electronics. Macromolecular Rapid Communications, 2022, 43, .	2	2.0	16
743	Highly conductive thermoresponsive silver nanowire PNIPAM nanocomposite for reversible electrical switchâ€. Soft Matter, 0, , .	1	L .2	0
744	Ultraâ€Lightweight, Highly Permeable, and Waterproof Fibrous Organic Electrochemical Transistors for Onâ€6kin Bioelectronics. Advanced Materials Technologies, 2023, 8, .	ę	3.0	12
745	Strong Tough Conductive Hydrogels via the Synergy of Ionâ€Induced Crossâ€Linking and Saltingâ€Out Advanced Functional Materials, 2022, 32, .	t. 7	7.8	89
746	Mimicking Color-Changing Organisms to Enable the Multicolors and Multifunctions of Smart Fluorescent Polymeric Hydrogels. Accounts of Chemical Research, 2022, 55, 2291-2303.	7	7.6	61
747	Breathable Kirigami-Shaped Ionotronic e-Textile with Touch/Strain Sensing for Friendly Epidermal Electronics. Advanced Fiber Materials, 2022, 4, 1525-1534.	7	7.9	27
748	Organic Neuroelectronics: From Neural Interfaces to Neuroprosthetics. Advanced Materials, 2022, 34,	1	1.1	28
749	Digital Light 3D Printing of PEDOT-Based Photopolymerizable Inks for Biosensing. ACS Applied Polymer Materials, 2022, 4, 6749-6759.	2	2.0	29
750	Orthogonal Growth for Fabricating Hydrogel Sensors and Circuit Boards with In Situ Postâ€īunable Performance. Advanced Functional Materials, 2022, 32, .	7	7.8	18
751	Advances and challenges in conductive hydrogels: From properties to applications. European Polymer Journal, 2022, 177, 111454.	2	2.6	34

#	Article	IF	CITATIONS
752	Tough, anti-freezing and conductive ionic hydrogels. NPG Asia Materials, 2022, 14, .	3.8	22
753	Patternable Gelatin Methacrylate/PEDOT/Polystyrene Sulfonate Microelectrode Coatings for Neuronal Recording. ACS Biomaterials Science and Engineering, 2022, 8, 3933-3943.	2.6	3
754	Additive manufacturing of bio-based hydrogel composites: recent advances. Journal of Polymers and the Environment, 2022, 30, 4501-4516.	2.4	10
755	Polyelectrolyte hydrogel: A versatile platform for mechanical-electric conversion and self-powered sensing. Nano Energy, 2022, 103, 107718.	8.2	20
756	Supramolecular Adhesive Materials with Antimicrobial Activity for Emerging Biomedical Applications. Pharmaceutics, 2022, 14, 1616.	2.0	3
757	From carbon nanotubes to ultra-sensitive, extremely-stretchable and self-healable hydrogels. European Polymer Journal, 2022, 178, 111485.	2.6	12
758	Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors. International Journal of Biological Macromolecules, 2022, 220, 90-96.	3.6	25
759	Multiple hydrogen bonds reinforced conductive hydrogels with robust elasticity and ultra-durability as multifunctional ionic skins. Chemical Engineering Journal, 2023, 451, 138525.	6.6	33
760	Flexible electrodes for non-invasive brain–computer interfaces: A perspective. APL Materials, 2022, 10, .	2.2	4
761	Nanocomposite Hydrogels Containing Few-Layer Graphene Sheets Prepared through Noncovalent Exfoliation Show Improved Mechanical Properties. Nanomaterials, 2022, 12, 3129.	1.9	4
762	Lignin-silver triggered multifunctional conductive hydrogels for skinlike sensor applications. International Journal of Biological Macromolecules, 2022, 221, 1282-1293.	3.6	16
763	Nanocatalysts Induced Self-Triggering Leather Skin for Human-Machine Interaction. SSRN Electronic Journal, 0, , .	0.4	0
764	Stretchable, Conducting and Large-Range Monitoring PEDOT: PSS-PVA Hydrogel Strain Sensor. Lecture Notes in Computer Science, 2022, , 305-314.	1.0	1
765	3D Printing of PEDOT:PSS-PU-PAA Hydrogels with Excellent Mechanical and Electrical Performance for EMG Electrodes. Lecture Notes in Computer Science, 2022, , 295-304.	1.0	1
766	Bio-chemo-mechanical coupling models of soft biological materials: A review. Advances in Applied Mechanics, 2022, , 309-392.	1.4	5
767	Reinforcing hydrogels with <i>in situ</i> formed amorphous CaCO ₃ . Biomaterials Science, 2022, 10, 4949-4958.	2.6	6
768	Highly Conductive and Underwater Stable Ionic Skin for Allâ€Day Epidermal Biopotential Monitoring. Advanced Functional Materials, 2022, 32, .	7.8	25
769	Intrinsically Electron Conductive, Antibacterial, and Antiâ€swelling Hydrogels as Implantable SensorsÂfor Bioelectronics. Advanced Functional Materials, 2022, 32, .	7.8	34

#	Article	IF	CITATIONS
770	Towards organic electronics that learn at the body-machine interface: A materials journey. MRS Communications, 2022, 12, 565-577.	0.8	11
771	Machine Learning for Bioelectronics on Wearable and Implantable Devices: Challenges and Potential. Tissue Engineering - Part A, 2023, 29, 20-46.	1.6	15
773	Anti-Freezing Nanocomposite Organohydrogels with High Strength and Toughness. Polymers, 2022, 14, 3721.	2.0	1
774	Flexible Acceleratedâ€Woundâ€Healing Antibacterial MXeneâ€Based Epidermic Sensor for Intelligent Wearable Humanâ€Machine Interaction. Advanced Functional Materials, 2022, 32, .	7.8	82
