Synthesis and characterization of iron oxide nanopartic chemical method using an external magnetic field

Materials Letters 242, 13-16

DOI: 10.1016/j.matlet.2019.01.098

Citation Report

#	Article	IF	CITATIONS
1	The economic potential of the African iron-ore tailings: synthesis of magnetite for the removal of trace metals in groundwaterâ€"a review. Environmental Earth Sciences, 2019, 78, 1.	1.3	10
2	Phase transformed iron oxide – iron (oxy) hydroxide composite nanoflorets grown on foam-like graphene as a high performing adsorbent. Chemical Engineering Journal, 2020, 388, 124306.	6.6	16
3	Growth and characterization of carbon nanotubes over CoFe ₂ O ₄ -MgO catalysts at different temperatures. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 815-822.	1.0	4
4	Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: Biofabrication, adsorptive dynamics and chemometric modeling study. Journal of Water Process Engineering, 2020, 37, 101426.	2.6	55
5	One-step statistical design of experiment for the screening and optimization of magnetite nanoparticles yields from solvothermal synthesis. Microporous and Mesoporous Materials, 2021, 312, 110775.	2.2	8
6	Effective Heterogeneous Fentonâ€Like degradation of Malachite Green Dye Using the Coreâ€Shell Fe ₃ O ₄ @SiO ₂ Nanoâ€Catalyst. ChemistrySelect, 2021, 6, 865-875.	0.7	21
7	Nanoparticles as a novel and promising antiviral platform in veterinary medicine. Archives of Virology, 2021, 166, 2673-2682.	0.9	10
8	Comparison of the Surface Properties of Hydrothermally Synthesised Fe3O4@C Nanocomposites at Variable Reaction Times. Nanomaterials, 2021, 11, 2742.	1.9	5
9	A review on green synthesis of iron (Fe) nanomaterials, its alloys and oxides. Inorganic and Nano-Metal Chemistry, 2022, 52, 20-36.	0.9	5
10	Removal of of toxic metal ions (Ni2+ and Cd2+) from wastewater by using TOPO decorated iron oxide nanoparticles. Applied Water Science, 2022, 12, 1.	2.8	11
11	Full life cycle exposure of plants to nanomaterials: impact on productivity., 2022,, 1-48.		0
12	A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere, 2022, 308, 136331.	4.2	27
13	Controlled Formation of Hematiteâ€"Magnetite Nanoparticles by a Biosynthesis Method and Its Photocatalytic Removal Potential Against Methyl Orange Dye. Journal of Cluster Science, 2023, 34, 2381-2395.	1.7	2
14	Biomonitoring and risk assessment of naturally and chemically synthesized iron-oxide nanoparticles: A comparative approach. Science of the Total Environment, 2023, 872, 161960.	3.9	1