Biomass pyrolysis: A review of the process developmen researches up to the commercialisation stage

Journal of Energy Chemistry 39, 109-143 DOI: 10.1016/j.jechem.2019.01.024

Citation Report

#	Article	IF	CITATIONS
1	Cross-Polymerization between the Typical Sugars and Phenolic Monomers in Bio-Oil: A Model Compounds Study. Energy & Fuels, 2019, 33, 7480-7490.	2.5	26
2	Rapid reflectance difference microscopy based on liquid crystal variable retarder. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	1
3	Cross-interaction during Co-gasification of wood, weed, plastic, tire and carton. Journal of Environmental Management, 2019, 250, 109467.	3.8	38
4	Pyrolysis Process as a Sustainable Management Option of Poultry Manure: Characterization of the Derived Biochars and Assessment of their Nutrient Release Capacities. Water (Switzerland), 2019, 11, 2271.	1.2	27
5	Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Processing Technology, 2019, 196, 106180.	3.7	318
6	The performance of turbocharged diesel engine with injected calophyllum inophyllum methyl ester blends and inducted babul wood gaseous fuels. Fuel, 2019, 257, 116060.	3.4	14
7	Catalytic pyrolysis of poplar wood over transition metal oxides: Correlation of catalytic behaviors with physiochemical properties of the oxides. Biomass and Bioenergy, 2019, 124, 125-141.	2.9	82
8	Experimental and Modeling Analysis of Brewers´Spent Grains Gasification in a Downdraft Reactor. Energies, 2019, 12, 4413.	1.6	21
9	Simulation of Batch Slow Pyrolysis of Biomass Materials Using the Process-Flow-Diagram COCO Simulator. Processes, 2019, 7, 775.	1.3	11
10	Techno-economic and environmental sustainability of biomass waste conversion based on thermocatalytic reforming. Waste Management, 2020, 101, 106-115.	3.7	34
11	Insight into the formation mechanism of levoglucosenone in phosphoric acid-catalyzed fast pyrolysis of cellulose. Journal of Energy Chemistry, 2020, 43, 78-89.	7.1	54
12	Impacts of temperature on evolution of char structure during pyrolysis of lignin. Science of the Total Environment, 2020, 699, 134381.	3.9	52
13	Effects of hydrothermal carbonization on catalytic fast pyrolysis of tobacco stems. Biomass Conversion and Biorefinery, 2020, 10, 1221-1236.	2.9	14
14	Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions. Catalysis Today, 2020, 358, 3-29.	2.2	78
15	Catalytic upgrading of biomass pyrolysis oil over tailored hierarchical MFI zeolite: Effect of porosity enhancement and porosity-acidity interaction on deoxygenation reactions. Renewable Energy, 2020, 148, 674-688.	4.3	47
16	Kinetic Analysis of Bio-Oil Aging by Using Pattern Search Method. Industrial & Engineering Chemistry Research, 2020, 59, 1487-1494.	1.8	12
17	Thermochemical liquefaction of pig manure: Factors influencing on oil. Fuel, 2020, 264, 116884.	3.4	29
18	CO2-assisted catalytic pyrolysis of digestate with steel slag. Energy, 2020, 191, 116529.	4.5	21

#	Article	IF	CITATIONS
19	Catalytic upgrading of beech wood pyrolysis oil over iron- and zinc-promoted hierarchical MFI zeolites. Fuel, 2020, 264, 116813.	3.4	44
20	Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Processing Technology, 2020, 199, 106252.	3.7	139
21	Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies. Energies, 2020, 13, 4856.	1.6	29
22	Progress in catalytic pyrolysis of municipal solid waste. Energy Conversion and Management, 2020, 226, 113525.	4.4	75
23	Influence of coal ash on the characteristics of corn straw pyrolysis products. Bioresource Technology, 2020, 318, 124055.	4.8	17
24	Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure. Renewable and Sustainable Energy Reviews, 2020, 134, 110305.	8.2	126
25	Potential of stepwise pyrolysis for on-site treatment of agro-residues and enrichment of value-added chemicals. Waste Management, 2020, 118, 667-676.	3.7	11
26	Cas phase acylation of guaiacol with acetic acid on acid catalysts. Applied Catalysis B: Environmental, 2020, 278, 119317.	10.8	12
27	Environmental Issues Related to Bioenergy. , 2020, , 92-92.		4
28	Catalytic Pyrolysis of Lignocellulosic Biomass: The Influence of the Catalyst Regeneration Sequence on the Composition of Upgraded Pyrolysis Oils over a H-ZSM-5/Al-MCM-41 Catalyst Mixture. ACS Omega, 2020, 5, 28992-29001.	1.6	12
29	Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids. Energies, 2020, 13, 6033.	1.6	11
30	Microwave-Assisted Pyrolysis of Pine Wood Sawdust Mixed with Activated Carbon for Bio-Oil and Bio-Char Production. Processes, 2020, 8, 1437.	1.3	19
31	Catalytic valorization of biomass and bioplatforms to chemicals through deoxygenation. Advances in Catalysis, 2020, , 1-108.	0.1	9
32	Recent Insights into Lignocellulosic Biomass Pyrolysis: A Critical Review on Pretreatment, Characterization, and Products Upgrading. Processes, 2020, 8, 799.	1.3	95
33	Progress of the applications of bio-oil. Renewable and Sustainable Energy Reviews, 2020, 134, 110124.	8.2	154
34	Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons. Energy, 2020, 209, 118454.	4.5	32
35	Bio-Oil Characterizations of <i>Spirulina Platensis</i> Residue (SPR) Pyrolysis Products for Renewable Energy Development. Key Engineering Materials, 2020, 849, 47-52.	0.4	2
36	Effect of N2 flow rate on kinetic investigation of lignin pyrolysis. Environmental Research, 2020, 190, 109976.	3.7	19

