Bisalt ether electrolytes: a pathway towards lithium me

Energy and Environmental Science 12, 780-794 DOI: 10.1039/c8ee02601g

Citation Report

#	Article	IF	CITATIONS
1	The Role of Electrolyte in the First-Cycle Transformations of LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ . Journal of the Electrochemical Society, 2019, 166, A2762-A2768.	1.3	15
2	Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy, 2019, 4, 683-689.	19.8	603
3	Cationic shield mediated electrodeposition stability in metal electrodes. Journal of Materials Chemistry A, 2019, 7, 18442-18450.	5.2	7
4	Morphology-selected synthesis of copper ferrite via spray drying with excellent sodium storage properties. Ceramics International, 2019, 45, 20796-20802.	2.3	23
5	Solvent-controlled solid-electrolyte interphase layer composition of a high performance Li ₄ Ti ₅ O ₁₂ anode for Na-ion battery applications. Sustainable Energy and Fuels, 2019, 3, 2490-2498.	2.5	13
6	High Dielectric, Robust Composite Protective Layer for Dendriteâ€Free and LiPF ₆ Degradationâ€Free Lithium Metal Anode. Advanced Functional Materials, 2019, 29, 1905078.	7.8	47
7	Quantifying inactive lithium in lithium metal batteries. Nature, 2019, 572, 511-515.	13.7	852
8	Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 2019, 8, 100057.	2.3	31
9	Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries. ACS Energy Letters, 2019, 4, 1584-1593.	8.8	117
10	Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1901645.	11.1	68
11	A stable protective layer toward high-performance lithium metal battery. Ionics, 2019, 25, 4067-4074.	1.2	5
12	Mechanistic understanding and strategies to design interfaces of solid electrolytes: insights gained from transmission electron microscopy. Journal of Materials Science, 2019, 54, 10571-10594.	1.7	14
13	High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries. ACS Energy Letters, 2019, 4, 896-902.	8.8	302
14	Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium. Advanced Energy Materials, 2019, 9, 1900574.	10.2	123
15	Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy and Environmental Science, 2019, 12, 3319-3327.	15.6	122
16	Probing the dynamic evolution of lithium dendrites: a review of <i>in situ</i> / <i>operando</i> characterization for lithium metallic batteries. Nanoscale, 2019, 11, 20429-20436.	2.8	26
17	Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. Journal of Materials Chemistry A, 2019, 7, 24400-24407.	5.2	68
18	First principles calculations study of α-MnO ₂ as a potential cathode for Al-ion battery application. Journal of Materials Chemistry A, 2019, 7, 26966-26974.	5.2	52

#	Article	IF	CITATIONS
19	Formulierung von Elektrolyten mit gemischten Lithiumsalzen für Lithiumâ€Batterien. Angewandte Chemie, 2020, 132, 3426-3442.	1.6	16
20	Formulation of Blendedâ€Lithiumâ€Salt Electrolytes for Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 3400-3415.	7.2	129
21	Flexible lignin carbon membranes with surface ozonolysis to host lean lithium metal anodes for nickel-rich layered oxide batteries. Energy Storage Materials, 2020, 24, 129-137.	9.5	41
22	FSI-inspired solvent and "full fluorosulfonyl―electrolyte for 4 V class lithium-metal batteries. Energy and Environmental Science, 2020, 13, 212-220.	15.6	198
23	New Insight into the Role of Mn Doping on the Bulk Structure Stability and Interfacial Stability of Niâ€Rich Layered Oxide. ChemNanoMat, 2020, 6, 451-460.	1.5	12
24	Protective coatings for lithium metal anodes: Recent progress and future perspectives. Journal of Power Sources, 2020, 450, 227632.	4.0	104
25	In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries. Solid State Ionics, 2020, 345, 115159.	1.3	24
26	Lithium metal anodes: Present and future. Journal of Energy Chemistry, 2020, 48, 145-159.	7.1	311
27	Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy, 2020, 70, 104450.	8.2	397
28	The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Materials, 2020, 28, 401-406.	9.5	55
29	Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries. ACS Energy Letters, 2020, 5, 152-161.	8.8	53
30	Mechanistics of Lithium-Metal Battery Performance by Separator Architecture Design. ACS Applied Materials & Interfaces, 2020, 12, 556-566.	4.0	27
31	An ultra-stable lithium plating process enabled by the nanoscale interphase of a macromolecular additive. Journal of Materials Chemistry A, 2020, 8, 23844-23850.	5.2	12
32	Regulating the Grain Orientation and Surface Structure of Primary Particles through Tungsten Modification to Comprehensively Enhance the Performance of Nickel-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2020, 12, 47513-47525.	4.0	36
33	Recent advances in preparation and application of laser-induced graphene in energy storage devices. Materials Today Energy, 2020, 18, 100569.	2.5	43
34	Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy, 2020, 78, 105344.	8.2	108
35	Porous BN Nanofibers Enable Long ycling Life Sodium Metal Batteries. Small, 2020, 16, e2002671.	5.2	11
36	High Voltage Stable Li Metal Batteries Enabled by Ether-Based Highly Concentrated Electrolytes at Elevated Temperatures, Journal of the Electrochemical Society, 2020, 167, 110543	1.3	13