775	Recent progress in fabrications and applications of functional hydrogel films. Journal of Polymer Science, 2023, 61, 1026-1039.	2.0	6
776	Construction of Transparent, Adhesive, and Conductive Ionogels and Use for Strain Sensors. ACS Applied Polymer Materials, 2022, 4, 6916-6924.	2.0	1
777	Mucosa-interfacing electronics. Nature Reviews Materials, 2022, 7, 908-925.	23.3	35
778	Nanocomposite films as electrochemical sensors for detection of catalase activity. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
779	Hydrogels Enable Future Smart Batteries. ACS Nano, 2022, 16, 15528-15536.	7.3	39
780	Spatially Confined Silicon Nanoparticles Anchored in Porous Carbon as Lithium-Ion-Battery Anode Materials. ACS Applied Nano Materials, 2022, 5, 13542-13552.	2.4	5
781	Morphing-to-Adhesion Polysaccharide Hydrogel for Adaptive Biointerfaces. ACS Applied Materials & Interfaces, 2022, 14, 42420-42429.	4.0	15
782	Facile Fabrication of Injectable Alginate and Poly(3,4â€ethylenedioxythiophene)â€Based Soft Electrodes toward the Goal of Neuroâ€Regenerative Applications. Advanced Healthcare Materials, 2022, 11, .	3.9	7
783	An Intrapericardial Injectable Hydrogel Patch for Mechanical–Electrical Coupling with Infarcted Myocardium. ACS Nano, 2022, 16, 16234-16248.	7.3	24
784	Highly Sensitive Zwitterionic Hydrogel Sensor for Motion and Pulse Detection with Water Retention, Adhesive, Antifreezing, and Self-Healing Properties. ACS Applied Materials & Interfaces, 2022, 14, 47100-47112.	4.0	24
785	A Conductive Hydrogel Microneedleâ€Based Assay Integrating PEDOT:PSS and Agâ€Pt Nanoparticles for Realâ€Time, Enzymeâ€Less, and Electrochemical Sensing of Glucose. Advanced Healthcare Materials, 2023, 12, .	3.9	15
786	High-Sensitivity Flexible Sensor Based on Biomimetic Strain-Stiffening Hydrogel. ACS Applied Materials & Interfaces, 2022, 14, 47148-47156.	4.0	26
787	A Shapable Alginate Hydrogel Resolving the Conflicts between Multifunctionality and Fabrication Simplicity. ACS Applied Materials & amp; Interfaces, 2022, 14, 47014-47024.	4.0	0
788	Biointerfacial Analysis of HEK293 Cells in Contact with Hydrogels based on Polyâ€ <i>N</i> â€Isopropylacrylamide and Copolymers. Advanced Materials Interfaces, 2022, 9, .	1.9	1

#	Article	IF	CITATIONS
789	Convenient hydrogel adhesion with crystalline zones. Journal of Industrial and Engineering Chemistry, 2023, 117, 103-108.	2.9	3
790	From grape seed extracts to extremely stable strain sensors with freezing tolerance, drying resistance and anti-oxidation properties. Materials Today Communications, 2022, 33, 104551.	0.9	2
791	Fracture tolerance induced by dynamic bonds in hydrogels. Journal of the Mechanics and Physics of Solids, 2022, 169, 105083.	2.3	6
792	Rapid electrophoretic deposition of biocompatible graphene coatings for high-performance recording neural electrodes. Nanoscale, 2022, 14, 15845-15858.	2.8	1
793	Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. Materials Horizons, 2023, 10, 136-148.	6.4	20
794	Supramolecular polyelectrolyte hydrogel based on conjoined double-networks for multifunctional applications. Journal of Materials Chemistry A, 2022, 10, 23649-23665.	5.2	19
795	Highly stretchable, self-healing elastomer hydrogel with universal adhesion driven by reversible cross-links and protein enhancement. Journal of Materials Chemistry B, 2022, 10, 9188-9201.	2.9	7
796	Nanocone-Array-Based Platinum-Iridium Oxide Neural Microelectrodes: Structure, Electrochemistry, Durability and Biocompatibility Study. Nanomaterials, 2022, 12, 3445.	1.9	13
797	Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. Polymer Reviews, 2023, 63, 574-612.	5.3	24
798	Bioinspired Strategies for Stretchable Conductors. Chemical Research in Chinese Universities, 2023, 39, 30-41.	1.3	3
799	Tough, Self-Healing, and Conductive Elastomer ─Ionic PEGgel. ACS Applied Materials & Interfaces, 2022, 14, 50152-50162.	4.0	5
800	Solution Processed WO3 and PEDOT:PSS Composite for Hole Transport Layer in ITO-Free Organic Solar Cells. Journal of Cluster Science, 2023, 34, 2135-2145.	1.7	1
801	Hydrogel interfaces for merging humans and machines. Nature Reviews Materials, 2022, 7, 935-952.	23.3	153
802	MXene-Enabled Self-Adaptive Hydrogel Interface for Active Electroencephalogram Interactions. ACS Nano, 2022, 16, 19373-19384.	7.3	25
803	Fast Transport and Transformation of Biomacromolecular Substances via Thermoâ€Stimulated Active "Inhalation–Exhalation―Cycles of Hierarchically Structured Smart pNIPAM–DNA Hydrogels. Advanced Materials, 2023, 35, .	11.1	12
804	Formation of silver wires embedded in hydrogels using femtosecond laser ablation and electroplating for strain sensing. Journal of Micromechanics and Microengineering, 0, , .	1.5	0