#	Article	IF	CITATIONS
37	Progress of the development of reactors for pyrolysis of municipal waste. Sustainable Energy and Fuels, 2020, 4, 5885-5915.	2.5	32
38	Biomass Utilization for Energy Production. New Technologies. High Temperature, 2020, 58, 660-667.	0.1	3
39	Evaluation of Hydrogen Yield Evolution in Gaseous Fraction and Biochar Structure Resulting from Walnut Shells Pyrolysis. Energies, 2020, 13, 6359.	1.6	4
40	The Upgrading of Bio-Oil from the Intermediate Pyrolysis of Waste Biomass Using Steel Slag as a Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 18420-18432.	3.2	18
41	Thermal Biomass Conversion: A Review. Processes, 2020, 8, 516.	1.3	70
42	Slow pyrolysis of municipal solid waste (MSW): A review. Bioresource Technology, 2020, 312, 123615.	4.8	86
43	Thermal loss analysis and improvements for biomass conversion reactors. Energy Conversion and Management, 2020, 218, 112924.	4.4	11
44	Application of Upgraded Drop-In Fuel Obtained from Biomass Pyrolysis in a Spark Ignition Engine. Energies, 2020, 13, 2089.	1.6	11
45	Oxidative Catalytic Cracking and Reforming of Coal Pyrolysis Volatiles over NiO. Energy & Fuels, 2020, 34, 6928-6937.	2.5	11
46	Research progress of nanocellulose for electrochemical energy storage: A review. Journal of Energy Chemistry, 2020, 51, 342-361.	7.1	67
47	Coke Formation during Thermal Treatment of Bio-oil. Energy & Fuels, 2020, 34, 7863-7914.	2.5	123
48	Slow pyrolysis of Spirulina platensis for the production of nitrogenous compounds and potential routes for their separation. Bioresource Technology, 2020, 313, 123709.	4.8	3
49	Pyrolysis of creosote-treated railroad ties to recover creosote and produce biochar. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104826.	2.6	3
50	Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters. Journal of Cleaner Production, 2020, 267, 121993.	4.6	20
51	Understanding microwave heating in biomass-solvent systems. Chemical Engineering Journal, 2020, 393, 124741.	6.6	26
52	Evidence for cross-polymerization between the biomass-derived furans and phenolics. Renewable Energy, 2020, 154, 517-531.	4.3	27
53	Insight into Pyrolysis Kinetics of Lignocellulosic Biomass: Isoconversional Kinetic Analysis by the Modified Friedman Method. Energy & Fuels, 2020, 34, 4874-4881.	2.5	70
54	Synergy in the Cocracking under FCC Conditions of a Phenolic Compound in the Bio-oil and a Model Compound for Vacuum Gasoil. Industrial & Engineering Chemistry Research, 2020, 59, 8145-8154.	1.8	6

#	Article	IF	CITATIONS
55	Energy quality of pellets produced from coffee residue: Characterization of the products obtained via slow pyrolysis. Industrial Crops and Products, 2020, 154, 112731.	2.5	29
56	Enhancing the aromatic hydrocarbon yield from the catalytic copyrolysis of xylan and LDPE with a dual-catalytic-stage combined CaO/HZSM-5 catalyst. Journal of the Energy Institute, 2020, 93, 1833-1847.	2.7	31
57	A review on facilitating bio-wastes degradation and energy recovery efficiencies in anaerobic digestion systems with biochar amendment. Bioresource Technology, 2020, 314, 123777.	4.8	33
58	Roles of furfural during the thermal treatment of bio-oil at low temperatures. Journal of Energy Chemistry, 2020, 50, 85-95.	7.1	24

Biocarbon from peanut hulls and their green composites with biobased poly(trimethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{50}{55}$ 582 Td

60	Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range. Bioresource Technology, 2020, 304, 123002.	4.8	104
61	Pyrolysis of cellulose with co-feeding of formic or acetic acid. Cellulose, 2020, 27, 4909-4929.	2.4	9
62	Potentiality of "orujillo―(olive oil solid waste) to produce hydrogen by means of pyrolysis. International Journal of Hydrogen Energy, 2020, 45, 20549-20557.	3.8	9
63	Preparation of bio-oil-based polymer microspheres for adsorption Cu2+ and its adsorption behaviors. Journal of Dispersion Science and Technology, 2021, 42, 1021-1030.	1.3	3
64	Coupling DPM with DNS for dynamic interphase force evaluation. Chemical Engineering Science, 2021, 231, 116238.	1.9	7
65	Fundamental Insights into Walnut Shell Bio-Oil Electrochemical Conversion: Reaction Mechanism and Product Properties. Bioenergy Research, 2021, 14, 322-332.	2.2	5
66	Techno-economic analysis for biomass supply chain: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2021, 135, 110164.	8.2	80
67	The addition of biochar as a sustainable strategy for the remediation of PAH–contaminated sediments. Chemosphere, 2021, 263, 128274.	4.2	57
68	A comparative production and characterisation of fast pyrolysis bio-oil from Populus and Spruce woods. Energy, 2021, 214, 118930.	4.5	22
69	Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation. Renewable and Sustainable Energy Reviews, 2021, 135, 110189.	8.2	101
70	Influence of temperature on products from fluidized bed pyrolysis of wood and solid recovered fuel. Fuel, 2021, 283, 118922.	3.4	27
71	Fast pyrolysis as an alternative to the valorization of olive mill wastes. Journal of the Science of Food and Agriculture, 2021, 101, 2650-2658.	1.7	10
72	The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition. Energy, 2021, 214, 119065.	4.5	19

#	ARTICLE Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A	IF	CITATIONS
73	critical review. Renewable and Sustainable Energy Reviews, 2021, 138, 110563.	8.2 5.0	67
75	Effects of AAEMs on formation of heavy components in bio-oil during pyrolysis at various temperatures and heating rates. Fuel Processing Technology, 2021, 213, 106690.	3.7	41
76	The limiting effect of manganese phase of oceanic cobalt-rich crust reduction by sawdust in acid leaching. Sustainable Chemistry and Pharmacy, 2021, 19, 100346.	1.6	9
77	Improvement of levoglucosenone selectivity in liquid phase conversion of cellulose-derived anhydrosugar over solid acid catalysts. Fuel Processing Technology, 2021, 212, 106625.	3.7	18
78	Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming. Energy, 2021, 214, 118971.	4.5	19
79	Volatile-char interactions during biomass pyrolysis: Effect of char preparation temperature. Energy, 2021, 215, 119189.	4.5	39
80	Thermochemical Conversion of Biomass and Upgrading of Bio-Products to Produce Fuels and Chemicals. , 2021, , 1-47.		0
81	One-pot transformation of furfural into γ-valerolactone catalyzed by a hierarchical Hf-Al-USY zeolite with balanced Lewis and BrĂ,nsted acid sites. Sustainable Energy and Fuels, 2021, 5, 4724-4735.	2.5	17
82	High Quality Bio-Oil Obtained from Catalyzed Pyrolysis of Olive Mill Solid Wastes in a Bi-Functional Reactor. Materials Sciences and Applications, 2021, 12, 52-77.	0.3	1
83	Stepped M@Pt(211) (M = Co, Fe, Mo) single-atom alloys promote the deoxygenation of lignin-derived phenolics: mechanism, kinetics, and descriptors. Catalysis Science and Technology, 2021, 11, 7047-7059.	2.1	13
84	A critical review of separation technologies in lignocellulosic biomass conversion to liquid transportation fuels production processes. Chemical Engineering Communications, 2022, 209, 529-554.	1.5	3
85	Solvent-free manufacture of methacrylate polymers from biomass pyrolysis products. Reaction Chemistry and Engineering, 2021, 6, 335-344.	1.9	2
86	Alternative Bio-Refinery Products From Hydrothermal Liquefaction of Waste. , 2021, , .		0
87	Obtenção de carvão ativado a partir do resÃduo fuligem de candeia. Revista Materia, 2021, 26, .	0.1	0
88	mattress foam waste. Waste Management, 2021, 120, 415-423. Converting Cyclohexanone to Liquid Fuel-Grade Products: A Characterization and Comparison Study	3.7	9
90	of Hydrotreating Molybdenum Catalysts. Catalysis Letters, 2021, 151, 3343-3360. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. Journal of Environmental Management, 2021, 281, 111918	3.8	107