#	Article	IF	CITATIONS
37	The Dr Jekyll and Mr Hyde of lithium sulfur batteries. Energy and Environmental Science, 2020, 13, 4808-4833.	15.6	91
38	Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews, 2020, 120, 13312-13348.	23.0	393
39	Improved fast-charging performances of phosphorus electrodes using the intrinsically flame-retardant LiFSI based electrolyte. Journal of Power Sources, 2020, 474, 228664.	4.0	19
40	Reducing Capacity and Voltage Decay of Coâ€Free Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ as Positive Electrode Material for Lithium Batteries Employing an Ionic Liquidâ€Based Electrolyte. Advanced Energy Materials, 2020, 10, 2001830.	10.2	42
41	Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Materials, 2020, 32, 386-401.	9.5	136
42	Engineering Wavyâ€Nanostructured Anode Interphases with Fast Ion Transfer Kinetics: Toward Practical Liâ€Metal Full Batteries. Advanced Functional Materials, 2020, 30, 2003800.	7.8	63
43	Regulating the Li ⁺ â€Solvation Structure of Ester Electrolyte for Highâ€Energyâ€Density Lithium Metal Batteries. Small, 2020, 16, e2004688.	5.2	34
44	Hexafluorophosphate-Bis(trifluoromethanesulfonyl)imide anion co-intercalation for increased performance of dual-carbon battery using mixed salt electrolyte. Journal of Power Sources, 2020, 479, 229084.	4.0	14
45	An "Etherâ€Inâ€Water―Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2004017.	11.1	93
46	Interfacial Speciation Determines Interfacial Chemistry: Xâ€rayâ€Induced Lithium Fluoride Formation from Waterâ€inâ€salt Electrolytes on Solid Surfaces. Angewandte Chemie - International Edition, 2020, 59, 23180-23187.	7.2	28
47	Interfacial Speciation Determines Interfacial Chemistry: Xâ€rayâ€Induced Lithium Fluoride Formation from Waterâ€inâ€salt Electrolytes on Solid Surfaces. Angewandte Chemie, 2020, 132, 23380-23387.	1.6	9
48	Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 22194-22201.	7.2	219
49	Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angewandte Chemie, 2020, 132, 22378-22385.	1.6	60
50	Black phosphorus-modified sulfurized polyacrylonitrile with high C-rate and cycling performance in ether-based electrolyte for lithium sulfur batteries. Chemical Communications, 2020, 56, 12797-12800.	2.2	15
51	Designing Solidâ€ S tate Electrolytes through the Structural Modification of a Highâ€Performing Ionic Liquid. ChemElectroChem, 2020, 7, 4118-4123.	1.7	10
52	Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. Energy and Environmental Science, 2020, 13, 4312-4321.	15.6	43
53	High-Voltage Stability in KFSI Nonaqueous Carbonate Solutions for Potassium-Ion Batteries: Current Collectors and Coin-Cell Components. ACS Applied Materials & Interfaces, 2020, 12, 42723-42733.	4.0	17
54	Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nature Communications, 2020, 11, 4188.	5.8	226

#	Article	IF	CITATIONS
55	LiDFOB Initiated In Situ Polymerization of Novel Eutectic Solution Enables Roomâ€Temperature Solid Lithium Metal Batteries. Advanced Science, 2020, 7, 2003370.	5.6	76
56	Fluorinated Aromatic Diluent for Highâ€Performance Lithium Metal Batteries. Angewandte Chemie, 2020, 132, 14979-14986.	1.6	16
57	Fluorinated Aromatic Diluent for Highâ€Performance Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 14869-14876.	7.2	130
58	Regulating the Hidden Solvationâ€Ionâ€Exchange in Concentrated Electrolytes for Stable and Safe Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 2000901.	10.2	65
59	Cycling Lithium Metal on Graphite to Form Hybrid Lithium-Ion/Lithium Metal Cells. Joule, 2020, 4, 1296-1310.	11.7	80
60	Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Materials, 2020, 30, 228-237.	9.5	61
61	Efficient Low-Temperature Cycling of Lithium Metal Anodes by Tailoring the Solid-Electrolyte Interphase. ACS Energy Letters, 2020, 5, 2411-2420.	8.8	174
62	Elucidation of the Losses in Cycling Lithium-Metal Anodes in Carbonate-Based Electrolytes. Journal of the Electrochemical Society, 2020, 167, 100520.	1.3	14
63	Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy and Environmental Science, 2020, 13, 2209-2219.	15.6	120
64	In Situ Interfacial Tuning To Obtain High-Performance Nickel-Rich Cathodes in Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 29365-29375.	4.0	12
65	2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability. Chemical Engineering Journal, 2020, 393, 124789.	6.6	65
66	Ionic liquid electrolyte for room to intermediate temperature operating Li metal batteries: Dendrite suppression and improved performance. Journal of Power Sources, 2020, 453, 227911.	4.0	35
67	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777.	7.8	201
68	Dendrite-free lithium metal solid battery with a novel polyester based triblock copolymer solid-state electrolyte. Nano Energy, 2020, 72, 104690.	8.2	76
69	Functional Localized High-Concentration Ether-Based Electrolyte for Stabilizing High-Voltage Lithium-Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 33710-33718.	4.0	59
70	LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 33719-33728.	4.0	65
71	Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical Highâ€Energy Liâ€6 Batteries. Angewandte Chemie - International Edition, 2020, 59, 17634-17640.	7.2	67
72	Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical Highâ€Energy Liâ€S Batteries. Angewandte Chemie, 2020, 132, 17787-17793.	1.6	10

