Arbovirus coinfection and co-transmission: A neglected

PLoS Biology 17, e3000130 DOI: 10.1371/journal.pbio.3000130

Citation Report

#	Article	IF	CITATIONS
1	Space–time dynamics of a triple epidemic: dengue, chikungunya and Zika clusters in the city of Rio de Janeiro. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191867.	1.2	33
2	Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic. Cell, 2019, 178, 1057-1071.e11.	13.5	68
3	Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nature Reviews Rheumatology, 2019, 15, 597-611.	3.5	117
4	A New High-Throughput Tool to Screen Mosquito-Borne Viruses in Zika Virus Endemic/Epidemic Areas. Viruses, 2019, 11, 904.	1.5	16
5	One-step pentaplex real-time polymerase chain reaction assay for detection of zika, dengue, chikungunya, West nile viruses and a human housekeeping gene. Journal of Clinical Virology, 2019, 120, 44-50.	1.6	15
6	Explaining Pathogenicity of Congenital Zika and Guillain–Barré Syndromes: Does Dysregulation of RNA Editing Play a Role?. BioEssays, 2019, 41, 1800239.	1.2	14
7	Structural perspectives of antibody-dependent enhancement of infection of dengue virus. Current Opinion in Virology, 2019, 36, 1-8.	2.6	27
8	Acute Seroconversion of Eastern Equine Encephalitis Coinfection With California Serogroup Encephalitis Virus. Frontiers in Neurology, 2019, 10, 242.	1.1	4
9	Tropism of the Chikungunya Virus. Viruses, 2019, 11, 175.	1.5	85
10	Impacts of Zika emergence in Latin America on endemic dengue transmission. Nature Communications, 2019, 10, 5730.	5.8	48
11	The Global Distribution and Burden of Dengue and Japanese Encephalitis Co-Infection in Acute Encephalitis Syndrome. , 0, , .		5
12	Vertically transmitted chikungunya, Zika and dengue virus infections. International Journal of Pediatrics and Adolescent Medicine, 2020, 7, 107-111.	0.5	17
13	Use of Nanotrap particles for the capture and enrichment of Zika, chikungunya and dengue viruses in urine. PLoS ONE, 2020, 15, e0227058.	1.1	13
14	Pathogenic Th1 responses in CHIKVâ€induced inflammation and their modulation upon Plasmodium parasites coâ€infection. Immunological Reviews, 2020, 294, 80-91.	2.8	9
15	Low chikungunya virus seroprevalence two years after emergence in Fiji. International Journal of Infectious Diseases, 2020, 90, 223-225.	1.5	9
16	Concerns and public health challenges for arboviral and other respiratory infections amidst SARS-CoV-2 pandemic. Pathogens and Global Health, 2020, 114, 405-406.	1.0	1
17	Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of <i>Culex pipiens</i> mosquitoes. Emerging Microbes and Infections, 2020, 9, 2642-2652.	3.0	21
18	Superinfection Exclusion in Mosquitoes and Its Potential as an Arbovirus Control Strategy. Viruses, 2020, 12, 1259.	1.5	13