		CITATION REPORT	
#	Article	IF	Citations
91	Characterization of Hydrogel and Fly Ash from Biomass. Egyptian Journal of Chemistry, 2021, .	0.1	0
92	Catalytic Pyrolysis of Municipal Solid Waste: Effects of Pyrolysis Parameters. Bulletin of Chemic Reaction Engineering and Catalysis, 2021, 16, 342-352.	cal 0.5	4
93	Preparation and characterization of hydrochar-derived activated carbon from glucose by hydrothermal carbonization. Biomass Conversion and Biorefinery, 2023, 13, 3785-3796.	2.9	18
94	Highly efficient Co single-atom catalyst for epoxidation of plant oils. Journal of Chemical Physic 2021, 154, 131103.	s, 1.2	6
95	Biochar catalyzing polymerization of the volatiles from pyrolysis of poplar wood. International Journal of Energy Research, 2021, 45, 13936-13951.	2.2	11
96	Analytical pyrolysis (Py–GC/MS) of corn stover, bean pod, sugarcane bagasse, and pineapple leaves for biorefining. Brazilian Journal of Chemical Engineering, 2022, 39, 137-146.	crown 0.7	7
97	Biodiesel and Other Value-Added Products from Bio-Oil Obtained from Agrifood Waste. Proces: 2021, 9, 797.	ses, 1.3	29
98	Domino transformation of furfural to γ-valerolactone over SAPO-34 zeolite supported zirconiu phosphate catalysts with tunable Lewis and BrÃ,nsted acid sites. Molecular Catalysis, 2021, 50	m 6, 111538. ^{1.0}	19
100	Full temperature range study of rice husk bio-oil distillation: Distillation characteristics and product distribution. Separation and Purification Technology, 2021, 263, 118382.	3.9	19
101	Pyrolysis of different wood species: influence of process conditions on biochar properties and gas-phase composition. Biomass Conversion and Biorefinery, 2024, 14, 6027-6037.	2.9	4
102	Improved conversion of levoglucosenone into 5-hydroxymethylfurfural in a biphasic system. Bio Conversion and Biorefinery, 2022, 12, 3503-3511.	omass 2.9	5
103	Apparent Pyrolysis Kinetics and Index-Based Assessment of Pretreated Peach Seeds. Processes, 905.	2021, 9, 1.3	6
104	Balancing the Aromatic and Ketone Content of Bio-oils as Rejuvenators to Enhance Their Effica Restoring Properties of Aged Bitumen. ACS Sustainable Chemistry and Engineering, 2021, 9, 69	cy in 3.2 912-6922.	23
105	Kinetic analysis and in-situ no support catalytic pyrolysis product distribution of Chinese herb residue. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105114.	2.6	15
106	Strategic disposal of flood debris via CO2-assisted catalytic pyrolysis. Journal of Hazardous Materials, 2021, 412, 125242.	6.5	6
107	Biochemical and Thermochemical Routes of H ₂ Production from Food Waste: AÂComparative Review. Chemical Engineering and Technology, 2023, 46, 191-203.	0.9	23
108	Catalytic upgrading of lignocellulosic biomass pyrolysis vapors: Insights into physicochemical changes in ZSM-5. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105123.	2.6	20
109	A comprehensive study on by-products of food processing industry pyrolysis using a thermobal reactor coupled to GC-FID/TCD: Mass, atomic and energy balances, thermokinetic modeling, pr distribution, and characterization. Journal of Analytical and Applied Pyrolysis, 2021, 156, 10510	lance oduct 2.6 07.	3

#	Article	IF	CITATIONS
110	Thermokinetic study of macadamia carpel pyrolysis using thermogravimetric analysis. Canadian Journal of Chemical Engineering, 2022, 100, 577-587.	0.9	5
111	Temporal and spatial evolution of biochar chemical structure during biomass pellet pyrolysis from the insights of micro-Raman spectroscopy. Fuel Processing Technology, 2021, 218, 106839.	3.7	34
112	Global vision from the thermodynamics of the effect of the bio-oil composition and the reforming strategies in the H2 production and the energy requirement. Energy Conversion and Management, 2021, 239, 114181.	4.4	18
113	Fates of heavy organics of bio-oil in hydrotreatment: The key challenge in the way from biomass to biofuel. Science of the Total Environment, 2021, 778, 146321.	3.9	20
114	Pyrolysis behaviors of rapeseed meal: products distribution and properties. Biomass Conversion and Biorefinery, 0, , 1.	2.9	2
115	Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles. Industrial & Engineering Chemistry Research, 2021, 60, 18627-18639.	1.8	7
116	Pyrolysis of flaxseed residue: Exploration of characteristics of the biochar and bio-oil products. Journal of the Energy Institute, 2021, 97, 1-12.	2.7	25
117	Food waste treatment using in situ gasification after pyrolysis to produce hydrogen-rich syngas. Biomass Conversion and Biorefinery, 2023, 13, 9689-9699.	2.9	5
118	Valorization of solid waste using advanced thermo-chemical process: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105434.	3.3	33
119	Assessment of the biochemical degradability of crop derived biochars in trace elements polluted soils. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105186.	2.6	4
120	Activated carbon from lignocellulosic biomass as catalyst: A review of the applications in fast pyrolysis process. Journal of Analytical and Applied Pyrolysis, 2021, 158, 105246.	2.6	46
121	Pyrolysis of agricultural crop residues: An overview of researches by Indian scientific community. Bioresource Technology Reports, 2021, 15, 100761.	1.5	17
122	Iron-Modified Biochar from Sugarcane Straw to Remove Arsenic and Lead from Contaminated Water. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	7
123	A review on the sustainable energy generation from the pyrolysis of coconut biomass. Scientific African, 2021, 13, e00909.	0.7	26
124	Effect of torrefaction pretreatment on the fast pyrolysis behavior of biomass: Product distribution and kinetic analysis on spruce-pin-fir sawdust. Journal of Analytical and Applied Pyrolysis, 2021, 158, 105259.	2.6	19
125	Peach Seeds Pyrolysis Integrated into a Zero Waste Biorefinery: an Experimental Study. Circular Economy and Sustainability, 2022, 2, 351-382.	3.3	4
126	Review on Reaction Pathways in the Catalytic Upgrading of Biomass Pyrolysis Liquids. Energy & Fuels, 2021, 35, 16943-16964.	2.5	23
127	Progress in Bioâ€Based Phenolic Foams: Synthesis, Properties, and Applications. ChemBioEng Reviews, 2021, 8, 612-632.	2.6	10