#	Article	IF	CITATIONS
73	Effects of charged interfaces on electrolyte decomposition at the lithium metal anode. Journal of Power Sources, 2020, 472, 228449.	4.0	41
74	Solvation Rule for Solidâ€Electrolyte Interphase Enabler in Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 18386-18390.	1.6	10
75	Solvation Rule for Solidâ€Electrolyte Interphase Enabler in Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 18229-18233.	7.2	45
76	Uncharted Waters: Super-Concentrated Electrolytes. Joule, 2020, 4, 69-100.	11.7	305
77	Functional Electrolyte of Fluorinated Ether and Ester for Stabilizing Both 4.5 V LiCoO ₂ Cathode and Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 8316-8323.	4.0	44
78	Nonflammable Lithium Metal Full Cells with Ultra-high Energy Density Based on Coordinated Carbonate Electrolytes. IScience, 2020, 23, 100844.	1.9	58
79	Li-based anode: Is dendrite-free sufficient?. Materials Today, 2020, 38, 7-9.	8.3	21
80	Toward the Sustainable Lithium Metal Batteries with a New Electrolyte Solvation Chemistry. Advanced Energy Materials, 2020, 10, 2000567.	10.2	111
81	Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1909887.	7.8	251
82	Lithium Metal Interface Modification for Highâ€Energy Batteries: Approaches and Characterization. Batteries and Supercaps, 2020, 3, 828-859.	2.4	38
83	An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation. ACS Energy Letters, 2020, 5, 1438-1447.	8.8	214
84	Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nature Energy, 2020, 5, 386-397.	19.8	621
85	Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Materials, 2020, 29, 84-91.	9.5	64
86	Nonflammable LiTFSI-Ethylene Carbonate/1,2-Dimethoxyethane Electrolyte for High-Safety Li-ion Batteries. Journal of the Electrochemical Society, 2020, 167, 090520.	1.3	16
87	Anodeâ€Free Full Cells: A Pathway to Highâ€Energy Density Lithiumâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2000804.	10.2	232
88	"Polymer-in-ceramic―based poly(ƕcaprolactone)/ceramic composite electrolyte for all-solid-state batteries. Journal of Energy Chemistry, 2021, 52, 318-325.	7.1	43
89	Electrolytes Enriched by Crown Ethers for Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2002578.	7.8	101
90	Fluorobenzene, A Lowâ€Density, Economical, and Bifunctional Hydrocarbon Cosolvent for Practical Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, .	7.8	121

#	Article	IF	CITATIONS
91	Highly efficient lithium utilization in lithium metal full-cell by simulated missile guidance and confinement systems. Science China Materials, 2021, 64, 830-839.	3.5	6
92	Mixed lithium fluoride-nitride ionic conducting interphase for dendrite-free lithium metal anode. Applied Surface Science, 2021, 541, 148294.	3.1	4
93	Honeycomb Inspired Lithiophilic Scaffold for Ultra-Stable, High-Areal-Capacity Metallic Deposition. Energy Storage Materials, 2021, 35, 378-387.	9.5	11
94	Vertical nanoarrays with lithiophilic sites suppress the growth of lithium dendrites for ultrastable lithium metal batteries. Chemical Engineering Journal, 2021, 405, 126808.	6.6	24
95	High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chemical Society Reviews, 2021, 50, 10486-10566.	18.7	391
96	A new material discovery platform of stable layered oxide cathodes for K-ion batteries. Energy and Environmental Science, 2021, 14, 5864-5874.	15.6	30
97	Suppression of dendritic lithium-metal growth through concentrated dual-salt electrolyte and its accurate prediction. Journal of Materials Chemistry A, 2021, 9, 22833-22841.	5.2	10
98	Synergistic Effects on Lithium Metal Batteries by Preferential Ionic Interactions in Concentrated Bisalt Electrolytes. Advanced Energy Materials, 2021, 11, 2003520.	10.2	33
99	Lowâ€Cost Regulating Lithium Deposition Behaviors by Transition Metal Oxide Coating on Separator. Advanced Functional Materials, 2021, 31, 2007255.	7.8	28
100	An Overview of Cation-Disordered Lithium-Excess Rocksalt Cathodes. ACS Energy Letters, 0, , 1358-1376.	8.8	50
101	Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 8370-8377.	1.6	2
102	Liâ€Rich Li ₂ [Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296.	7.2	71
103	Intrinsically Nonflammable Ionic Liquidâ€Based Localized Highly Concentrated Electrolytes Enable Highâ€Performance Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2003752.	10.2	85
104	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 12438-12445.	7.2	69
105	Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. Journal of Power Sources, 2021, 490, 229504.	4.0	41
106	Comparing the Physicochemical, Electrochemical, and Structural Properties of Boronium versus Pyrrolidinium Cation-Based Ionic Liquids and Their Performance as Li-Ion Battery Electrolytes. Journal of Physical Chemistry C, 2021, 125, 8055-8067.	1.5	6
107	Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters, 2021, 6, 1839-1848.	8.8	200
108	Core-shell Ni-rich NMC-Nanocarbon cathode from scalable solvent-free mechanofusion for high-performance 18650 Li-ion batteries. Energy Storage Materials, 2021, 36, 485-495.	9.5	46