CITATION REPORT

#	Article	IF	CITATIONS
19	DENV and ZIKV detection in patients with acute febrile syndrome in Córdoba, Colombia. International Journal of Infectious Diseases, 2020, 99, 458-465.	1.5	4
20	The frequency and clinical presentation of Zika virus coinfections: a systematic review. BMJ Global Health, 2020, 5, e002350.	2.0	18
21	Cross-utilisation of template RNAs by alphavirus replicases. PLoS Pathogens, 2020, 16, e1008825.	2.1	18
22	Neurological complications in adults with Zika and chikungunya virus infection. Lancet Neurology, The, 2020, 19, 799-801.	4.9	2
23	Comparative viromes of <i>Culicoides</i> and mosquitoes reveal their consistency and diversity in viral profiles. Briefings in Bioinformatics, 2021, 22, .	3.2	9
24	Climate change and viral emergence: evidence from Aedes-borne arboviruses. Current Opinion in Virology, 2020, 40, 41-47.	2.6	55
25	Evolutionary consequences of feedbacks between within-host competition and disease control. Evolution, Medicine and Public Health, 2020, 2020, 30-34.	1.1	7
26	Zika virus infection in asymptomatic persons in Myanmar, 2018. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2020, 114, 440-447.	0.7	2
27	Regioselective convergent synthesis of 2-arylidene thiazolo[3,2- <i>a</i>]pyrimidines as potential anti-chikungunya agents. RSC Advances, 2020, 10, 5191-5195.	1.7	5
28	Update on the Transmission of Zika Virus Through Breast Milk and Breastfeeding: A Systematic Review of the Evidence. Viruses, 2021, 13, 123.	1.5	10
29	Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nature Communications, 2021, 12, 151.	5.8	22
30	Emerging Viral Infections. Updates in Clinical Dermatology, 2021, , 91-110.	0.1	1
31	Clinical Manifestations in Pregnant Women and Congenital Abnormalities in Fetus and Newborns during a Zika Transmission Period in South Mexico. , 0, , .		0
32	Comparison of Cytokine Expression Profile in Chikungunya and Dengue Co-Infected and Mono-Infected Patients' Samples. Pathogens, 2021, 10, 166.	1.2	3
33	Brazilian <i>Aedes aegypti</i> as a Competent Vector for Multiple Complex Arboviral Coinfections. Journal of Infectious Diseases, 2021, 224, 101-108.	1.9	10
34	Characteristics of Patients Co-infected with Severe Acute Respiratory Syndrome Coronavirus 2 and Dengue Virus, Buenos Aires, Argentina, March–June 2020. Emerging Infectious Diseases, 2021, 27, 348-351.	2.0	24
35	Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Neglected Tropical Diseases, 2021, 15, e0009259.	1.3	28
36	Cytokine Signature of Dengue Patients at Different Severity of the Disease. International Journal of Molecular Sciences, 2021, 22, 2879.	1.8	22

		CITATION REPORT		
#	Article		IF	Citations
37	Three-Year Clinical Follow-Up of Children Intrauterine Exposed to Zika Virus. Viruses, 20)21, 13, 523.	1.5	13
38	In vitro study of Hesperetin and Hesperidin as inhibitors of zika and chikungunya virus ONE, 2021, 16, e0246319.	proteases. PLoS	1.1	17
39	The co-epidemic of Dengue and COVID-19 in Brazil: between challenges in their manag consequences of socioeconomic inequality. Research, Society and Development, 2021,		0.0	2
40	Host Factors That Control Mosquito-Borne Viral Infections in Humans and Their Vector. 13, 748.	Viruses, 2021,	1.5	5
41	Seroprevalence of Chikungunya virus and living conditions in Feira de Santana, Bahia-B Neglected Tropical Diseases, 2021, 15, e0009289.	razil. PLoS	1.3	5
42	Management of dengue with co-infections: an updated narrative review. Drug Discover Therapeutics, 2021, 15, 130-138.	ies and	0.6	3
43	The effects of DENV serotype competition and co-infection on viral kinetics in Wolbach uninfected Aedes aegypti mosquitoes. Parasites and Vectors, 2021, 14, 314.	iia-infected and	1.0	3
44	Serological and molecular epidemiology of the Dengue, Zika and Chikungunya viruses i Brazil. BMC Infectious Diseases, 2021, 21, 704.	n a risk area in	1.3	5
45	Non-Invasive Dengue Diagnostics—The Use of Saliva and Urine for Different Stages of Diagnostics, 2021, 11, 1345.	f the Illness.	1.3	13
46	An updated RT-qPCR assay for the simultaneous detection and quantification of chikun and zika viruses. Infection, Genetics and Evolution, 2021, 93, 104967.	gunya, dengue	1.0	5
47	Design of Monovalent and Chimeric Tetravalent Dengue Vaccine Using an Immunoinfo Approach. International Journal of Peptide Research and Therapeutics, 2021, 27, 2607-	rmatics 2624.	0.9	7
48	Coinfection of Zika with Dengue and Chikungunya virus. , 2021, , 117-127.			0
49	Neuroinvasive chikungunya in a liver transplant recipient. Transplant Infectious Disease e13554.	, 2021, 23,	0.7	1
51	Spatiotemporal transmission dynamics of co-circulating dengue, Zika, and chikungunya Fortaleza, Brazil: 2011–2017. PLoS Neglected Tropical Diseases, 2020, 14, e000876	a viruses in 0.	1.3	16
52	Patch dynamics modeling framework from pathogens' perspective: Unified and sta for complicated epidemic systems. PLoS ONE, 2020, 15, e0238186.	ndardized approach	1.1	5
53	Prediction of Epitope-Based Peptide Vaccine Against the Chikungunya Virus by Immuno Approach. Current Pharmaceutical Biotechnology, 2020, 21, 325-340.	p-informatics	0.9	14
54	Role of Immunoinformatics in Accelerating Epitope-Based Vaccine Development agains The Open Biochemistry Journal, 2020, 14, 9-18.	t Dengue Virus.	0.3	2
55	Use of a Blockade-of-Binding ELISA and Microneutralization Assay to Evaluate Zika Viru Dengue-Endemic Areas. American Journal of Tropical Medicine and Hygiene, 2019, 101,		0.6	13