#	Article	IF	CITATIONS
128	Pyrolytic coproduction of bio-char and upgraded bio-oils from abundant agro-industrial wastes. Brazilian Journal of Chemical Engineering, 0, , 1.	0.7	1
129	Progress in application of the pyrolytic lignin from pyrolysis of biomass. Chemical Engineering Journal, 2021, 419, 129560.	6.6	38
130	Recycling spent ternary lithium-ion batteries for modification of dolomite used in catalytic biomass pyrolysis – A preliminary study by thermogravimetric and pyrolysis-gas chromatography/mass spectrometry analysis. Bioresource Technology, 2021, 337, 125476.	4.8	21
131	Decomposition of benzyl phenyl ether over char-supported Ni: The effect of char structures. Fuel Processing Technology, 2021, 221, 106941.	3.7	12
132	Effect of compound additive on microwave-assisted pyrolysis characteristics and products of Chlorella vulgaris. Journal of the Energy Institute, 2021, 98, 188-198.	2.7	17
133	Removal of heavy metals from soil with biochar composite: A critical review of the mechanism. Journal of Environmental Chemical Engineering, 2021, 9, 105830.	3.3	97
134	A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resources, Conservation and Recycling, 2021, 173, 105734.	5.3	109
135	Potential of fueling spark-ignition engines with syngas or syngas blends for power generation in rural electrification: A short review and S.W.O.T. analysis. Sustainable Energy Technologies and Assessments, 2021, 47, 101510.	1.7	6
136	Pyrolysis of waste oils for the production of biofuels: A critical review. Journal of Hazardous Materials, 2022, 424, 127396.	6.5	35
137	Hydrotreatment of fast pyrolysis liquid over Cr and P-modified catalysts with high Ni content. Catalysis Today, 2021, 379, 285-295.	2.2	1
138	Soybean hulls as carbohydrate feedstock for medium to high-value biomolecule production in biorefineries: A review. Bioresource Technology, 2021, 339, 125594.	4.8	23
139	A review on lignocellulosic biomass waste into biochar-derived catalyst: Current conversion techniques, sustainable applications and challenges. Biomass and Bioenergy, 2021, 154, 106245.	2.9	37
140	Optimization of bio-oil production from microwave co-pyrolysis of food waste and low-density polyethylene with response surface methodology. Journal of Environmental Management, 2021, 297, 113345.	3.8	26
141	Techno-economic assessment of bio-oil produced from Eucalyptus forestry residues. Industrial Crops and Products, 2021, 171, 113936.	2.5	12
142	Pyrolysis of sesame residue: Evolution of the volatiles and structures of biochar versus temperature. Environmental Technology and Innovation, 2021, 24, 101859.	3.0	9
143	Study on microwave pyrolysis and production characteristics of Chlorella vulgaris using different compound additives. Bioresource Technology, 2021, 341, 125857.	4.8	15
144	Residual pyrolysis biochar as additive to enhance wood pellets quality. Renewable Energy, 2021, 180, 850-859.	4.3	13
145	Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology, 2021, 223, 106997.	3.7	256

#	Article	IF	CITATIONS
146	Pyrolysis of furfural residue pellets: Physicochemical characteristics of pyrolytic pellets and pyrolysis kinetics. Renewable Energy, 2021, 179, 2136-2146.	4.3	6
147	Torrefied herb residues in nitrogen, air and oxygen atmosphere: Thermal decomposition behavior and pyrolytic products characters. Bioresource Technology, 2021, 342, 125991.	4.8	9
148	Almond shells: Catalytic fixed-bed pyrolysis and volatilization kinetics. Renewable Energy, 2021, 180, 1380-1390.	4.3	10
149	Phytomining of noble metals – A review. Chemosphere, 2022, 286, 131805.	4.2	31
150	Co-pyrolysis of different torrefied Chinese herb residues and low-density polyethylene: Kinetic and products distribution. Science of the Total Environment, 2022, 802, 149752.	3.9	21
151	Restoration of organic-matter-impoverished arable soils through the application of soil conditioner prepared via short-time hydrothermal fermentation. Environmental Research, 2022, 204, 112088.	3.7	4
152	MFiX based multi-scale CFD simulations of biomass fast pyrolysis: A review. Chemical Engineering Science, 2022, 248, 117131.	1.9	41
153	Biomass as source for hydrochar and biochar production to recover phosphates from wastewater: A review on challenges, commercialization, and future perspectives. Chemosphere, 2022, 286, 131490.	4.2	56
154	Pachira aquatica fruits shells valorization: renewables phenolics through analytical pyrolysis study (Py-GC/MS). Ciencia Rural, 2022, 52, .	0.3	8
155	Catalytic pyrolysis of pine wood over char-supported Fe: Bio-oil upgrading and catalyst regeneration by CO2/H2O. Fuel, 2022, 307, 121778.	3.4	30
156	Effects of Cd and Sn modified MCM-41 on pyrolysis of cellulose. Journal of Renewable and Sustainable Energy, 2021, 13, 013101.	0.8	2
157	Enhanced antioxidant activity of aqueous phase bio-oil by hydrothermal pretreatment and its structure-activity relationship. Journal of Analytical and Applied Pyrolysis, 2021, 153, 104992.	2.6	7
158	Overview Regarding Synthetic Gas Production by Biomass Gasification. Advances in Computer and Electrical Engineering Book Series, 2021, , 70-104.	0.2	0
159	Gasification of wastes: The impact of the feedstock type and coâ€gasification on the formation of volatiles and char. International Journal of Energy Research, 2020, 44, 3587-3606.	2.2	24
160	Process Improvements and Techno-Economic Feasibility of Hydrothermal Liquefaction and Pyrolysis of Biomass for Biocrude Oil Production. , 2020, , 221-248.		1
161	Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. Energies, 2020, 13, 420.	1.6	54
162	Nanomaterials to Improve Bio-Oil from Biomass Pyrolysis: State-Of-Art and Challenges. Engineering Materials, 2022, , 109-132.	0.3	0
163	Research on the pyrolysis kinetics of resin powder on waste printed circuit board with different particle sizes at different heating rates: inspiration for the pyrolysis mechanism. Journal of Thermal Analysis and Calorimetry, 0, , 1.	2.0	6