#	Article	IF	CITATIONS
109	Iron carbide allured lithium metal storage in carbon nanotube cavities. Energy Storage Materials, 2021, 36, 459-465.	9.5	39
110	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. Angewandte Chemie, 2021, 133, 12546-12553.	1.6	11
111	Poor Stability of Li ₂ CO ₃ in the Solid Electrolyte Interphase of a Lithiumâ€Metal Anode Revealed by Cryoâ€Electron Microscopy. Advanced Materials, 2021, 33, e2100404.	11.1	147
112	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium–Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 10871-10879.	7.2	89
113	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium–Metal Anodes. Angewandte Chemie, 2021, 133, 10966-10974.	1.6	11
114	Long-Lasting Solid Electrolyte Interphase for Stable Li-Metal Batteries. ACS Energy Letters, 2021, 6, 2153-2161.	8.8	41
115	Edge Engineering in 2D Molybdenum Disulfide: Simultaneous Regulation of Lithium and Polysulfides for Stable Lithium–Sulfur Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100053.	2.8	6
116	Formulating a Non-Flammable Highly Concentrated Dual-Salt Electrolyte for Wide Temperature High-Nickel Lithium Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 050511.	1.3	15
117	Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy, 2021, 83, 105847.	8.2	79
118	Charactering and optimizing cathode electrolytes interface for advanced rechargeable batteries: Promises and challenges. Green Energy and Environment, 2022, 7, 606-635.	4.7	13
119	Recent smart lithium anode configurations for high-energy lithium metal batteries. Energy Storage Materials, 2021, 38, 262-275.	9.5	47
120	Fast Charging of Energy-Dense Lithium Metal Batteries in Localized Ether-Based Highly Concentrated Electrolytes. Journal of the Electrochemical Society, 2021, 168, 060548.	1.3	8
121	Inâ€Built Quasiâ€Solidâ€State Polyâ€Ether Electrolytes Enabling Stable Cycling of Highâ€Voltage and Wideâ€Temperature Li Metal Batteries. Advanced Functional Materials, 2021, 31, 2102347.	7.8	35
122	Quantitatively Designing Porous Copper Current Collectors for Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 6454-6465.	2.5	17
123	Compositional Dependence of Li-Ion Conductivity in Garnet-Rich Composite Electrolytes for All-Solid-State Lithium-Ion Batteries—Toward Understanding the Drawbacks of Ceramic-Rich Composites. ACS Applied Materials & Interfaces, 2021, 13, 31111-31128.	4.0	17
124	Cocktail therapy towards high temperature/high voltage lithium metal battery via solvation sheath structure tuning. Energy Storage Materials, 2021, 38, 599-608.	9.5	53
125	Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews, 2021, 4, 601-631.	13.1	69
126	Electrolyte Design for Lithium Metal Anodeâ€Based Batteries Toward Extreme Temperature Application. Advanced Science, 2021, 8, e2101051.	5.6	95

#	Article	IF	CITATIONS
127	Advanced Nonflammable Localized High oncentration Electrolyte For High Energy Density Lithium Battery. Energy and Environmental Materials, 2022, 5, 1294-1302.	7.3	24
128	In Situ Chemical Lithiation Transforms Diamondâ€Like Carbon into an Ultrastrong Ion Conductor for Dendriteâ€Free Lithiumâ€Metal Anodes. Advanced Materials, 2021, 33, e2100793.	11.1	82
129	Low-Cost Li SPAN Batteries Enabled by Sustained Additive Release. ACS Applied Energy Materials, 2021, 4, 6422-6429.	2.5	2
130	Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature, 2021, 596, 525-530.	13.7	103
131	Uncovering the Relationship between Aging and Cycling on Lithium Metal Battery Self-Discharge. ACS Applied Energy Materials, 2021, 4, 7589-7598.	2.5	21
132	Lithium Borate Ester Salts for Electrolyte Application in Nextâ€Generation High Voltage Lithium Batteries. Advanced Energy Materials, 2021, 11, 2101422.	10.2	34
133	Advanced Electrolyte Design for Highâ€Energyâ€Density Liâ€Metal Batteries under Practical Conditions. Angewandte Chemie, 2021, 133, 25828-25842.	1.6	31
134	The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews Materials, 2021, 6, 1036-1052.	23.3	201
135	Singleâ€Ion Conducting Soft Electrolytes for Semiâ€Solid Lithium Metal Batteries Enabling Cell Fabrication and Operation under Ambient Conditions. Advanced Energy Materials, 2021, 11, 2101813.	10.2	26
136	Advanced Electrolyte Design for Highâ€Energyâ€Density Liâ€Metal Batteries under Practical Conditions. Angewandte Chemie - International Edition, 2021, 60, 25624-25638.	7.2	81
137	Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule, 2021, 5, 2177-2194.	11.7	83
138	How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy, 2021, 86, 106142.	8.2	116
139	From Lithiumâ€Metal toward Anodeâ€Free Solidâ€State Batteries: Current Developments, Issues, and Challenges. Advanced Functional Materials, 2021, 31, 2106608.	7.8	98
140	Cryoâ€Electron Microscopy for Unveiling the Sensitive Battery Materials. Small Science, 2021, 1, 2100055.	5.8	35
141	Critical effects of electrolyte recipes for Li and Na metal batteries. CheM, 2021, 7, 2312-2346.	5.8	144
142	Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase. Chemistry of Materials, 2021, 33, 7315-7336.	3.2	39
143	Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chemical Engineering Journal, 2021, 422, 130017.	6.6	33
144	Highly concentrated electrolyte enabling high-voltage application of metallic components for potassium-ion batteries. Journal of Power Sources, 2021, 510, 230436.	4.0	8

