MXene-derived TiO₂/reduced graphene ox capacitive capacity for Li-ion and K-ion batteries

Journal of Materials Chemistry A 7, 5363-5372 DOI: 10.1039/c8ta12069b

Citation Report

#	Article	IF	CITATIONS
1	Freeâ€standing Reduced Graphene Oxide/MoO _{3â€<i>x</i>} Composite Film with High Performance for Flexible Supercapacitors. ChemistrySelect, 2019, 4, 9165-9173.	0.7	8
2	Crumpled Nitrogen-Doped Graphene-Wrapped Phosphorus Composite as a Promising Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30858-30864.	4.0	50
3	Scalable submicron/micron silicon particles stabilized in a robust graphite-carbon architecture for enhanced lithium storage. Journal of Colloid and Interface Science, 2019, 555, 783-790.	5.0	22
4	High rate performance of aqueous magnesium-ion batteries based on the Î ⁻ MnO2@carbon molecular sieves composite as the cathode and nanowire VO2 as the anode. Journal of Power Sources, 2019, 444, 227299.	4.0	44
5	Experimental study of thermal charge–discharge behaviors of pouch lithium-ion capacitors. Journal of Energy Storage, 2019, 25, 100902.	3.9	23
6	Silicon Nanoparticles Embedded in Nâ€Doped Few‣ayered Graphene: Facile Synthesis and Application as an Effective Anode for Lithium Ion Batteries. ChemPlusChem, 2019, 84, 1519-1524.	1.3	7
7	Leakage current and self-discharge in lithium-ion capacitor. Journal of Electroanalytical Chemistry, 2019, 850, 113386.	1.9	50
8	Optimization of synthesis conditions of high–tap density FeVO4 hollow microspheres via spray pyrolysis for lithium–ion batteries. Applied Surface Science, 2019, 497, 143718.	3.1	16
9	Reduced graphene oxide foam supported CoNi nanosheets as an efficient anode catalyst for direct borohydride hydrogen peroxide fuel cell. Applied Surface Science, 2019, 491, 659-669.	3.1	31
10	Nitrogen and oxygen co-doped hierarchical porous carbon for high performance supercapacitor electrodes. Chemical Physics Letters, 2019, 730, 32-38.	1.2	12
11	Simultaneous Polymerization Enabled the Confinement of Sizeâ€Adjustable TiO ₂ Nanocrystals in Sâ€Doped Carbons for Highâ€Rate Anode Materials. Energy Technology, 2019, 7, 1900247.	1.8	14
12	Nitrogen and Phosphorus Dual-Doped Multilayer Graphene as Universal Anode for Full Carbon-Based Lithium and Potassium Ion Capacitors. Nano-Micro Letters, 2019, 11, 30.	14.4	120
13	Na2V6O16·2.14H2O nanobelts as a stable cathode for aqueous zinc-ion batteries with long-term cycling performance. Journal of Energy Chemistry, 2019, 38, 185-191.	7.1	66
14	A novel Mo-based oxide β-SnMoO4 as anode for lithium ion battery. Chinese Chemical Letters, 2020, 31, 210-216.	4.8	17
15	Mesoporous manganese-selenide microflowers with enhanced electrochemical performance as a flexible symmetric 1.8â€V supercapacitor. Chemical Engineering Journal, 2020, 382, 122814.	6.6	108
16	Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. Journal of Alloys and Compounds, 2020, 815, 152403.	2.8	108
17	Porous and free-standing Ti3C2T -RGO film with ultrahigh gravimetric capacitance for supercapacitors. Chinese Chemical Letters, 2020, 31, 1004-1008.	4.8	41
18	Accordion-like titanium carbide (MXene) with high crystallinity as fast intercalative anode for high-rate lithium-ion capacitors. Chinese Chemical Letters, 2020, 31, 1009-1013.	4.8	54