805	Bio-based Materials in Bioelectronics. , 2023, , 55-119.		0
806	Ultrathin Hydrogel Films toward Breathable Skinâ€Integrated Electronics. Advanced Materials, 2023, 35,	11.1	66

		CITATION REPORT	Т
#	Article	IF	CITATION
807	Tissueâ€Mimetic Supramolecular Polymer Networks for Bioelectronics. Advanced Materials, 202	23, 35, . 11.1	1 15
808	Body-Mediated Bioelectronics for Zero-Powered Ion Release and Electrical Stimulation. ACS Ener Letters, 2022, 7, 3997-4004.	rgy 8.8	3
809	Thermal-Responsive Hydrogel Actuators with Photo-Programmable Shapes and Actuating Trajec ACS Applied Materials & Interfaces, 2022, 14, 51244-51252.	tories. 4.0	9
810	Self-compounded, tough biohydrogels for robust self-adhesive biointerfaces. Materials Today Ph 2022, 29, 100905.	ysics, 2.9	5
811	Significant Roles of Ions in Enhancing and Functionalizing Anisotropic Hydrogels. ACS Applied Materials & Interfaces, 2022, 14, 51318-51328.	4.0	4
812	Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sense using hemicellulose-decorated polypyrrole as a conductive matrix. International Journal of Biological Macromolecules, 2022, 223, 1-10.	ors 3.6	7
813	One-step preparation of highly viscoelastic, stretchable, antibacterial, biocompatible, wearable, conductive composite hydrogel with extensive adhesion. Composites Science and Technology, 2 231, 109793.	2023, 3.8	14
814	Supratough and stretchable hydrogels with time-space controllability for athletic rehabilitation. Chemical Engineering Journal, 2023, 453, 139667.	6.6	4
815	Recent Advances in Materials, Designs and Applications of Skin Electronics. IEEE Open Journal o Nanotechnology, 2023, 4, 55-70.	f 0.9	3
816	Nanocatalysts induced self-triggering leather skin for human–machine interaction. Chemical Engineering Journal, 2023, 454, 140269.	6.6	4
817	Hopping Behavior Mediates the Anomalous Confined Diffusion of Nanoparticles in Porous Hydro Journal of Physical Chemistry Letters, 2022, 13, 10612-10620.	ogels. 2.1	6
818	Ultrapermeable and Wet-Adhesive Monolayer Porous Film for Stretchable Epidermal Electrode. A Applied Materials & amp; Interfaces, 2022, 14, 52535-52543.	ACS 4.0	4
819	Extremely Soft, Stretchable, and Self-Adhesive Silicone Conductive Elastomer Composites Enabl Molecular Lubricating Effect. Nano Letters, 2022, 22, 8966-8974.	ed by a 4.5	9
820	3D conductive material strategies for modulating and monitoring cells. Progress in Materials Science, 2023, 133, 101041.	16.0	0 3
821	Flexible and Zwitterionic Fluorinated Hydrogel Scaffold with High Fluorine Content for Noninvas ¹⁹ F Magnetic Resonance Imaging under Ultrahigh Scanning Resolution. Advanced Healthcare Materials, 2023, 12, .	ive 3.9	2
822	Rapid Gelation of Tough and Antiâ€5welling Hydrogels under Mild Conditions for Underwater Communication. Advanced Functional Materials, 2023, 33, .	7.8	60
823	Soft, wireless electronic dressing system for wound analysis and biophysical therapy. Nano Toda 2022, 47, 101685.	iy, 6.2	9
824	Smart electronics based on 2D materials for wireless healthcare monitoring. Applied Physics Rev 2022, 9, .	riews, 5.5	7

#	Article	IF	CITATIONS
825	Filtration-processed biomass nanofiber electrodes for flexible bioelectronics. Journal of Nanobiotechnology, 2022, 20, .	4.2	5
826	From grape seed extract to highly sensitive sensors with adhesive, self-healable and biocompatible properties. European Polymer Journal, 2023, 183, 111751.	2.6	5
827	An in situ inhibition strategy: Forming a physical barrier around ionic crosslinkers to toughen double-network hydrogels. Materials and Design, 2023, 225, 111522.	3.3	1
828	Synthetic strain-stiffening hydrogels towards mechanical adaptability. Journal of Materials Chemistry B, 2023, 11, 221-243.	2.9	9
829	In-situ polymerization of PANI on hydrogel electrolyte enabling all-in-one supercapacitors mechanically stable at low temperatures. Chemical Engineering Journal, 2023, 455, 140949.	6.6	11
830	The impact of electrical stimulation protocols on neuronal cell survival and proliferation using cell-laden GelMA/graphene oxide hydrogels. Journal of Materials Chemistry B, 2023, 11, 581-593.	2.9	5
831	Advances in metal–organic framework-based hydrogel materials: preparation, properties and applications. Journal of Materials Chemistry A, 2023, 11, 2092-2127.	5.2	23
832	Recent advances in conductive hydrogels: classifications, properties, and applications. Chemical Society Reviews, 2023, 52, 473-509.	18.7	125
833	Photocurable 3D printing gels with dual networks for high-sensitivity wearable sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130828.	2.3	5
834	Dual-crosslinked hyaluronic acid hydrogel with self-healing capacity and enhanced mechanical properties. Carbohydrate Polymers, 2023, 301, 120372.	5.1	15
835	Perspective Chapter: Tissue-Electronics Interfaces. , 0, , .		5