#	Article	IF	CITATIONS
145	Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations. Nano Energy, 2021, 89, 106489.	8.2	43
146	Rational design of a carbonate-glyme hybrid electrolyte for practical anode-free lithium metal batteries. Energy Storage Materials, 2021, 42, 295-306.	9.5	16
147	Lithium anode in carbonate-based electrolyte: High-performance by self-protected solid-electrolyte-interphase. Chemical Engineering Journal, 2021, 426, 131880.	6.6	13
148	Li salt initiated in-situ polymerized solid polymer electrolyte: new insights via in-situ electrochemical impedance spectroscopy. Chemical Engineering Journal, 2022, 429, 132483.	6.6	27
149	Interface reactivity of in-situ formed LiCoO2 - PEO solid-state interfaces investigated by X-ray photoelectron spectroscopy: Reaction products, energy level offsets and double layer formation. Applied Surface Science, 2022, 571, 151218.	3.1	6
150	Highâ€Safety and Highâ€Energyâ€Density Lithium Metal Batteries in a Novel Ionicâ€Liquid Electrolyte. Advanced Materials, 2020, 32, e2001741.	11.1	176
151	Li2S-based anode-free full batteries with modified Cu current collector. Energy Storage Materials, 2020, 30, 179-186.	9.5	71
152	High-Efficiency Lithium Metal Anode Enabled by a Concentrated/Fluorinated Ester Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 27794-27802.	4.0	31
153	Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition. Research, 2019, 2019, 7481319.	2.8	10
154	Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nature Energy, 2021, 6, 987-994.	19.8	208
155	Quasi-compensatory effect in emerging anode-free lithium batteries. EScience, 2021, 1, 3-12.	25.0	48
156	Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nature Energy, 2021, 6, 951-960.	19.8	237
157	Role of Electrolyte in Overcoming the Challenges of LiNiO ₂ Cathode in Lithium Batteries. ACS Energy Letters, 2021, 6, 3809-3816.	8.8	34
158	Stable electrode–electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries. Energy Storage Materials, 2022, 45, 1-13.	9.5	62
159	Multisalt chemistry in ion transport and interface of lithium metal polymer batteries. Energy Storage Materials, 2022, 44, 263-277.	9.5	17
160	Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery. Journal of the American Chemical Society, 2021, 143, 18703-18713.	6.6	205
161	Cryo-EM for battery materials and interfaces: Workflow, achievements, and perspectives. IScience, 2021, 24, 103402.	1.9	16
162	Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries. Chemical Engineering Journal, 2022, 431, 133442.	6.6	16

#	Article	IF	CITATIONS
163	The effect of ionic liquid-based electrolytes for dendrite-inhibited and performance-boosted lithium metal batteries. Electrochimica Acta, 2022, 401, 139527.	2.6	9
164	The Functions and Applications of Fluorinated Interface Engineering in Liâ€Based Secondary Batteries. Small Science, 2021, 1, 2100066.	5.8	21
165	A Review of Degradation Mechanisms and Recent Achievements for Niâ€Rich Cathodeâ€Based Liâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2103005.	10.2	206
166	Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations. Journal of the Electrochemical Society, 2021, 168, 120508.	1.3	19
167	Stable Cycling of Lithium Batteries Utilizing Iron Disulfide Nanoparticles. ACS Applied Nano Materials, 2021, 4, 11636-11643.	2.4	9
168	Electrolyte Modulators toward Polarizationâ€Mitigated Lithiumâ€Ion Batteries for Sustainable Electric Transportation. Advanced Materials, 2022, 34, e2107787.	11.1	15
169	Comparative study of fluorination effect on the linear carbonate molecule for reversible cycling of lithium metal batteries. Journal of Electroanalytical Chemistry, 2022, 905, 115900.	1.9	12
170	Janus-faced graphene substrate stabilizes lithium metal anode. Chemical Engineering Journal, 2022, 433, 133561.	6.6	5
171	Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries. ACS Energy Letters, 2022, 7, 490-513.	8.8	236
172	Engineering Stable SEI Film on Mg-Doped Li Metal Anode by Electrolyte Additive With High Donor-Number Anion for Li-S Batteries. SSRN Electronic Journal, 0, , .	0.4	1
173	Gradient lithiation to load controllable, high utilization lithium in graphitic carbon host for high-energy batteries. Nano Energy, 2022, 93, 106808.	8.2	14
174	Oxidative Stabilization of Dilute Ether Electrolytes via Anion Modification. ACS Energy Letters, 2022, 7, 675-682.	8.8	15
175	A Highâ€Voltage Lithiumâ€Metal Batteries Electrolyte Based on Fullyâ€Methylated Pivalonitrile. Batteries and Supercaps, 2022, 5, .	2.4	2
176	Challenges, Strategies, and Prospects of the Anodeâ€Free Lithium Metal Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	23
177	Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte. Energy and Environmental Science, 2022, 15, 1907-1919.	15.6	62
178	Regulating Interfacial Structure Enables High-Voltage Dilute Ether Electrolytes. SSRN Electronic Journal, 0, , .	0.4	0
179	Controlling Li deposition below the interface. EScience, 2022, 2, 47-78.	25.0	110
181	The pathway toward practical application of lithium-metal anodes for non-aqueous secondary batteries. National Science Review, 2022, 9, .	4.6	9