ARTICLE IF CITATIONS Realizing high-performance Zn-ion batteries by a reduced graphene oxide block layer at room and low 7.1 29 19 temperatures. Journal of Energy Chemistry, 2020, 43, 1-7. Role of the anatase/TiO₂(B) heterointerface for ultrastable high-rate lithium and sodium energy storage performance. Nanoscale Horizons, 2020, 5, 150-162. 4.1 Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. 21 6.6 131 Chemical Engineering Journal, 2020, 381, 122695. Carbon-coated Li3VO4 with optimized structure as high capacity anode material for lithium-ion 4.8 capacitors. Chinese Chemical Letters, 2020, 31, 2225-2229. 3D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high-performance lithium-ion batteries. Chemical Engineering Journal, 23 139 6.6 2020, 385, 123394. A small amount of delaminated Ti3C2 flakes to greatly enhance the thermal conductivity of boron 3.2 nitride papers by assembling a well-designed interface. Materials Chemistry Frontiers, 2020, 4, 292-301. Bottom-up synthesis of mesoporous germanium as anodes for lithium-ion batteries. Journal of Colloid 25 5.0 9 and Interface Science, 2020, 561, 494-500. The displacement reaction mechanism of the CuV₂O₆ nanowire cathode for 26 1.6 rechargeable aqueous zinc ion batteries. Dalton Transactions, 2020, 49, 1048-1055. Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable 27 83 6.6 magnesium-ion batteries. Chemical Engineering Journal, 2020, 392, 123652. Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 561, 203-210. VO2@Carbon foam as a freestanding anode material for potassium-ion batteries: First principles and 29 2.8 14 experimental study. Journal of Alloys and Compounds, 2020, 845, 156232. MXene derivatives for energy storage applications. Sustainable Energy and Fuels, 2020, 4, 4988-5004. 30 2.5 A multicomponent interconnected composite paper for triple-mode sensors and flexible $\mathbf{31}$ 5.2 23 micro-supercapacitors. Journal of Materials Chemistry A, 2020, 8, 24620-24634. Conversion Reaction Mechanism for Yolkâ€Shellâ€Structured Iron Telluride  Nanospheres and Exploration of Their Electrochemical Performance as an Anode Material for Potassiumâ€Ion Batteries. 4.6 Small Methods, 2020, 4, 2000556. Aggregationâ€Resistant 3D Ti₃C₂Ti>_x</i> MXene with Enhanced 33 7.8 117 Kinetics for Potassium Ion Hybrid Capacitors. Advanced Functional Materials, 2020, 30, 2005663. Rutile TiO₂ Nanoparticles Encapsulated in a Zeolitic Imidazolate Framework-Derived Hierarchical Carbon Framework with Engineered Dielectricity as an Excellent Microwave Absorber. ACS Applied Materials & amp; Interfaces, 2020, 12, 48140-48149. Electrospun Ta-doped TiO₂/C nanofibers as a high-capacity and long-cycling anode 35 5.244 material for Li-ion and K-ion batteries. Journal of Materials Chemistry A, 2020, 8, 20666-20676. Encapsulating Ultrafine Sb Nanoparticles in Na⁺ Pre-Intercalated 3D Porous Ti₃C₂t<i>_{<i>x</i>/i>}</i>>MXene Nanostructures for Enhanced Potassium Storage Performance. ACS Nano, 2020, 14, 13938-13951.

#	Article	IF	CITATIONS
37	Constructing porous TiO ₂ crystals by an etching process for long-life lithium ion batteries. Nanoscale, 2020, 12, 18429-18436.	2.8	7
38	Nanostructured Graphene Oxide-Based Hybrids as Anodes for Lithium-Ion Batteries. Journal of Carbon Research, 2020, 6, 81.	1.4	8
39	Free-standing hybrid films comprising of ultra-dispersed titania nanocrystals and hierarchical conductive network for excellent high rate performance of lithium storage. Nano Research, 2021, 14, 2301-2308.	5.8	10
40	Self-powered supercapacitor-mode tactile sensor based on polygonal litchi–like nanospheres decorated three-dimensional reduced graphene oxide aerogel for wearable electronics device. Journal of Power Sources, 2020, 479, 229096.	4.0	9
41	Twoâ€Dimensional Metalâ€Containing Nanomaterials for Battery Anode Applications. ChemElectroChem, 2020, 7, 3193-3210.	1.7	2
42	Bio-derived hierarchically porous heteroatoms doped‑carbon as anode for high performance potassium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 871, 114272.	1.9	19
43	MXene-Derived Defect-Rich TiO2@rGO as High-Rate Anodes for Full Na Ion Batteries and Capacitors. Nano-Micro Letters, 2020, 12, 128.	14.4	93