#	Article	IF	CITATIONS
164	Review on Process Development and Challenges in Biomass Pyrolysis. Journal of Physics: Conference Series, 2021, 2054, 012043.	0.3	2
165	Biochar: A Game Changer for Sustainable Agriculture. , 2022, , 143-157.		6
166	Review of research and development on pyrolysis process. Materials Today: Proceedings, 2022, 49, 3679-3686.	0.9	7
167	Lumped-kinetic modeling and experiments on co-pyrolysis of palm kernel cake with polystyrene using a closed-tubing reactor to upgrade pyrolysis products. Energy Conversion and Management, 2021, 249, 114879.	4.4	17
168	Technical challenges in scaling up the microwave technology for biomass processing. Renewable and Sustainable Energy Reviews, 2022, 153, 111767.	8.2	63
169	Energy recovery from biomass through gasification technology. , 2022, , 107-132.		1
170	A Review of Recent Research on Catalytic Biomass Pyrolysis and Low-Pressure Hydropyrolysis. Energy & Fuels, 2021, 35, 18333-18369.	2.5	17
171	Integrating bio-oil production from wood fuels to an existing heat and power plant - evaluation of energy and greenhouse gas performance in a Swedish case study. Sustainable Energy Technologies and Assessments, 2021, 48, 101648.	1.7	6
172	Technical readiness level of biohydrogen production process and its value chain. , 2022, , 335-355.		5
173	Bioresources and biofuels—From classical to perspectives and trends. , 2022, , 165-220.		3
173 174	Bioresources and biofuels—From classical to perspectives and trends. , 2022, , 165-220. Technology to convert biomass to biooil. , 2022, , 25-40.		3
173 174 175	Bioresources and biofuelsâ€"From classical to perspectives and trends. , 2022, , 165-220. Technology to convert biomass to biooil. , 2022, , 25-40. In-situ enhanced catalytic reforming behavior of cobalt-based materials with inherent zero-valent aluminum in spent lithium ion batteries. Applied Catalysis B: Environmental, 2022, 303, 120920.	10.8	3 3 19
173 174 175 176	Bioresources and biofuelsâ€"From classical to perspectives and trends. , 2022, , 165-220. Technology to convert biomass to biooil. , 2022, , 25-40. In-situ enhanced catalytic reforming behavior of cobalt-based materials with inherent zero-valent aluminum in spent lithium ion batteries. Applied Catalysis B: Environmental, 2022, 303, 120920. Utilizing Agricultural Residue for the Cleaner Biofuel Production and Simultaneous Air Pollution Mitigation Due to Stubble Burning: A Net Energy Balance and Total Emission Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 15963-15972.	10.8	3 3 19 15
173 174 175 176	Bioresources and biofuelsâ€"From classical to perspectives and trends. , 2022, , 165-220. Technology to convert biomass to biooil. , 2022, , 25-40. In-situ enhanced catalytic reforming behavior of cobalt-based materials with inherent zero-valent aluminum in spent lithium ion batteries. Applied Catalysis B: Environmental, 2022, 303, 120920. Utilizing Agricultural Residue for the Cleaner Biofuel Production and Simultaneous Air Pollution Mitigation Due to Stubble Burning: A Net Energy Balance and Total Emission Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 15963-15972. Effect of pyrolysis temperature on blast furnace injection performance of biochar. Fuel, 2022, 313, 122648.	10.8 3.2 3.4	3 3 19 15 6
173 174 175 176 177	Bioresources and biofuelsâ€"From classical to perspectives and trends. , 2022, , 165-220. Technology to convert biomass to biooil. , 2022, , 25-40. In-situ enhanced catalytic reforming behavior of cobalt-based materials with inherent zero-valent aluminum in spent lithium ion batteries. Applied Catalysis B: Environmental, 2022, 303, 120920. Utilizing Agricultural Residue for the Cleaner Biofuel Production and Simultaneous Air Pollution Mitigation Due to Stubble Burning: A Net Energy Balance and Total Emission Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 15963-15972. Effect of pyrolysis temperature on blast furnace injection performance of biochar. Fuel, 2022, 313, 122648. Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. International Journal of Biological Macromolecules, 2022, 195, 274-286.	10.8 3.2 3.4 3.6	3 3 19 15 6 20
173 174 175 176 177 178	Bioresources and biofuelsâ€"From classical to perspectives and trends. , 2022, , 165-220. Technology to convert biomass to biooil. , 2022, , 25-40. In-situ enhanced catalytic reforming behavior of cobalt-based materials with inherent zero-valent aluminum in spent lithium ion batteries. Applied Catalysis B: Environmental, 2022, 303, 120920. Utilizing Agricultural Residue for the Cleaner Biofuel Production and Simultaneous Air Pollution Mitigation Due to Stubble Burning: A Net Energy Balance and Total Emission Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 15963-15972. Effect of pyrolysis temperature on blast furnace injection performance of biochar. Fuel, 2022, 313, 122648. Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. International Journal of Biological Macromolecules, 2022, 195, 274-286. Production of aromatic hydrocarbons from microwave-assisted pyrolysis of municipal solid waste (MSW). Chemical Engineering Research and Design, 2022, 159, 382-392.	10.8 3.2 3.4 3.6 2.7	3 3 19 15 6 20
 173 174 175 176 177 178 179 180 	Bioresources and biofuelsâ€"From classical to perspectives and trends. , 2022, , 165-220. Technology to convert biomass to biooil. , 2022, , 25-40. In-situ enhanced catalytic reforming behavior of cobalt-based materials with inherent zero-valent aluminum in spent lithium ion batteries. Applied Catalysis B: Environmental, 2022, 303, 120920. Utilizing Agricultural Residue for the Cleaner Biofuel Production and Simultaneous Air Pollution Mitigation Due to Stubble Burning: A Net Energy Balance and Total Emission Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 15963-15972. Effect of pyrolysis temperature on blast furnace injection performance of biochar. Fuel, 2022, 313, 122648. Current understanding and optimization strategies for efficient lignin-enzyme interaction: A review. International Journal of Biological Macromolecules, 2022, 195, 274-286. Production of aromatic hydrocarbons from microwave-assisted pyrolysis of municipal solid waste (MSW). Chemical Engineering Research and Design, 2022, 159, 382-392. Comprehensive analysis of industrial-scale heating plants based on different biomass slow pyrolysis technologies: Product property, energy balance, and ecological impact. Cleaner Engineering and Technology, 2022, 6, 100391.	10.8 3.2 3.4 3.6 2.7 2.1	3 3 19 15 6 20 16