836	Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. Science Advances, 2022, 8, .	4.7	11
837	Skin-like hydrogel-elastomer based electrochemical device for comfortable wearable biofluid monitoring. Chemical Engineering Journal, 2023, 455, 140609.	6.6	14
839	Super Tough Hydrogels with Self-adaptive Network Facilitated by Liquid Metal. Chinese Journal of Polymer Science (English Edition), 2023, 41, 866-873.	2.0	5
840	Wearable Perovskiteâ€Based Shadow Recognition Sensor for Ambient and Nonobtrusive Human–Computer Interaction. Advanced Intelligent Systems, 2023, 5, .	3.3	3
841	Balanced Coexistence of Reversible and Irreversible Covalent Bonds in a Conductive Triple Polymeric Network Enables Stretchable Hydrogels with High Toughness and Adhesiveness. ACS Applied Materials & Interfaces, 2022, 14, 56395-56406.	4.0	4
842	Bibliometric analysis on Brain-computer interfaces in a 30-year period. Applied Intelligence, 2023, 53, 16205-16225.	3.3	2
843	Silk fibroin hydrogels for biomedical applications. , 2022, 1, .		25

		CITATION REPORT		
#	Article		IF	CITATIONS
844	Three-dimensional printing of soft hydrogel electronics. Nature Electronics, 2022, 5, 8) 3-903.	13.1	51
845	Tissue-like Conductive Ti ₃ C ₂ /Sodium Alginate Hybrid Hydro Electrochemical Sensing. ACS Applied Materials & Interfaces, 2022, 14, 57311-57	gel for 320.	4.0	7
846	Inorganic Subnanometer Nanowire-Based Organogels: Trends, Challenges, and Opport Nano, 2023, 17, 20-26.	unities. ACS	7.3	6
847	Short-term plasticity, multimodal memory, and logical responses mimicked in stretcha Matter, 2023, 6, 429-444.	ble hydrogels.	5.0	12
848	Bio-hybrid electronic and photonic devices. Experimental Biology and Medicine, 2022,	247, 2128-2141.	1.1	3
849	Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for W Multifunctional Sensing. ACS Applied Electronic Materials, 2023, 5, 205-215.	/earable	2.0	4
850	Humanoid Ionotronic Skin for Smart Object Recognition and Sorting. , 2023, 5, 189-20)1.		13
851	Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal interventional photomedicine. Nature Communications, 2022, 13, .	regulated	5.8	12
852	Soft strain-insensitive bioelectronics featuring brittle materials. Science, 2022, 378, 12	22-1227.	6.0	29
853	Effect of Salt on Dynamic Mechanical Behaviors of Polyampholyte Hydrogels. Macrom 56, 535-544.	plecules, 2023,	2.2	16
854	Crystallization-Driven Supramolecular Gelation of Poly(vinyl alcohol) by a Small Catech Macromolecules, 2022, 55, 10870-10879.	ol Derivative.	2.2	4
855	Consecutive Ink Writing of Conducting Polymer and Graphene Composite Electrodes f Electronics-Related Applications. Polymers, 2022, 14, 5294.	or Foldable	2.0	1
856	Anti-swellable cellulose hydrogel for underwater sensing. Carbohydrate Polymers, 202	3, 306, 120541.	5.1	16
857	Design and engineering of organ-on-a-chip. Biomedical Engineering Letters, 2023, 13,	97-109.	2.1	11
858	Enzymatically-mineralized double-network hydrogels with ultrahigh mechanical streng and stiffness. Theranostics, 2023, 13, 673-684.	th, toughness,	4.6	4
859	High-Performance Zwitterionic Organohydrogel Fiber in Bioelectronics for Monitoring Bioinformation. Biosensors, 2023, 13, 115.		2.3	0
860	Performance of Oral Cavity Sensors: A Systematic Review. Sensors, 2023, 23, 588.		2.1	1
861	Chitosan-Based Hydrogels for Bioelectronic Sensing: Recent Advances and Application and Food Safety. Biosensors, 2023, 13, 93.	s in Biomedicine	2.3	12

#	Article	IF	CITATIONS
862	Ultra-soft and highly stretchable tissue-adhesive hydrogel based multifunctional implantable sensor for monitoring of overactive bladder. Biosensors and Bioelectronics, 2023, 225, 115060.	5.3	7
863	Inorganic Ionic Oligomers Induced Organicâ€Inorganic Synergistic Toughening Enabling Mechanical Robust and Recyclable Nanocomposite Hydrogels. Advanced Functional Materials, 2023, 33, .	7.8	12
864	Rapid improvement of heart repair in rats after myocardial infarction by precise magnetic stimulation on the vagus nerve with an injectable magnetic hydrogel. Nanoscale, 2023, 15, 3532-3541.	2.8	8
865	Hydrogel Nanoarchitectonics of a Flexible and Selfâ€Adhesive Electrode for Longâ€Term Wireless Electroencephalogram Recording and Highâ€Accuracy Sustained Attention Evaluation. Advanced Materials, 2023, 35, .	11.1	27
866	Emerging Bioâ€Interfacing Wearable Devices for Signal Monitoring: Overview of the Mechanisms and Diverse Sensor Designs to Target Distinct Physiological Bioâ€Parameters. , 2023, 2, .		5
867	All-printed and stretchable organic electrochemical transistors using a hydrogel electrolyte. Nanoscale, 2023, 15, 3263-3272.	2.8	10
868	Force-induced ion generation in zwitterionic hydrogels for a sensitive silent-speech sensor. Nature Communications, 2023, 14, .	5.8	22