44	Sulfur Incorporation in Hierarchical TiO ₂ Nanosheet/Carbon Nanotube Hybrids for Improved Lithium Storage Performance. ChemElectroChem, 2020, 7, 2905-2916.	1.7	6
45	Design and construction of a threeâ€dimensional electrode with biomassâ€derived carbon current collector and waterâ€soluble binder for highâ€sulfurâ€loading lithiumâ€sulfur batteries. , 2020, 2, 635-645.		27
46	Emerging 2D pnictogens for catalytic applications: status and challenges. Journal of Materials Chemistry A, 2020, 8, 12887-12927.	5.2	32
47	Clâ^' Doping Strategy to Boost the Lithium Storage Performance of Lithium Titanium Phosphate. Frontiers in Chemistry, 2020, 8, 349.	1.8	4
48	Watermelon-like TiO ₂ nanoparticle (P25)@microporous amorphous carbon sphere with excellent rate capability and cycling performance for lithium-ion batteries. Nanotechnology, 2020, 31, 215407.	1.3	26
49	Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture for high-performance Li-ion batteries. National Science Review, 2020, 7, 1046-1058.	4.6	46
50	A high ionic conductive glass fiber-based ceramic electrolyte system for magnesium‒ion battery application. Ceramics International, 2020, 46, 13677-13684.	2.3	3
51	Lithium ion storage mechanism exploration of copper selenite as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 827, 154309.	2.8	20
52	Encapsulation of hollow Cu2O nanocubes with Co3O4 on porous carbon for energy-storage devices. Journal of Materials Science and Technology, 2020, 55, 182-189.	5.6	55
53	High-performance Na1.25V3O8 nanosheets for aqueous zinc-ion battery by electrochemical induced de-sodium at high voltage. Chinese Chemical Letters, 2020, 31, 2268-2274.	4.8	39
54	VO2(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries. Chemical Engineering Journal, 2020, 390, 124118.	6.6	154

#	Article	IF	CITATIONS
55	Growing NiS2 nanosheets on porous carbon microtubes for hybrid sodium-ion capacitors. Journal of Power Sources, 2020, 451, 227737.	4.0	55
56	Tailoring mulberry-like Fe2O3 architecture assembled by quantum dots on rGO to enable high pseudocapacitance and controllable solid electrolyte interphase. Chemical Engineering Journal, 2020, 388, 124119.	6.6	17
57	Nickel cobalt oxide nanowiresâ€modified hollow carbon tubular bundles for highâ€performance sodiumâ€ion hybrid capacitors. International Journal of Energy Research, 2020, 44, 3883-3892.	2.2	11
58	Facile Synthesis of Metal–Organic Framework-Derived CoSe ₂ Nanoparticles Embedded in the N-Doped Carbon Nanosheet Array and Application for Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 9365-9375.	4.0	122
59	Composition and Architecture Design of Double‣helled Co _{0.85} Se _{1â^'} <i>_x</i> S <i>_x</i> @Carbon/Graphene Hollow Polyhedron with Superior Alkali (Li, Na, K)â€ŀon Storage. Small, 2020, 16, e1905853.	5.2	44
60	MXeneâ€Based Nanocomposites for Energy Conversion and Storage Applications. Chemistry - A European Journal, 2020, 26, 6342-6359.	1.7	66
61	Recent Advances and Promise of MXeneâ€Based Nanostructures for Highâ€Performance Metal Ion Batteries. Advanced Functional Materials, 2020, 30, 2000706.	7.8	192
62	Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li–ion battery. Rare Metals, 2021, 40, 521-528.	3.6	43
63	Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage. Green Energy and Environment, 2021, 6, 75-82.	4.7	41
64	MXenes: Advanced materials in potassium ion batteries. Chemical Engineering Journal, 2021, 404, 126565.	6.6	71
65	Potassium-ion storage mechanism of MoS2-WS2-C microspheres and their excellent electrochemical		
	properties. Chemical Engineering Journal, 2021, 408, 127278.	6.6	37
66	properties. Chemical Engineering Journal, 2021, 408, 127278. Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733.	6.6 16.0	37 97
66	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications.		