#	Article	IF	CITATIONS
182	Profitability analysis of thermochemical processes for biomass-waste valorization: a comparison of dry vs wet treatments. Science of the Total Environment, 2022, 811, 152240.	3.9	8
184	Study on the Staged and Direct Fast Pyrolysis Behavior of Waste Pine Sawdust Using High Heating Rate TG-FTIR and Py-GC/MS. ACS Omega, 2022, 7, 4245-4256.	1.6	14
185	Vacuum Pyrolysis of Pine Sawdust to Recover Spent Lithium Ion Batteries: The Synergistic Effect of Carbothermic Reduction and Pyrolysis Gas Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 1287-1297.	3.2	38
186	Sustainable Production of Biochar, Bio-Gas and Bio-Oil from Lignocellulosic Biomass and Biomass Waste. Energy, Environment, and Sustainability, 2022, , 177-205.	0.6	1
187	Co-pyrolysis of polyethylene terephthalate and poplar wood: influence of zeolite catalyst on coke formation. Biomass Conversion and Biorefinery, 0, , 1.	2.9	2
188	Utilization of contaminated biowaste. , 2022, , 395-405.		0
189	Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite. Catalysts, 2022, 12, 131.	1.6	12
190	Thermal behavior and pyrolysis kinetics of olive stone residue. Journal of Thermal Analysis and Calorimetry, 2022, 147, 9045-9054.	2.0	5
191	Towards sustainable catalysts in hydrodeoxygenation of algae-derived oils: A critical review. Molecular Catalysis, 2022, 523, 112131.	1.0	6
192	Reaction mechanism of in-situ vaporization catalytic reforming of aqueous bio-oil for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 7005-7015.	3.8	8
193	Waste surgical masks to fuels via thermochemical co-processing with waste motor oil and biomass. Bioresource Technology, 2022, 348, 126798.	4.8	11
194	Recent advances on industrial solid waste catalysts for improving the quality of bio-oil from biomass catalytic cracking: A review. Fuel, 2022, 315, 123218.	3.4	51
196	Amination of biomass to nitrogen-containing compounds. , 2022, , 593-612.		1
197	A study of chemical pre-treatment and pyrolysis operating conditions to enhance biochar production from rice straw. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105455.	2.6	13
198	A review of aviation oil production from organic wastes through thermochemical technologies. Applications in Energy and Combustion Science, 2022, 9, 100058.	0.9	7
199	Comparative study of catalytic and non-catalytic steam reforming of bio-oil: Importance of pyrolysis temperature and its parent biomass particle size during bio-oil production process. Fuel, 2022, 314, 122746.	3.4	8
200	Comparison of Novel Biochars and Steam Activated Carbon from Mixed Conifer Mill Residues. Energies, 2021, 14, 8472.	1.6	11
201	Controlling the Reaction Microenvironments Through an Embedding Strategy to Strengthen the Chemical Looping Reforming of Biomass Volatile Based on Decoupling Process. SSRN Electronic	0.4	Ο

#	Article	IF	CITATIONS
202	Properties, Kinetics and Pyrolysis Products Distribution of Oxidative Torrefied Camellia Shell in Different Oxygen Concentration. SSRN Electronic Journal, 0, , .	0.4	0
203	Comparative Investigation of the Physicochemical Properties of Chars Produced by Hydrothermal Carbonization, Pyrolysis, and Microwave-Induced Pyrolysis of Food Waste. Polymers, 2022, 14, 821.	2.0	4
204	Investigations on potential Tunisian biomasses energetic valorization: thermogravimetric characterization and kinetic degradation analysis. Comptes Rendus Chimie, 2022, 25, 81-92.	0.2	5
205	Fast Pyrolysis Downer Reactor: Effect of Reactor Geometry on the Hydrodynamics. Industrial & Engineering Chemistry Research, 2022, 61, 4153-4167.	1.8	3
206	Recent advances on the nanoporous catalysts for the generation of renewable fuels. Journal of Materials Research and Technology, 2022, 17, 3277-3336.	2.6	16
207	A critical review on the current technologies for the generation, storage, and transportation of hydrogen. International Journal of Hydrogen Energy, 2022, 47, 13771-13802.	3.8	196
208	Hydrogen-Rich Syngas and Biochar Production by Non-Catalytic Valorization of Date Palm Seeds. Energies, 2022, 15, 2727.	1.6	21
209	Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review. Applied Energy, 2022, 315, 118970.	5.1	62
210	Thermokinetics synergistic effects on co-pyrolysis of coal and rice husk blends for bioenergy production. Fuel, 2022, 318, 123685.	3.4	32
211	Phytomining of rare earth elements – A review. Chemosphere, 2022, 297, 134259.	4.2	27
212	Increasing the Biogas Potential of Rapeseed Straw Using Pulsed Electric Field Pre-Treatment. Energies, 2021, 14, 8307.	1.6	8
213	Autothermal Reforming of Acetic Acid to Hydrogen and Syngas on Ni and Rh Catalysts. Catalysts, 2021, 11, 1504.	1.6	4
214	A Comparison of the Efficiency of Catalysts Based on Ni, Ni-Co and Ni-Mo in Pressure Pyrolysis of Biomass Leading to Hythane. Catalysts, 2021, 11, 1480.	1.6	3
215	Understandings of Catalyst Deactivation and Regeneration during Biomass Tar Reforming: A Crucial Review. ACS Sustainable Chemistry and Engineering, 2021, 9, 17186-17206.	3.2	26
216	Progress in understanding the coking behavior of typical catalysts in the catalytic pyrolysis of biomass. Sustainable Energy and Fuels, 2022, 6, 2113-2148.	2.5	4
217	A review on role of process parameters on pyrolysis of biomass and plastics: Present scope and future opportunities in conventional and microwave-assisted pyrolysis technologies. Chemical Engineering Research and Design, 2022, 162, 435-462.	2.7	56
218	Impact of Mono- and Dual-Sized α-Fe2O3 Catalyst Mixtures on the Thermochemical Processing of Pinewood for Upgraded Liquid Chemicals. Frontiers in Energy Research, 2022, 10, .	1.2	2
219	Valorization of Buckwheat Waste Using a Two-Stage Thermal-Chemical Strategy to Produce Saccharides and Biochar. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
220	Products Distribution During In-Situ and Ex-Situ Catalytic Fast Pyrolysis of Chinese Herb Residues. SSRN Electronic Journal, 0, , .	0.4	0
221	Catalytic Pyrolysis of Cellulose with Biochar Modified by Ni-Co-Mn Cathode Material Recovered from Spent Lithium-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
222	Pyrolysis of cellulose with cathode materials recovered from spent binary and ternary lithium-ion batteries. Fuel, 2022, 324, 124502.	3.4	11
223	Long term antibacterial effect cellulose film was modified with polyhexamethylene biguanide (PHMB). Industrial Crops and Products, 2022, 184, 115038.	2.5	8
224	Boosting production of useful chemicals and micro-mesopores biochar from in situ catalytic pyrolysis of cellulose with red mud. Biomass Conversion and Biorefinery, 2024, 14, 7045-7055.	2.9	5
225	Enhancement of BTX production via catalytic fast pyrolysis of almond shell, olive pomace with polyvinyl chloride mixtures. Chemical Engineering Research and Design, 2022, , .	2.7	7
226	Study on the effect of red mud and its component oxides on the composition of bio-oil derived from corn stover catalytic pyrolysis. Industrial Crops and Products, 2022, 184, 114973.	2.5	8
227	A review on treatment processes of chicken manure. , 2022, 2, 100013.		17
228	Controlling the reaction microenvironments through an embedding strategy to strengthen the chemical looping reforming of methane based on decoupling process. Chemical Engineering Journal, 2022, 446, 137061.	6.6	2
229	Industrial hemp by-product valorization. , 2022, , 301-340.		1
230	Biomass-derived adsorbents for caffeine removal from aqueous medium. , 2022, , 111-134.		0
231	Biomass-derived renewable materials for sustainable chemical and environmental applications. , 2022, , 377-404.		1
232	Production of Hydrocarbon Liquid Fuels from waste Personal Protective Equipment (PPEs) through Pyrolysis. ChemistrySelect, 2022, 7, .	0.7	2
233	An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes. Energies, 2022, 15, 4168.	1.6	7
234	Fast pyrolysis characteristics and its mechanism of corn stover over iron oxide via quick infrared heating. Waste Management, 2022, 149, 60-69.	3.7	4
235	A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 2022, 167, 112715.	8.2	127
236	Estimation of Hydrogen Production from Biomass Pyrolysis for Energy Systems by Using Machine Learning Techniques. SSRN Electronic Journal, 0, , .	0.4	0
237	Prospective review for development of sustainable catalyst and absorbents from biomass and application on plastic waste pyrolysis. International Journal of Environmental Science and Technology, 2023, 20, 8141-8156.	1.8	5