869	Investigation of Mechanical and Electrical Properties of E-textile Bioelectrode Consisting of Conductive Polymer and Ionic Liquid Gel on Knit Fabric. IEEJ Transactions on Sensors and Micromachines, 2023, 143, 2-5.	0.0	0
870	Effects of Electrical Stimulation on Articular Cartilage Regeneration with a Focus on Piezoelectric Biomaterials for Articular Cartilage Tissue Repair and Engineering. International Journal of Molecular Sciences, 2023, 24, 1836.	1.8	6
871	Robust Neural Interfaces with Photopatternable, Bioadhesive, and Highly Conductive Hydrogels for Stable Chronic Neuromodulation. ACS Nano, 2023, 17, 885-895.	7.3	19
872	Electro-stimulated drug release by methacrylated hyaluronic acid-based conductive hydrogel with enhanced mechanical properties. International Journal of Biological Macromolecules, 2023, 231, 123297.	3.6	12
873	Mixed solvent exchange enabled high-performance polymeric gels. Polymer, 2023, 267, 125661.	1.8	5
874	A universal strategy for preparing tough and smart glassy hydrogels. Chemical Engineering Journal, 2023, 457, 141280.	6.6	10
875	Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. Journal of Colloid and Interface Science, 2023, 636, 113-133.	5.0	16
876	Hydrogels as the plant culture substrates: A review. Carbohydrate Polymers, 2023, 305, 120544.	5.1	10
877	Hydrogel as an advanced energy material for flexible batteries. Polymer-Plastics Technology and Materials, 2023, 62, 359-383.	0.6	0
878	Reconfigurable Electrical Networks within a Conductive Hydrogel Composite. Advanced Materials, 2023, 35, .	11.1	8
879	Bioinspired Selfâ€Growing Hydrogels by Harnessing Interfacial Polymerization. Advanced Materials, 2023, 35, .	11.1	8

#	Article	IF	CITATIONS
880	Double-Network Hydrogel Films Based on Cellulose Derivatives and κ-Carrageenan with Enhanced Mechanical Strength and Superabsorbent Properties. Gels, 2023, 9, 20.	2.1	2
881	Recent advances in the development of europium(<scp>iii</scp>) and terbium(<scp>iii</scp>)-based luminescent supramolecular metallogels. Soft Matter, 2023, 19, 1854-1872.	1.2	10
882	Wearable supercapacitors. , 2023, , 585-596.		1
883	Mechanical Training Enabled Reinforcement of Polyrotaxaneâ€Containing Hydrogel. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
884	Identification of the First Sulfobetaine Hydrogelâ€Binding Peptides via Phage Display Assay. Macromolecular Rapid Communications, 2023, 44, .	2.0	0
885	Flexible and Soft Materials and Devices for Neural Interface. , 2023, , 79-139.		1
886	Tough and fatigue-resistant polymer networks by crack tip softening. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	7
887	é ^{~3} 离åçºড়҉»´ç´çº³ç±³çº¢%´å^†æ•£æ¶²æ€é‡ʿ属å^¶å¤é«˜çµæ•度和自修åï⊄¹⁄4电溴â‡èƒ¶ç"¨äºŽåº"åĩa¹⁄4感å¹	™".3 S ©ienc	e Chi na Mat
888	Ultraâ€Histocompatible and Electrophysiologicalâ€Adapted PEDOTâ€Based Hydrogels Designed for Cardiac Repair. Advanced Functional Materials, 2023, 33, .	7.8	16
889	Mussel-Based Biomimetic Strategies in Musculoskeletal Disorder Treatment: From Synthesis Principles to Diverse Applications. International Journal of Nanomedicine, 0, Volume 18, 455-472.	3.3	3
890	Neuroflex: Intraneural and Extraneural Flexible Sensor Architectures for Neural Probing. , 2023, , 531-559.		0
891	A Soft and Stretchable Multielectrode Cuff for Selective Peripheral Nerve Stimulation. Advanced Materials Technologies, 2023, 8, .	3.0	2
892	Sebumâ€Membraneâ€Inspired Proteinâ€Based Bioprotonic Hydrogel for Artificial Skin and Humanâ€Machine Merging Interface. Advanced Functional Materials, 2023, 33, .	7.8	55
893	Hydrogels with electrically conductive nanomaterials for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 2036-2062.	2.9	17
894	Temperature-Gated Light-Guiding Hydrogel Fiber for Thermoregulation During Optogenetic Neuromodulation. Advanced Fiber Materials, 2023, 5, 968-978.	7.9	4
895	Digital manufacturing of personalised footwear with embedded sensors. Scientific Reports, 2023, 13, .	1.6	9
896	Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interface via electropolymerization for ultrasmall implantable neural microelectrodes. Journal of Colloid and Interface Science, 2023, 638, 339-348.	5.0	11
897	A liquid metal/carbon nanotubes complex enabling ultra-fast polymerization of super-robust, stretchable adhesive hydrogels for highly sensitive sensor. Journal of Colloid and Interface Science, 2023, 638, 313-323.	5.0	22

# 898	ARTICLE Dual-crosslinked bioadhesive hydrogel as NIR/pH stimulus-responsiveness platform for effectively accelerating wound healing. Journal of Colloid and Interface Science, 2023, 637, 20-32.	IF 5.0	CITATIONS
899	Elastoplastic behavior of anisotropic, physically crosslinked hydrogel networks comprising stiff, charged fibrils in an electrolyte. Soft Matter, 2023, 19, 2792-2800.	1.2	2
900	Developing an electrochemical sensor for the <i>in vivo</i> measurements of dopamine. Sensors & Diagnostics, 2023, 2, 559-581.	1.9	5