	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733.	16.0	97
67	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733. MXenes for Rechargeable Batteries Beyond the Lithiumâ€ion. Advanced Materials, 2021, 33, e2004039. TiO2 nanoparticle embedded nitrogen doped electrospun helical carbon nanofiber-carbon nanotube	16.0 11.1	97 224
67 68	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733. MXenes for Rechargeable Batteries Beyond the Lithiumâ€ion. Advanced Materials, 2021, 33, e2004039. TiO2 nanoparticle embedded nitrogen doped electrospun helical carbon nanofiber-carbon nanotube hybrid anode for lithium-ion batteries. International Journal of Hydrogen Energy, 2021, 46, 2464-2478. Triple-layered sandwich nanotube of carbon nanotube@TiO2 nanocrystalline@carbon with superior	16.0 11.1 3.8	97 224 21
67 68 69	Recent advances in MXene-based nanocomposites for electrochemical energy storage applications. Progress in Materials Science, 2021, 117, 100733. MXenes for Rechargeable Batteries Beyond the Lithiumâ€ion. Advanced Materials, 2021, 33, e2004039. TiO2 nanoparticle embedded nitrogen doped electrospun helical carbon nanofiber-carbon nanotube hybrid anode for lithium-ion batteries. International Journal of Hydrogen Energy, 2021, 46, 2464-2478. Triple-layered sandwich nanotube of carbon nanotube@TiO2 nanocrystalline@carbon with superior lithium storage performance. Materials Research Bulletin, 2021, 133, 111076. MOF-Derived CoSe2@N-Doped Carbon Matrix Confined in Hollow Mesoporous Carbon Nanospheres as	16.0 11.1 3.8 2.7	97 224 21 12

#	Article	IF	CITATIONS
73	Red phosphorus embedded in TiO ₂ /C nanofibers to enhance the potassium-ion storage performance. Nanoscale, 2021, 13, 6635-6643.	2.8	19
74	Regulating the carbon distribution of anode materials in lithium-ion batteries. Nanoscale, 2021, 13, 3937-3947.	2.8	21
75	Progress and Perspective: MXene and MXeneâ€Based Nanomaterials for Highâ€Performance Energy Storage Devices. Advanced Electronic Materials, 2021, 7, 2000967.	2.6	122
76	Recent advances and perspectives of two-dimensional Ti-based electrodes for electrochemical energy storage. Sustainable Energy and Fuels, 2021, 5, 5061-5113.	2.5	11
78	Constructing Three-Dimensional Macroporous TiO ₂ Microspheres with Enhanced Pseudocapacitive Lithium Storage under Deep Discharging/Charging Conditions. ACS Applied Materials & Interfaces, 2021, 13, 16528-16535.	4.0	7
79	Reduced graphene oxide thin layer induced lattice distortion in high crystalline MnO2 nanowires for high-performance sodium- and potassium-ion batteries and capacitors. Carbon, 2021, 174, 556-566.	5.4	52
80	Energy Storage Device Application Based on MXenes Composites: a Mini Review. International Journal of Electrochemical Science, 2021, 16, 210439.	0.5	6
81	Wire-in-Wire TiO2/C Nanofibers Free-Standing Anodes for Li-Ion and K-Ion Batteries with Long Cycling Stability and High Capacity. Nano-Micro Letters, 2021, 13, 107.	14.4	55
82	Recent progress on MXene-Derived material and its' application in energy and environment. Journal of Power Sources, 2021, 490, 229250.	4.0	44
83	Ultrafine TiO ₂ Nanoparticle Supported Nitrogenâ€Rich Graphitic Porous Carbon as an Efficient Anode Material for Potassiumâ€lon Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100042.	2.8	8
84	Porous structure ZnV2O4/C-N composite activating vanadium-based cathode in aqueous zinc-ion batteries. Materials Today Communications, 2021, 27, 102271.	0.9	8
85	Biocarbon with different microstructures derived from corn husks and their potassium storage properties. Rare Metals, 2021, 40, 3166-3174.	3.6	30
86	High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Metals, 2022, 41, 448-456.	3.6	55
87	Synergistic effects of flake-like ZnO/SnFe2O4/nitrogen-doped carbon composites on structural stability and electrochemical behavior for lithium-ion batteries. Journal of Colloid and Interface Science, 2021, 594, 173-185.	5.0	18