#	Article	IF	CITATIONS
182	Double interface regulation: Toward highly stable lithium metal anode with high utilization. InformaÄnÃ-MateriA¡ly, 2022, 4, .	8.5	21
184	Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science, 2022, 375, 739-745.	6.0	368
185	2D PdTe ₂ Thin-Film-Coated Current Collectors for Long-Cycling Anode-Free Rechargeable Batteries. ACS Applied Materials & Interfaces, 2022, 14, 15080-15089.	4.0	14
186	Cryogenic Focused Ion Beam Enables Atomic-Resolution Imaging of Local Structures in Highly Sensitive Bulk Crystals and Devices. Journal of the American Chemical Society, 2022, 144, 3182-3191.	6.6	28
187	Nitrile Electrolyte Strategy for 4.9 <scp>V lass Lithiumâ€Metal</scp> Batteries Operating in Flame. Energy and Environmental Materials, 2023, 6, .	7.3	10
188	Transferring Liquid Metal to form a Hybrid Solid Electrolyte via a Wettabilityâ€Tuning Technology for Lithiumâ€Metal Anodes. Advanced Materials, 2022, 34, e2200181.	11.1	28
189	Carbon Nanotube Interwoven Polyhedrons with Inside-out Lithiophilic Gradients toward Stable Lithium Metal Battery. Chemical Engineering Journal, 2022, , 136256.	6.6	4
190	Formation of LiFâ€rich Cathodeâ€Electrolyte Interphase by Electrolyte Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	90
191	Remedies to Avoid Failure Mechanisms of Lithium-Metal Anode in Li-Ion Batteries. Inorganics, 2022, 10, 5.	1.2	4
192	Reactivating Dead Li by Shuttle Effect for High-Performance Anode-Free Li Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 120535.	1.3	13
193	Characterization of Acetonitrile Isotopologues as Vibrational Probes of Electrolytes. Journal of Physical Chemistry B, 2022, 126, 278-291.	1.2	15
194	Synthesis and Characterization of Gel Polymer Electrolyte Based on Epoxy Group via Cationic Ring-Open Polymerization for Lithium-Ion Battery. Membranes, 2022, 12, 439.	1.4	9
195	Formation of LiFâ€rich Cathodeâ€Electrolyte Interphase by Electrolyte Reduction. Angewandte Chemie, 2022, 134, .	1.6	16
196	Low-Dose Electron Microscopy Imaging of Electron Beam-Sensitive Crystalline Materials. Accounts of Materials Research, 2022, 3, 552-564.	5.9	17
197	Towards higher electrochemical stability of electrolytes: lithium salt design through <i>in silico</i> screening. Journal of Materials Chemistry A, 2022, 10, 13254-13265.	5.2	4
198	Prediction of SEI Formation in Allâ€Solidâ€State Batteries: Computational Insights from PCLâ€based Polymer Electrolyte Decomposition on Lithiumâ€Metal. Batteries and Supercaps, 2022, 5, .	2.4	11
199	Applying Classical, <i>Ab Initio</i> , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022, 122, 10970-11021.	23.0	138
200	Fastâ€Charging Electrolyte: A Multiple Additives Strategy with 1,3,2â€Dioxathiolane 2,2â€Dioxide and Lithium Difluorophosphate for Commercial Graphite/LiFePO ₄ Pouch Battery. ChemistrySelect, 2022, 7, .	0.7	3