#	Article	IF	CITATIONS
239	Products distribution during in situ and ex situ catalytic fast pyrolysis of Chinese herb residues. Environmental Science and Pollution Research, 2022, 29, 89235-89244.	2.7	3
240	High temperature flash pyrolysis characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effect of temperature and pelletizing. Fuel, 2022, 326, 125022.	3.4	16
241	Catalytic pyrolysis of cellulose with biochar modified by Ni–Co–Mn cathode material recovered from spent lithium-ion battery. Chemosphere, 2022, 305, 135430.	4.2	8
242	Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy and Environment, 2023, 8, 10-114.	4.7	151
243	Effect of alkali metal on pyrolysis characteristics and pyrolysis gas products of Triarrhena lutarioriparia. Biomass Conversion and Biorefinery, 0, , .	2.9	1
244	Characteristics and kinetic analysis of the catalytic pyrolysis of oily sludge under new nickel-ore–based catalysts. Biomass Conversion and Biorefinery, 0, , .	2.9	2
246	Improved simulation of lignocellulosic biomass pyrolysis plant using chemical kinetics in Aspen Plus® and comparison with experiments. AEJ - Alexandria Engineering Journal, 2023, 63, 199-209.	3.4	11
247	Pyrolysis characteristics of torrefied kraft lignin prepared under oxidative and non-oxidative atmospheres. Journal of Analytical and Applied Pyrolysis, 2022, 167, 105657.	2.6	7
248	Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. Materials Today Sustainability, 2022, 19, 100209.	1.9	20
249	Thermal pyrolysis of linseed waste to produce a renewable biofuel using response surface methodology in a fixed bed reactor. Journal of Analytical and Applied Pyrolysis, 2022, 168, 105701.	2.6	3
250	Pyrolysis of municipal waste: Effect of waste type and co-pyrolysis on the formation of products and coke over zeolite catalyst. Chemical Engineering Research and Design, 2022, 187, 105-119.	2.7	3
251	Characterizing sludge pyrolysis by machine learning: Towards sustainable bioenergy production from wastes. Renewable Energy, 2022, 199, 1078-1092.	4.3	38
252	Dual Action of Pyroligneous Acid in the Eco-Friendly Synthesis of Bactericidal Silver Nanoparticles. SSRN Electronic Journal, 0, , .	0.4	0
253	An overview on available treatment processes of poultry manure in Malaysia. AIP Conference Proceedings, 2022, , .	0.3	3
254	Technical Criteria for Converting Biomass to High Liquid Bio-Oil Yields. Clean Energy Production Technologies, 2022, , 189-203.	0.3	0
255	Emerging Pretreatment Technologies Applied to Waste Biorefinery. , 2022, , 69-91.		0
256	Efficient Degradation of Solid Residues from the Diosgenin Clean Production Industry to Produce Bioethanol. SSRN Electronic Journal, 0, , .	0.4	0
257	Assessment of product distribution of plastic waste from catalytic pyrolysis process. Fuel, 2023, 332, 126168.	3.4	14

ARTICLE IF CITATIONS Exploitation of bio-waste by a conventionally designed pyrolyzer to produce bio-oil and bio-char. 258 1.8 0 International Journal of Environmental Science and Technology, 0, , Current Trends in Biological Valorization of Waste-Derived Biomass: The Critical Role of VFAs to Fuel 259 1.4 A Biorefinery. Fermentation, 2022, 8, 445. Optimisation of the Production of Pyrolysed Corn Stover Briquettes and Its Techno-economic 260 1.8 1 Analysis. Waste and Biomass Valorization, 2023, 14, 1333-1354. Plasmaâ€electrified upâ€carbonization for lowâ€carbon clean energy., 2023, 5, . A review on thermochemical conversion process for energy applications by using rice straw. 262 0.9 1 Materials Today: Proceedings, 2022, 71, 339-345. Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600°C. Applications in Energy and Combustion Science, 2022, 12, 100090. Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the 264 trade-off between economic, environmental, and technical indicators. Science of the Total 3.9 35 Environment, 2023, 857, 159155. Biomass pyrolysis: A review on recent advancements and green hydrogen production. Bioresource 4.8 66 Technology, 2022, 364, 128087. Kinetic study of different biomass pyrolysis and oxygen-enriched combustion. Thermal Science, 2022, 266 0.5 2 26, 4131-4145. Dual action of pyroligneous acid in the eco-friendly synthesis of bactericidal silver nanoparticles. 1.4 Heliyon, 2022, 8, e11234. Efficient degradation of solid residues from the diosgenin clean production industry to produce 268 0 1.5 bioethanol. Bioresource Technology Reports, 2022, 20, 101262. Valorizing high-fraction bio-oil to prepare 3D interconnected porous carbon with efficient pore 3.7 utilization for supercapacitor applications. Fuel Processing Technology, 2023, 239, 10753'8. 270 Biomass Pyrolysis., 2022,,. 0 Devolatilization of African Palm (Elaeis guineensis) Husk Catalyzed by Ferrous Sulfate Studied by TG-MS. Ingenieria E Investigacion, 2022, 42, e90946. 271 0.2 Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar 272 1.7 8 wood. Chinese Journal of Chemical Engineering, 2023, 58, 53-68. Valorization of neem seeds biomass to biofuel via non-catalytic and catalytic pyrolysis process: Investigation of catalytic activity of Co–Mo/Al2O3 and Ni–Mo/Al2O3 for biofuel production. Journal of Environmental Management, 2023, 326, 116761. 3.8 Bio-phenolic compounds production through fast pyrolysis: Demineralizing olive pomace 274 1.8 5 pretreatments. Food and Bioproducts Processing, 2023, 137, 200-213. An enhanced strategy based on the pyrolysis of bean dregs for efficient selective recovery of lithium from spent lithium-ion batteries. Green Chemistry, 2022, 24, 9552-9564.