88	Recent advances in emerging nonaqueous K-ion batteries: from mechanistic insights to practical applications. Energy Storage Materials, 2021, 39, 305-346.	9.5	27
89	Unraveling the Sodium Storage Properties and Mechanism of Cation-Deficient Ti0.84â–¡0.16O1.42F0.37(OH)0.21. ACS Applied Energy Materials, 2021, 4, 9198-9205.	2.5	3
90	Dual Doping of Titania for Enhanced Na Storage Performance. ACS Applied Materials & Interfaces, 2021, 13, 44214-44223.	4.0	14
91	In situ self-assembly assisted synthesis of N-doped mesoporous hierarchical carbon aerogels-wrapped Li2ZnTi3O8 composite for high-rate lithium ion batteries. Journal of Materiomics, 2021, 7, 1083-1093.	2.8	8

#	Article	IF	CITATIONS
92	Mechanochemistry-induced biaxial compressive strain engineering in MXenes for boosting lithium storage kinetics. Nano Energy, 2021, 87, 106053.	8.2	16
93	Metal-organic frameworks derived anatase/rutile heterostructures with enhanced reaction kinetics for lithium and sodium storage. Chemical Engineering Journal, 2022, 430, 132689.	6.6	33
94	Two-dimensional composite of Nitrogen-doped graphitic Carbon-coated cobaltosic oxide nanocrystals on MXene nanosheets as High-performance anode for Lithium-ion batteries. Applied Surface Science, 2021, 564, 150415.	3.1	9
95	Research progress on construction and energy storage performance of MXene heterostructures. Journal of Energy Chemistry, 2021, 62, 220-242.	7.1	45
96	3D hollow MXene (Ti ₃ C ₂)/reduced graphene oxide hybrid nanospheres for high-performance Li-ion storage. Journal of Materials Chemistry A, 2021, 9, 23841-23849.	5.2	24
97	Recent progress of nanostructured metal chalcogenides and their carbon-based hybrids for advanced potassium battery anodes. Materials Chemistry Frontiers, 2021, 5, 4401-4423.	3.2	29
98	A novel TiO2 nanoparticle-decorated helical carbon nanofiber composite as an anode material for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 901, 115765.	1.9	8
99	Designing an N-doped 3D porous carbon to mitigate volume expansion of Sb-Mo nanoparticle for Li-ion storage. Ionics, 2022, 28, 707-718.	1.2	0
100	Self-Assembled Bipolar Metals with Hollow Carbon Spheres for High-Performance Li–S Battery Cathodes. ACS Applied Energy Materials, 2021, 4, 12745-12753.	2.5	9
101	A review on carbon nanomaterials for <scp>Kâ€ion</scp> battery anode: Progress and perspectives. International Journal of Energy Research, 2022, 46, 4033-4070.	2.2	9
102	Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Advanced Materials, 2022, 34, e2107554.	11.1	163
103	2D-2D MXene/ReS2 hybrid from Ti3C2Tx MXene conductive layers supporting ultrathin ReS2 nanosheets for superior sodium storage. Chemical Engineering Journal, 2022, 431, 133796.	6.6	36
104	Low-temperature solid-state synthesis of interlayer engineered VS4 for high-capacity and ultrafast sodium-ion storage. Chemical Engineering Journal, 2022, 433, 133765.	6.6	12
105	Electron oriented injection TiSe ₂ –C laminated heterojunctions derived from terminal functionalized MXene for high-rate sodium ion storage. Journal of Materials Chemistry A, 2021, 9, 27684-27691.	5.2	11
106	Plate-barrier architecture of rGO-TiO2 derived from MXene for constructing well-aligned polymer nanocomposites with excellent dielectric performance. Composites Science and Technology, 2022, 218, 109191.	3.8	9
107	Self-assembly construction of hollow Ti3C2Tx Submicro-Tubes towards efficient alkali metal ion storage. Chemical Engineering Journal, 2022, 433, 134506.	6.6	11
108	Hierarchical Alpha Manganese Vanadate Microflowers: A Controllable Design of Electrode for High-Performance Flexible Hybrid Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	1
109	Sea Urchin-like Si@MnO2@rGO as Anodes for High-Performance Lithium-Ion Batteries. Nanomaterials, 2022, 12, 285.	1.9	9

#	Article	IF	CITATIONS
110	MXenes and their composites for energy storage and conversion. , 2022, , 201-240.		1