901	Selfâ€Healing Stress Sensors: Coupling Stressâ€5ensing Performance with Dynamic Chemistry. , 2023, 2, .		2
902	Osmocapillary adhesion: Reversible and strong adhesion between any hydrogel. Extreme Mechanics Letters, 2023, 61, 101996.	2.0	2
903	An Ultraâ€Sensitive Flexible Resistive Sensor with Double Strain Layer and Crack Inspired by the Physical Structure of Human Epidermis: Design, Fabrication, and Cuffless Blood Pressure Monitoring Application. Advanced Materials Technologies, 2023, 8, .	3.0	5
904	An Artificial Motion and Tactile Receptor Constructed by Hyperelastic Double Physically Cross‣inked Silk Fibroin Ionoelastomer. Advanced Functional Materials, 2023, 33, .	7.8	6
905	Highly Elastic, Self-Healing, Recyclable Interlocking Double-Network Liquid-Free Ionic Conductive Elastomers via Facile Fabrication for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2023, 15, 19447-19458.	4.0	14
906	Spike Current Induction by Photogenerated Charge Accumulation at the Surface Sites of Porous Porphyrinic Zirconium Metal-Organic Framework Electrodes in Photoelectrochemical Cells. Bulletin of the Chemical Society of Japan, 2023, 96, 321-327.	2.0	3
907	Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury. , 2023, 148, 213385.		13
908	Reinforcing supramolecular hyaluronan hydrogels via kinetically interlocking multiple-units strategy. Carbohydrate Polymers, 2023, 310, 120703.	5.1	5
909	PHEMA/PPy cytocompatible conductive cryogels: One-pot synthesis, characterization, and electrical properties. Materials Today Communications, 2023, 35, 105791.	0.9	2
910	Anti-fatigue ionic gels for long-term multimodal respiratory abnormality monitoring. Journal of Materials Science and Technology, 2023, 151, 99-108.	5.6	3
911	Emerging ultrasonic bioelectronics for personalized healthcare. Progress in Materials Science, 2023, 136, 101110.	16.0	10
912	Mechanical Training Enabled Reinforcement of Polyrotaxaneâ€Containing Hydrogel. Angewandte Chemie, 2023, 135, .	1.6	1
913	Stretchable, adhesive and low impedance hydrogel prepared by one-pot method used as ECG electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662, 130998.	2.3	8
914	Cell Differentiation-Inspired, Salt-Induced Multifunctional Gels for an Intelligent Soft Robot with an Artificial Reflex Arc. ACS Applied Materials & Interfaces, 2023, 15, 5910-5920.	4.0	3
915	Robust cellulose-based hydrogel marbles with excellent stability for gas sensing. Carbohydrate Polymers, 2023, 306, 120617.	5.1	12

#	Article	IF	CITATIONS
916	Polymeric Scaffolds for Regeneration of Central/Peripheral Nerves and Soft Connective Tissues. Advanced NanoBiomed Research, 2023, 3, .	1.7	2
917	AIE-Active Freeze-Tolerant Hydrogels Enable Multistage Information Encryption and Decryption at Subzero Temperatures. Engineering, 2023, 23, 82-89.	3.2	3
918	Recent Progress of Conductive Hydrogel Fibers for Flexible Electronics: Fabrications, Applications, and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	40
919	Antiâ€Dehydration and Rapid Triggerâ€Detachable Multifunctional Hydrogels Promote Scarless Therapeutics of Deep Burn. Advanced Functional Materials, 2023, 33, .	7.8	20
920	Molecularly Hybridized Conduction in DPPâ€Based Donor–Acceptor Copolymers toward Highâ€Performance Ionoâ€Electronics. Small, 2023, 19, .	5.2	4
921	Tuning Water-Resistant Networks in Mussel-Inspired Hydrogels for Robust Wet Tissue and Bioelectronic Adhesion. ACS Nano, 2023, 17, 2745-2760.	7.3	39
922	Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 123, 4693-4763.	23.0	40
923	Triboelectric Nanogenerator As Implantable Devices for Biological Sensing. , 2023, , 1-48.		0
924	Nanomaterial-based biohybrid hydrogel in bioelectronics. Nano Convergence, 2023, 10, .	6.3	15
925	Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nature Communications, 2023, 14, .	5.8	45
927	Implantable Triboelectric Nanogenerators for Selfâ€Powered Cardiovascular Healthcare. Small, 2023, 19, .	5.2	17
928	Electroactive and Stretchable Hydrogels of 3,4-Ethylenedioxythiophene/thiophene Copolymers. ACS Omega, 2023, 8, 6753-6761.	1.6	1
929	Programmable bio-ionic liquid functionalized hydrogels for in situ 3D bioprinting of electronics at the tissue interface. Materials Today Advances, 2023, 17, 100352.	2.5	2
930	Guide to Leveraging Conducting Polymers and Hydrogels for Direct Current Stimulation. Advanced Materials Interfaces, 2023, 10, .	1.9	9
931	Perspectives on the fundamental principles and manufacturing of stretchable ionotronics. Applied Physics Letters, 2023, 122, .	1.5	4
932	Deep Eutectic Solventsâ€Based Ionogels with Ultrafast Gelation and High Adhesion in Harsh Environments. Advanced Functional Materials, 2023, 33, .	7.8	41