#	Article	IF	CITATIONS
201	<scp>Anionâ€Regulated Weakly Solvating</scp> Electrolytes for <scp>Highâ€Voltage</scp> Lithium Metal Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	17
202	Regulating interfacial structure enables high-voltage dilute ether electrolytes. Cell Reports Physical Science, 2022, 3, 100919.	2.8	12
203	Enabling Sustainable Lithium Metal Electrodes via Cholesteric Liquid Crystalline Cellulose Nanocrystal Nanomembranes. Advanced Energy Materials, 2022, 12, .	10.2	2
204	Bridging Multiscale Characterization Technologies and Digital Modeling to Evaluate Lithium Battery Full Lifecycle. Advanced Energy Materials, 2022, 12, .	10.2	34
205	One-Dimensional Porous Li-Confinable Hosts for High-Rate and Stable Li-Metal Batteries. ACS Nano, 2022, 16, 11892-11901.	7.3	22
206	Cationic Solid-State Electrolytes. ACS Symposium Series, 0, , 255-274.	0.5	0
207	Electrode-customized separator membranes based on self-assembled chiral nematic liquid crystalline cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries. Energy Storage Materials, 2022, 50, 783-791.	9.5	6
208	Dilute dual-salt electrolyte for successful passivation of in-situ deposited Li anode and permit effective cycling of high voltage anode free batteries. Journal of Power Sources, 2022, 542, 231752.	4.0	3
209	Materials, electrodes and electrolytes advances for next-generation lithium-based anode-free batteries. Oxford Open Materials Science, 2022, 2, .	0.5	5
210	Exploiting the Iron Difluoride Electrochemistry by Constructing Hierarchical Electron Pathways and Cathode Electrolyte Interface. Small, 2022, 18, .	5.2	14
211	Enhancing the Interfacial Stability of Highâ€Energy Si/Graphite LiNi _{0.88} Co _{0.09} Mn _{0.03} O ₂ Batteries Employing a Dualâ€Anion Ionic Liquidâ€based Electrolyte. Batteries and Supercaps, 2022, 5, .	2.4	3
212	Visualization of battery materials and their interfaces/interphases using cryogenic electron microscopy. Materials Today, 2022, 58, 238-274.	8.3	17
213	Recent development of ionic liquid-based electrolytes in lithium-ion batteries. Journal of Power Sources, 2022, 542, 231792.	4.0	93
214	Editors' Choice—Methods—Pressure Control Apparatus for Lithium Metal Batteries. Journal of the Electrochemical Society, 2022, 169, 070537.	1.3	10
215	Stable Li Metal–Electrolyte Interface Enabled by SEI Improvement and Cation Shield Functionality of the Azamacrocyclic Ligand in Carbonate Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 35645-35653.	4.0	11
216	Advanced Nonflammable Organic Electrolyte Promises Safer Liâ€Metal Batteries: From Solvation Structure Perspectives. Advanced Materials, 2023, 35, .	11.1	35
217	Enhanced cyclic stability of LiNi0.8Co0.1Mn0.1O2 (NCM811) by AlF3 coating via atomic layer deposition. Ionics, 2022, 28, 4547-4554.	1.2	10
218	Critical Review on cathode–electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries. Nano-Micro Letters, 2022, 14, .	14.4	49

		CITATION REPORT		
#	Article		IF	CITATIONS
219	Cryo-EM for nanomaterials: Progress and perspective. Science China Materials, 2022, 65, 2613-	2626.	3.5	8
220	Review on lithium metal anodes towards high energy density batteries. Green Energy and Enviro 2023, 8, 1509-1530.	onment,	4.7	14
221	Quantifying the Evolution of Inactive Li/Lithium Hydride and Their Correlations in Rechargeable Anode-free Li Batteries. Nano Letters, 2022, 22, 6775-6781.		4.5	13
222	Crossover Effects in Lithiumâ€Metal Batteries with a Localized High Concentration Electrolyte a Highâ€Nickel Cathodes. Advanced Materials, 2022, 34, .	nd	11.1	41
223	Constructing Lowâ€Solvation Electrolytes for Nextâ€Generation Lithiumâ€lon Batteries. Batter Supercaps, 2022, 5, .	es and	2.4	5
224	Li Morphology Evolution during Initial Cycles in a Gel Composite Polymer Electrolyte. ACS Applie Energy Materials, 2022, 5, 11362-11369.	ed	2.5	4
225	Positive electrode–Li metal crosstalk behavior-induced morphology change of Li deposits. Jou Materials Chemistry A, 2022, 10, 17659-17667.	rnal of	5.2	15
226	Eco-friendly electrolytes <i>via</i> a robust bond design for high-energy Li metal batteries. Ener and Environmental Science, 2022, 15, 4349-4361.	gy	15.6	53
227	Inhibition of Gas-Evolved Electrolyte Decomposition in Cylindrical Li-Ion Battery Cells of Ni-Rich Layered Oxide with a Dry Coating Process Without Thermal Annealing. SSRN Electronic Journal,	0, , .	0.4	0
228	Mild and Controllable Solid Electrolyte Interphase Formation for High-Voltage Lithium Metal Batteries in a Wide-Temperature Range from -40 °C to 80 °C. SSRN Electronic Journal, 0, , .		0.4	0
229	Li ⁺ -intercalated carbon cloth for anode-free Li-ion batteries with unprecedented cyclability. Journal of Materials Chemistry A, 2022, 10, 21456-21464.		5.2	5
230	Mild and controllable solid electrolyte interphase formation for high-voltage lithium metal batte in a wide-temperature range from â^40°C to 80°C. Chemical Engineering Journal, 2023, 4	ries 52, 139398.	6.6	7
231	A Review on Regulating Li ⁺ Solvation Structures in Carbonate Electrolytes for Lithiu Metal Batteries. Advanced Materials, 0, , 2206009.	ım	11.1	39
232	Cl [–] /Cl ₃ [–] Redox Voltammetry to Recognize the Inte on Positively Electrified Carbon in "Water-in-Salt―Electrolytes. Analytical Chemistry, 2022, 12691-12698.	facial Layer 94,	3.2	0
233	Tuning the Solvent Alkyl Chain to Tailor Electrolyte Solvation for Stable Li-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 44470-44478.		4.0	21
234	A Nonflammable Highâ€Voltage 4.7 V Anodeâ€Free Lithium Battery. Advanced Materials, 2022,	34,.	11.1	24
235	Inhibition of Gas-evolved electrolyte decomposition in cylindrical Li-ion battery cells of Ni-rich layered oxide with a dry coating process without post thermal annealing. Journal of Power Source 2022, 550, 232150.	ces,	4.0	11
236	Suppressing Chemical Corrosions of Lithium Metal Anodes. Advanced Energy Materials, 2022, 1	2, .	10.2	11