111	Energy storage mechanism of MXene-Based sodium/potassium titanate for high performance electrode. Ceramics International, 2022, 48, 12875-12883.	2.3	2
112	MXenes with applications in supercapacitors and secondary batteries: A comprehensive review. Materials Reports Energy, 2022, 2, 100080.	1.7	19
113	Review on MXene/TiO2 nanohybrids for photocatalytic hydrogen production and pollutant degradations. Journal of Environmental Chemical Engineering, 2022, 10, 107211.	3.3	43
114	Nature of bismuth and antimony based phosphate nanobundles/graphene for superior potassium ion batteries. Chemical Engineering Journal, 2022, 435, 134746.	6.6	18
115	Iron selenide nanoparticles-encapsulated within bamboo-like N-doped carbon nanotubes as composite anodes for superior lithium and sodium-ion storage. Chemical Engineering Journal, 2022, 435, 135185.	6.6	33
116	A Novel High Pseudo-Capacitive Contribution Anode in K-Ion Battery: Porous Tinbo4/C Nanofibers. SSRN Electronic Journal, 0, , .	0.4	0
117	Electrochemical properties of sulfur–carbon hollow nanospheres with varied polar titanium oxide layer location for lithium–sulfur batteries. International Journal of Energy Research, 0, , .	2.2	3
118	Hierarchical N/O co-doped hard carbon derived from waste saccharomyces cerevisiae for lithium storage. Journal of Electroanalytical Chemistry, 2022, 911, 116226.	1.9	9
119	Carbon coated tetrakaidecahedron tin ferrite (SnFe2O4) with high pseudocapacitance as anode material for lithium-ion batteries. Applied Surface Science, 2022, 587, 152870.	3.1	10
120	Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics. Nano-Micro Letters, 2022, 14, 100.	14.4	53
121	Recent progress and prospective on layered anode materials for potassium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1037-1052.	2.4	4
122	Bi ³⁺ Induced Crystal Growth of a Symbiotic Heterojunction Enables Longâ€Lifespan Znâ€lon Batteries. ChemElectroChem, 2022, 9, .	1.7	3
123	MoO2-Mo2C uniformly encapsulated into N, P co-doped carbon nanofibers as a freestanding anode for high and long-term lithium storage. Journal of Electroanalytical Chemistry, 2022, 917, 116414.	1.9	8
124	Lamellar flower inspired hierarchical alpha manganese vanadate microflowers for high-performance flexible hybrid supercapacitors. Ceramics International, 2022, 48, 24989-24999.	2.3	13
125	Coupling core–shell Bi@Void@TiO ₂ heterostructures into carbon nanofibers for achieving fast potassium storage and long cycling stability. Journal of Materials Chemistry A, 2022, 10, 12908-12920.	5.2	12
126	The Emergence of 2D MXenes Based Znâ€ion Batteries: Recent Development and Prospects. Small, 2022, 18,	5.2	76
127	Recent progress in emerging hybrid nanomaterials towards the energy storage and heat transfer applications: A review. Journal of Molecular Liquids, 2022, 360, 119443.	2.3	22

#	Article	IF	CITATIONS
128	A novel high pseudo-capacitive contribution anode in K-ion battery: Porous TiNbO4/C nanofibers. Journal of Power Sources, 2022, 541, 231635.	4.0	5
129	Mxene-Derived Tise2/Tio2/C HeterostructuredÂHexagonal PrismsÂAs High Rate Anodes for Na-IonÂAnd K-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
130	MXene-derived TiSe2/TiO2/C heterostructured hexagonal prisms as high rate anodes for Na-ion and K-ion batteries. Applied Surface Science, 2022, 605, 154653.	3.1	15
131	Interface and Defect Engineered Titaniumâ€Base Oxide Heterostructures Synchronizing Highâ€Rate and Ultrastable Sodium Storage. Advanced Energy Materials, 2022, 12, .	10.2	23
132	In Situ Conformal Carbon Coating for Constructing Hierarchical Mesoporous Titania/Carbon Spheres as High-Rate Lithium-Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 10955-10965.	3.2	6
133	Study on the effect of oxidation on the cycling stability of MXene for capacitive deionization. Chemical Physics Letters, 2022, 805, 139948.	1.2	6