933	Metal-based porous hydrogels for highly conductive biomaterial scaffolds. Oxford Open Materials Science, 2023, 3, .	0.5	3
934	Press-N-Go On-Skin Sensor with High Interfacial Toughness for Continuous Healthcare Monitoring. ACS Applied Materials & Interfaces, 2023, 15, 11379-11387.	4.0	5

ARTICLE IF CITATIONS # Dual Physically Crosslinked Silk Fibroin Ionoelastomer with Ultrahigh Stretchability and Low 935 3.2 3 Hysteresis. Chemistry of Materials, 2023, 35, 1752-1761. Poisson–Nernst–Planck framework for modelling ionic strain and temperature sensors. Journal of Materials Chemistry B, 2023, 11, 5544-5551. Intrinsically Nonswellable Multifunctional Hydrogel with Dynamic Nanoconfinement Networks for 937 5.6 12 Robust Tissueâ€Adaptable Bioelectronics. Advanced Science, 2023, 10, . Multi-material 3D Printing of Mechanochromic Double Network Hydrogels for On-Demand Patterning. 4.0 ACS Applied Materials & amp; Interfaces, 2023, 15, 11122-11130. Smart Wearable Systems for Health Monitoring. Sensors, 2023, 23, 2479. 939 2.1 17 An Autofluorescent Hydrogel with Waterâ€Dependent Emission for Dehydrationâ€Visualizable Smart 940 7.8 Wearable Electronics. Advanced Functional Materials, 2023, 33, . Injectable Conductive Hydrogels with Tunable Degradability as Novel Implantable Bioelectrodes. 941 5.2 8 Small, 2023, 19, . Flexible Antiswelling Photothermalâ€Therapy MXene Hydrogelâ€Based Epidermal Sensor for Intelligent Human–Machine Interfacing. Advanced Functional Materials, 2023, 33, . Chinese Tofuâ€Inspired Biomimetic Conductive and Transparent Fibers for Biomedical Applications. Small 943 3 4.6 Methods, 2023, 7, . A Controlled Biodegradable Triboelectric Nanogenerator Based on PEGDA/Laponite Hydrogels. ACS 944 Applied Materials & amp; Interfaces, 2023, 15, 12787-12796. Electrokinetic Properties of a Hydrogel Based on PVA, Xanthan, and PEDOT:PSS. Nanobiotechnology 945 0 0.2 Reports, 2022, 17, 794-804. Pure Conducting Polymer Hydrogels Increase Signalâ€toâ€Noise of Cutaneous Electrodes by Lowering 946 Skin Interface Impedance. Advanced Healthcare Materials, 2023, 12, . Modulation of the Viscoelastic Response of Hydrogels with Supramolecular Bonds. Advanced 947 0.3 0 Structured Materials, 2023, , 39-56. Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295. 948 238 Instant formation of horizontally ordered nanofibrous hydrogel films and direct investigation of 950 3.2 1 peculiar neuronal cell behaviors atop. Biomaterials Research, 2023, 27, . Self-healing Au/PVDF-HFP composite ionic gel for flexible underwater pressure sensor. Journal of 2.0 Semiconductors, 2023, 44, 032602. Achieving near-infrared-light-mediated switchable friction regulation on MXene-based double 952 3.4 5 network hydrogels. Friction, 2024, 12, 39-51. Entanglement in Smart Hydrogels: Fast Response Time, Antiâ€Freezing and Antiâ€Drying. Advanced Functional Materials, 2023, 33, .

#	Article	IF	CITATIONS
954	PEDOT:PSS hydrogels with high conductivity and biocompatibility for <i>in situ</i> cell sensing. Journal of Materials Chemistry B, 2023, 11, 3226-3235.	2.9	6
955	Ultraflexible tattoo electrodes for epidermal and inÂvivo electrophysiological recording. Cell Reports Physical Science, 2023, 4, 101335.	2.8	4
956	Soft Electronics for Health Monitoring Assisted by Machine Learning. Nano-Micro Letters, 2023, 15, .	14.4	23
957	Study on the Interaction of Plasma-Polymerized Hydrogel Coatings with Aqueous Solutions of Different pH. Gels, 2023, 9, 237.	2.1	2
958	Toughening Doubleâ€Network Hydrogels by Polyelectrolytes. Advanced Materials, 2023, 35, .	11.1	27
959	A Biocompatible Supercapacitor Diode with Enhanced Rectification Capability toward Ion/Electron oupling Logic Operations. Advanced Materials, 2023, 35, .	11.1	8
960	Lyophilization-Free Approach to the Fabrication of Conductive Polymer Foams Enabling Photo-Thermo-Electrical-Induced Cell Differentiation under Global Illumination. Chemistry of Materials, 2023, 35, 2846-2856.	3.2	2
961	Thermoplastic charge-transfer hydrogels for highly sensitive strain and temperature sensors. Journal of Materials Chemistry A, 2023, 11, 8320-8329.	5.2	4
962	Nanostructured ionic hydrogel with integrated conductivity, stretchability and thermal responsiveness for a high-performance strain and temperature sensor. Biomaterials Science, 2023, 11, 3603-3615.	2.6	6
963	Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors. Molecules, 2023, 28, 2817.	1.7	4
964	Designing Superhydrophilic Hydrogels as Binder-Free Catalysts for Enhanced Oxygen Evolution Performance. Industrial & Engineering Chemistry Research, 2023, 62, 5543-5551.	1.8	0
965	Bioadhesive and electroactive hydrogels for flexible bioelectronics and supercapacitors enabled by a redox-active core–shell PEDOT@PZIF-71 system. Materials Horizons, 2023, 10, 2169-2180.	6.4	14