#	Article	IF	CITATIONS
237	Concentrated ternary ether electrolyte allows for stable cycling of a lithium metal batteryÂwith commercial mass loading highâ€nickel NMC and thin anodes. , 2023, 5, .		9
238	An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy Storage Materials, 2023, 54, 450-460.	9.5	19
239	A new ether-based medium-concentrated electrolyte for lithium–sulfur battery with lean Li anode. Journal of Power Sources, 2022, 551, 232211.	4.0	8
240	A Li2CO3 sacrificial agent for anode-free lithium metal batteries. Chemical Engineering Journal, 2023, 454, 140029.	6.6	6
241	Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	29
242	Molecular/Ionic Designs in the Electrolyte and Interphases for Lithium Metal Anode. Batteries and Supercaps, 2023, 6, .	2.4	4
243	Comprehensive review on latest advances on rechargeable batteries. Journal of Energy Storage, 2023, 57, 106204.	3.9	16
244	Se-doped Li ₆ PS ₅ Cl and Li _{5.5} PS _{4.5} Cl _{1.5} with improved ionic conductivity and interfacial compatibility: a high-throughput DFT study. Journal of Materials Chemistry C, 2022, 10, 18294-18302.	2.7	2
245	Concentrated electrolytes for rechargeable lithium metal batteries. Materials Futures, 2023, 2, 012101.	3.1	18
246	A Comparison of Carbonate-Based and Ether-Based Electrolyte Systems for Lithium Metal Batteries. Journal of the Electrochemical Society, 2023, 170, 010535.	1.3	13
247	Li+ migration and transformation at the interface: A review for stable Li metal anode. Energy Storage Materials, 2023, 55, 782-807.	9.5	12
248	Mini-Review on the Regulation of Electrolyte Solvation Structure for Aqueous Zinc Ion Batteries. Batteries, 2023, 9, 73.	2.1	3
249	Nanotwinned Copper Foil for "Zero Excess―Lithium–Metal Batteries. ACS Applied Energy Materials, 2023, 6, 2140-2150.	2.5	5
250	Designing a Stable Solid Electrolyte Interphase on Lithium Metal Anodes by Tailoring a Mg Atom Center and the Inner Helmholtz Plane for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2023, 15, 17893-17903.	4.0	5
251	Liquid electrolytes for low-temperature lithium batteries: main limitations, current advances, and future perspectives. Energy Storage Materials, 2023, 56, 642-663.	9.5	21
252	Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nature Communications, 2023, 14, .	5.8	47
253	Poly(Ether-Ester)-Based Solid Polymer Electrolytes with High Li-Ion Transference Number for High Voltage All-Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2023, 6, 3113-3125.	2.5	6
254	Research progress towards the corrosion and protection of electrodes in energy-storage batteries. Energy Storage Materials, 2023, 57, 371-399.	9.5	12

ARTICLE IF CITATIONS # Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current 255 9.5 39 advances. Energy Storage Materials, 2023, 57, 508-539. Strongly Solvating Ether Electrolytes for High-Voltage Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 13155-13164. Feasible approaches for anode-free lithium-metal batteries as next generation energy storage systems. 257 9.5 10 Energy Storage Materials, 2023, 57, 471-496. Enabling an Intrinsically Safe and Highâ€Energyâ€Density 4.5ÂVâ€Class Lithiumâ€Ion Battery with Synergistically 10.2 Incorporated Fast Ion Conductors. Advanced Energy Materials, 2023, 13, . First-Principles Examination of Multiple Criteria of Organic Solvent Oxidative Stability in Batteries. 259 3.2 4 Chemistry of Materials, 2023, 35, 2518-2530. 260 A Perspective on the Critical Design Criteria for Anode-free Li Metal Batteries., 0, 1, . Highly stable lithium-ion wide-temperature storage performance achieved via anion-dominated 261 solvation structure and electric double-layer engineering. Journal of Power Sources, 2023, 567, 4.0 1 232975. Revealing Structural Insights of Solid Electrolyte Interphase in Highâ€Concentrated Nonâ€Flammable Electrolyte for Li Metal Batteries by Cryoâ€TEM. Small, 2023, 19, . 5.2 263 New Concepts and Tools., 2023, , 714-764. 0 Single additive to regulate lithium-ion solvation structure in carbonate electrolytes for 264 2.8 high-performance lithium-metal batteries. Cell Reports Physical Science, 2023, 4, 101379. Lithium Plating and Stripping: Toward Anodeâ€Free Solidâ€State Batteries. Advanced Energy and 265 2 2.8 Sustainability Research, 0, , Emergent solvation phenomena in non-aqueous electrolytes with multiple anions. CheM, 2023, 9, 5.8 1955-1971. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries. 273 18.7 24 Chemical Society Reviews, 2023, 52, 5255-5316. The value of <i>in situ</i>/operando Raman spectroscopy in all-solid-state Li batteries. Journal of 5.2 Materials Chemistry A, O, , . Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and 277 3.7 6 lithium-metal anodes. Chemical Science, 2023, 14, 9996-10024. The progress of <i>in situ</i> technology for lithium metal batteries. Materials Chemistry Frontiers, Designing electrolytesÄand interphases for high-energy lithium batteries. Nature Reviews Chemistry, 294 13.8 5 2024, 8, 30-44.