134	Nitrogen and sulfur co-doped MXene ink without additive for high-performance inkjet-printing micro-supercapacitors. Chemical Engineering Journal, 2022, 450, 138372.	6.6	17
135	A facile preparation of submicro-sized Ti2AlC precursor toward Ti2CT MXene for lithium storage. Electrochimica Acta, 2022, 432, 141152.	2.6	3
136	Theoretical design of high-performance halogen anion batteries with MXene electrodes: influence of functional groups, metals, and anions. Journal of Materials Chemistry A, 2022, 10, 21611-21621.	5.2	9
137	Assembly: A Key Enabler for the Construction of Superior Siliconâ€Based Anodes. Advanced Science, 2022, 9, .	5.6	48
138	MXene (Ti ₃ C ₂ T _x) modified α-Co(OH) ₂ battery-type cathode and highly capacitive binder-free Ti ₃ C ₂ T _x anode for high-performance electrochemical hybrid capacitor. 2D Materials, 2022, 9, 045031.	2.0	2
139	Sandwich-like Na ₂ Ti ₃ O ₇ Nanosheet/Ti ₃ C ₂ MXene Composite for High-Performance Lithium/Sodium-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 18229-18237.	1.5	1
140	Facile fabrication of CuO/Ag2Se nanosized composite via hydrothermal approach for the electrochemical energy conversion system. Journal of Energy Storage, 2022, 56, 105929.	3.9	15
141	Carbon-Coated Flower-Like TiO ₂ Nanosphere as an Ultrastable Anode Material for Potassium-Ion Batteries: Structure Design and Mechanism Study. ACS Applied Energy Materials, 2022, 5, 15586-15596.	2.5	7
142	CoSe2 nanoparticles anchored on porous carbon network structure for efficient Na-ion storage. Journal of Colloid and Interface Science, 2023, 634, 864-873.	5.0	11
143	Constructing Sub 10 nm Scale Interfused TiO ₂ /SiO _{<i>x</i>} Bicontinuous Hybrid with Mutual-Stabilizing Effect for Lithium Storage. ACS Nano, 2023, 17, 2568-2579.	7.3	14
144	Multifunctional Nanostructured ZnO/MoS ₂ /rGO for CO ₂ Photoelectrochemical Sensing and Flexible Solid-State Symmetrical Supercapacitors. IEEE Sensors Journal, 2023, 23, 9093-9102.	2.4	2
145	Defective TiO ₂ -Supported Dual-Schottky Heterostructure Boosts Fast Reaction Kinetics for High Performance Lithium-Ion Storage. ACS Applied Energy Materials, 2023, 6, 1781-1798.	2.5	9

#	Article	IF	CITATIONS
146	3D ordered amorphous and porous TiO2 framework anode with low insertion barrier and fast kinetics for K-ion hybrid capacitors. Journal of Colloid and Interface Science, 2023, 638, 161-172.	5.0	2
147	2023 roadmap for potassium-ion batteries. JPhys Energy, 2023, 5, 021502.	2.3	15
148	Anti-stacking synthesis of MXene-reduced graphene oxide sponges for aqueous zinc-ion hybrid supercapacitor with improved performance. Journal of Materials Science and Technology, 2023, 154, 22-29.	5.6	3
149	Recycling and second life of MXene electrodes for lithium-ion batteries and sodium-ion batteries. Journal of Energy Storage, 2023, 60, 106625.	3.9	9
150	Hybridization of Layered Titanium Oxides and Covalent Organic Nanosheets into Hollow Spheres for High-Performance Sodium-Ion Batteries with Boosted Electrical/Ionic Conductivity and Ultralong Cycle Life. ACS Nano, 2023, 17, 3019-3036.	7.3	20
151	Atomically selective oxidation of (Ti,V) MXene to construct TiO2@TiVCT heterojunction for high-performance Li-ion batteries. Applied Surface Science, 2023, 617, 156575.	3.1	7
152	Two-dimensional sandwich-like MXene–conductive polymer nanocomposite with in-plane cylindrical mesopores for long cycling lithium-sulfur batteries. 2D Materials, 2023, 10, 024006.	2.0	1
153	From PET Bottles Waste to N-Doped Graphene as Sustainable Electrocatalyst Support for Direct Liquid Fuel Cells. Catalysts, 2023, 13, 525.	1.6	2
154	A critical review on the properties and energy storage applications of graphene oxide/layered double hydroxides and graphene oxide/MXenes. Journal of Power Sources, 2023, 564, 232870.	4.0	16
174	Recent advances and promise of MXene-based composites as electrode materials for sodium-ion and potassium-ion batteries. Dalton Transactions, 0, , .	1.6	0