966	Nearâ€infrared Lightâ€accelerated Glucose Oxidaseâ€MoS ₂ Cascade Catalytic Chemodynamic Therapy in Synergistic Cationic Polymer Hydrogels to Combate Multibacterial Infection. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
967	Self-powered ionic tactile sensors. Journal of Materials Chemistry C, 2023, 11, 7920-7936.	2.7	5
968	Materials and Structural Designs for Neural Interfaces. ACS Applied Electronic Materials, 2023, 5, 1926-1946.	2.0	5
969	Recent Advances of Capacitive Sensors: Materials, Microstructure Designs, Applications, and Opportunities. Advanced Materials Technologies, 2023, 8, .	3.0	20
970	Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chemical Society Reviews, 2023, 52, 2992-3034.	18.7	41
971	Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics. Biosensors and Bioelectronics, 2023, 231, 115288.	5.3	4

#	Article	IF	CITATIONS
972	A supramolecular gel-elastomer system for soft iontronic adhesives. Nature Communications, 2023, 14, .	5.8	12
973	Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. Advanced Materials, 2023, 35, .	11.1	5
974	Multifunctional organic monolayer-based coatings for implantable biosensors and bioelectronic devices: Review and perspectives. Biosensors and Bioelectronics: X, 2023, 14, 100349.	0.9	4
975	Ionic Conductive, Antidrying, and Flexible Organohydrogels Suitable for Pressure Sensors and Gas Sensors. ACS Applied Electronic Materials, 2023, 5, 2758-2768.	2.0	6
976	Robust Electrostatically Interactive Hydrogel Coatings for Macroscopic Supramolecular Assembly via Rapid Wet Adhesion. ACS Applied Materials & Interfaces, 2023, 15, 21640-21650.	4.0	6
977	Electrical stimulation for therapeutic approach. , 2023, 1, .		10
978	Designing Ionic Conductive Elastomers Using Hydrophobic Networks and Hydrophilic Salt Hydrates with Improved Stability in Air. Advanced Electronic Materials, 0, , .	2.6	0
1001	Biodegradable materials and devices for neuroelectronics. MRS Bulletin, 0, , .	1.7	1
1003	Soft Robotics Enables Neuroprosthetic Hand Design. ACS Nano, 2023, 17, 9661-9672.	7.3	9
1004	Hydrogels and conductive hydrogels for implantable bioelectronics. MRS Bulletin, 2023, 48, 495-505.	1.7	9
1019	Hydrogel-integrated optical fiber sensors and their applications: a comprehensive review. Journal of Materials Chemistry C, 2023, 11, 9383-9424.	2.7	5
1030	Conductive polymer based hydrogels and their application in wearable sensors: a review. Materials Horizons, 2023, 10, 2800-2823.	6.4	23
1032	Implantable neural electrodes: from preparation optimization to application. Journal of Materials Chemistry C, 2023, 11, 6550-6572.	2.7	0
1045	Better electronics from immiscibility. Nature Materials, 2023, 22, 801-802.	13.3	3
1054	Wearable bioelectronics fabricated in situ on skins. Npj Flexible Electronics, 2023, 7, .	5.1	4
1056	The new focus of energy storage: flexible wearable supercapacitors. Carbon Letters, 2023, 33, 1461-1483.	3.3	2
1068	A Feasibility Study on Textile Electrodes for Transcutaneous Electrical Nerve Stimulation. , 2023, , .		0
1072	Perspectives on recent advancements in energy harvesting, sensing and bio-medical applications of piezoelectric gels. Chemical Society Reviews, 2023, 52, 6191-6220.	18.7	12

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1074	3D-printed PEDOT:PSS for soft robotics. Nature Reviews Materials, 2023, 8, 604-622.	23.3	22
1075	Triboelectric Nanogenerator as Implantable Devices for Biological Sensing. , 2023, , 1439-1486.		0
1085	Utilizing cellulose-based conducting hydrogels in iontronics. , 2023, 1, 1369-1385.		2
1086	When nanocellulose meets hydrogels: the exciting story of nanocellulose hydrogels taking flight. Green Chemistry, 2023, 25, 8349-8384.	4.6	1
1089	Soft bioelectronics for the management of cardiovascular diseases. , 2024, 2, 8-24.		4
1122	3D Printable Hydrogel Bioelectronic Interfaces for Various Organs. , 2023, , .		0
1129	Conductive and antibacterial dual-network hydrogel for soft bioelectronics. Materials Horizons, 2023, 10, 5805-5821.	6.4	2
1134	A sutureless bioelectronic patch for electrocardiography. Nature Electronics, 2023, 6, 730-731.	13.1	0
1164	Physiological sensing system integrated with vibration sensor and frequency gel dampers inspired by spider. Materials Horizons, 2024, 11, 822-834.	6.4	1
1176	Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. Materials Horizons, 2024, 11, 1152-1176.	6.4	0
1189	Wearable, epidermal devices for assessment of swallowing function. Npj Flexible Electronics, 2023, 7, .	5.1	0
1197	Hydrogels for active photonics. Microsystems and Nanoengineering, 2024, 10, .	3.4	0
1214	Stretchable interfaces come in from the cold. Nature Electronics, 2024, 7, 4-5.	13.1	0
1239	An overview of conductive composite hydrogels for flexible electronic devices. Advanced Composites and Hybrid Materials, 2024, 7, .	9.9	0