Seed yield and oil quality as affected by Camelina cultiv

Journal of Crop Improvement 33, 202-222 DOI: 10.1080/15427528.2019.1566186

Citation Report

#	Article	IF	CITATIONS
1	Sowing date and sowing method influence on camelina cultivars grain yield, oil concentration, and biodiesel production. Food and Energy Security, 2019, 8, e00166.	2.0	15
2	Shifting sowing of camelina from spring to autumn enhances the oil quality for bio-based applications in response to temperature and seed carbon stock. Industrial Crops and Products, 2019, 137, 66-73.	2.5	48
3	Interactions between genetics and environment shape Camelina seed oil composition. BMC Plant Biology, 2020, 20, 423.	1.6	22
4	Performance and Potentiality of Camelina (Camelina sativa L. Crantz) Genotypes in Response to Sowing Date under Mediterranean Environment. Agronomy, 2020, 10, 1929.	1.3	21
5	Simulating oilseed fatty acid composition through a stochastic modelling approach. Industrial Crops and Products, 2020, 150, 112381.	2.5	4
6	Stability and Variability of Camelina sativa (L.) Crantz Economically Valuable Traits in Various Eco-Geographical Conditions of the Russian Federation. Agronomy, 2021, 11, 332.	1.3	8
7	Integral Assessment of Organic Fertilization on a Camelina sativa Rotation under Mediterranean Conditions. Agriculture (Switzerland), 2021, 11, 355.	1.4	2
8	Improving Heat Stress Tolerance in Camelina sativa and Brassica napus Through Thiourea Seed Priming. Journal of Plant Growth Regulation, 2022, 41, 2886-2902.	2.8	13
9	<i>Camelina sativa</i> Composition, Attributes, and Applications: A Review. European Journal of Lipid Science and Technology, 2022, 124, 2100035.	1.0	28
10	Grain Quality of Maize Cultivars as a Function of Planting Dates, Irrigation and Nitrogen Stress: A Case Study from Semiarid Conditions of Iran. Agriculture (Switzerland), 2021, 11, 11.	1.4	21
11	Bazı Yağ Bitkilerinin Yağ Oranları ve Yağ Asit Kompozisyonlarının Karşılaştırılması. Adnan M Üniversitesi Ziraat Fakültesi Dergisi, 2021, 18, 275-284.	Menderes	4
12	Correlational Analysis of Agronomic and Seed Quality Traits in Camelina sativa Doubled Haploid Lines under Rain-Fed Condition. Agronomy, 2022, 12, 359.	1.3	3
13	Camelina seed harvesting, storing, pretreating, and processing to recover oil: A review. Industrial Crops and Products, 2022, 178, 114539.	2.5	13
14	Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate. Plants, 2022, 11, 772.	1.6	24
15	DSC isothermal and non-isothermal assessment of thermo-oxidative stability of different cultivars of Camelina sativa L. seed oils. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10013-10026.	2.0	7
16	Weed suppression capacity of camelina (Camelina sativa) against winter weeds: The example of corn-poppy (Papaver rhoeas). Industrial Crops and Products, 2022, 184, 115063.	2.5	8
17	Evaluation of Ukrainian Camelina sativa germplasm productivity and analysis of its amenability for efficient biodiesel production. Industrial Crops and Products, 2022, 187, 115477.	2.5	9
18	Changing Climate Scenario: Perspectives of Camelina sativa as Low-Input Biofuel and Oilseed Crop. , 2022, , 197-236.		0

#	Article	IF	CITATIONS
19	Correlation and sequential path analysis of oil yield and related characteristics in camelina under seasonal variations. OCL - Oilseeds and Fats, Crops and Lipids, 2023, 30, 2.	0.6	0

CITATION REPORT