#	Article	IF	CITATIONS
276	Electrochemical conversion of biomass-derived aldehydes into fine chemicals and hydrogen: A review. Environmental Chemistry Letters, 2023, 21, 1555-1583.	8.3	15
277	Advances in sustainable biofuel production from fast pyrolysis of lignocellulosic biomass. Biofuels, 2023, 14, 529-550.	1.4	9
278	Valorization of Camellia oleifera oil processing byproducts to value-added chemicals and biobased materials: A critical review. Green Energy and Environment, 2024, 9, 28-53.	4.7	3
279	Production and characterization of bio-oil from fluidized bed pyrolysis of olive stones, pinewood, and torrefied feedstock. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105841.	2.6	3
280	Sustainable Materials Containing Biochar Particles: A Review. Polymers, 2023, 15, 343.	2.0	11
281	Performance and kinetics study of glycerol ketal synthesis from biomassâ€based platform chemicals catalyzed by metal salts. Journal of Chemical Technology and Biotechnology, 2023, 98, 1147-1157.	1.6	1
282	A systematic review of the techno-economic assessment and biomass supply chain uncertainties of biofuels production from fast pyrolysis of lignocellulosic biomass. Fuel Communications, 2023, 14, 100086.	2.0	22
283	Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review. Environmental Pollution, 2023, 319, 120937.	3.7	19
284	Generation and characterization of bio-oil obtained from the slow pyrolysis of cooked food waste at various temperatures. Waste Management, 2023, 158, 23-36.	3.7	7
285	Pyrolysis of Delonix regia using metal oxide catalysts and solvent effect on fuel fraction of bio-oil. Results in Engineering, 2023, 17, 100876.	2.2	11
286	Bee green: Renewable hydrocarbon fuels from honeycomb residues. Fuel, 2023, 340, 127319.	3.4	4
287	Biomass energy conversion through pyrolysis: A ray of hope for the current energy crisis. , 2023, , 37-68.		4
288	Pyrolysis Technology Choice to Produce Bio-oil, from Municipal Solid Waste, Using Multi-criteria Decision-making Methods. Waste and Biomass Valorization, 2023, 14, 3705-3722.	1.8	4
289	A critical review of the use of nanomaterials in the biomass pyrolysis process. Journal of Cleaner Production, 2023, 400, 136705.	4.6	18
290	Pyrolysis of banana peel with microwave and furnace as the heating sources: The distinct impacts on evolution of the pyrolytic products. Chemical Engineering Research and Design, 2023, 173, 373-383.	2.7	2
291	Maximizing the production of high-value chemicals via fast-pyrolysis of lignin-engineered poplars: Impact of cinnamyl alcohol dehydrogenase 1 (hpCAD) downregulation. Journal of Analytical and Applied Pyrolysis, 2023, 171, 105974.	2.6	0
292	Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review. Journal of Environmental Management, 2023, 339, 117896.	3.8	7
293	Green coal substitutes for boilers through hydrothermal carbonization of biomass: pyrolysis and combustion behavior. Fuel, 2023, 344, 128025.	3.4	3

#	Article	IF	CITATIONS
294	Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review. Energies, 2023, 16, 1829.	1.6	8
295	INFLUENCE OF ZEOLITE CATALYSTS IMPREGNATED WITH TRANSITION METALS ON THE PROCESS OF DEOXYGENATION OF VOLATILE PRODUCTS OF FAST PYROLYSIS OF FLAX SHIVES. , 2022, , .		0
296	A multidimensional numeric study on smoldering-driven pyrolysis of waste polypropylene. Chemical Engineering Research and Design, 2023, 172, 305-316.	2.7	1
297	Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: a review. Environmental Chemistry Letters, 2023, 21, 1419-1476.	8.3	34
298	Co-pyrolysis of biomass and plastic: Circularity of wastes and comprehensive review of synergistic mechanism. Results in Engineering, 2023, 17, 100989.	2.2	26
299	Assessment of the inherent CaO in char on tar catalytic conversion by a micro fluidized bed reaction analyzer for biomass gasification. Fuel, 2023, 344, 127866.	3.4	1
300	Exploring the Prospective of Weed Amaranthus retroflexus for Biofuel Production through Pyrolysis. Agriculture (Switzerland), 2023, 13, 687.	1.4	1
301	Insight into catalytic pyrolysis of palm fronds over MFI, BEA, and FAU framework types of zeolite extrudate. Biomass Conversion and Biorefinery, 0, , .	2.9	0
302	Techno-economic analysis and life cycle assessment of hydrogenation upgrading and supercritical ethanol upgrading processes based on fast pyrolysis of cornstalk for biofuel. Biomass Conversion and Biorefinery, 0, , .	2.9	1
303	The Biomodified Lignin Platform: A Review. Polymers, 2023, 15, 1694.	2.0	11
304	Environmental Analysis, Monitoring, and Process Control Strategy for Reduction of Greenhouse Gaseous Emissions in Thermochemical Reactions. Atmosphere, 2023, 14, 655.	1.0	3
305	Techno-Economic Study and Environmental Analysis for the Production of Bio-methanol Using a Solar-Aided Dual-bed Gasifier. Waste and Biomass Valorization, 2023, 14, 4155-4171.	1.8	0
306	Ultra-rich carbonization through flash devolatilization for synthesis of biochar from biomass. Biomass Conversion and Biorefinery, 0, , .	2.9	1
307	Biomass Fast Pyrolysis Simulation: A Thermodynamic Equilibrium Approach. Clean Energy Production Technologies, 2023, , 111-126.	0.3	0
311	Biomass Conversion By Pyrolysis Process. , 2023, , .		0
316	A review on co-pyrolysis of agriculture biomass and disposable medical face mask waste for green fuel production: recent advances and thermo-kinetic models. Frontiers of Chemical Science and Engineering, 2023, 17, 1141-1161.	2.3	3
318	The effect of spent coffee grounds in increasing the calorific value of waste paper briquettes. AIP Conference Proceedings, 2023, , .	0.3	0
330	Biohydrogen production by biological water-gas shift reaction and bioelectrochemical systems. , 2023, , 353-380.		0

#	Article	IF	CITATIONS
338	Joint application of chemical and thermal approaches for processing of plant biomass waste. AIP Conference Proceedings, 2023, , .	0.3	0
341	Advances and Perspectives of Bio-oil Hydrotreatment for Biofuel Production. Energy & Fuels, 2023, 37, 10134-10154.	2.5	7
348	A review on thermochemical based biorefinery catalyst development progress. Sustainable Energy and Fuels, 0, , .	2.5	0
352	Electroreforming injects a new life into solid waste. , 2023, 1, 892-920.		7
355	Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Advances, 2023, 13, 28307-28336.	1.7	1
360	Green Gasoline: Integrated Production Processes, Future Perspectives and Technoeconomic Feasibility. , 2023, , 145-166.		0
394	A Comprehensive Review of Biomass Pyrolysis to Produce Sustainable Alternative Biofuel. Earth and Environmental Sciences Library, 2024, , 19-30.	0.3	0
406	Advances in nanomaterials for production of fuel gases from biomass. , 2024, , 307-326.		0