#	ARTICLE Flavivirus Persistence in Wildlife Populations. Viruses, 2021, 13, 2099.	IF 1.5	CITATIONS
57	Which Plagues are Coming Next?. , 0, , .		0
61	Impact of the introduction of chikungunya and zika viruses on the incidence of dengue in endemic zones of Mexico. PLoS Neglected Tropical Diseases, 2021, 15, e0009922.	1.3	4
62	A versatile inhibitor of digestive enzymes in Aedes aegypti larvae selected from a pacifastin (TiPI) phage display library. Biochemical and Biophysical Research Communications, 2022, 590, 139-144.	1.0	1
63	Simultaneous detection of Zika, chikungunya, dengue, yellow fever, West Nile, and Japanese encephalitis viruses by a twoâ€ŧube multiplex realâ€ŧime RTâ€₽CR assay. Journal of Medical Virology, 2022, 94, 2528-2536.	2.5	3
64	Host immunity and vaccine development against Dengue virus. , 2022, , .		3
65	Bluetongue Research at a Crossroads: Modern Genomics Tools Can Pave the Way to New Insights. Annual Review of Animal Biosciences, 2022, 10, 303-324.	3.6	4
67	Predict the incidence of Guillain Barré Syndrome and arbovirus infection in Mexico, 2014–2019. PLOS Global Public Health, 2022, 2, e0000137.	0.5	2
68	Global prevalence of dengue and chikungunya coinfection: A systematic review and meta-analysis of 43,341 participants. Acta Tropica, 2022, 231, 106408.	0.9	8
69	Vector Specificity of Arbovirus Transmission. Frontiers in Microbiology, 2021, 12, 773211.	1.5	27
71	A case of co-infection with malaria and chikungunya in a returning traveler from Nigeria. Journal of Vector Borne Diseases, 2021, 58, 178.	0.1	1
73	Broad-Spectrum Anti-Flavivirus Activity and Chemistry of Compounds Containing Sulfur and Oxygen Chalcogens. Current Medicinal Chemistry, 2023, 30, 2396-2420.	1.2	3
75	Genetic Characterization of Chikungunya Virus Among Febrile Dengue Fever–Like Patients in Xishuangbanna, Southwestern Part of China. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	0
76	Sero-epidemiological study of arbovirus infection following the 2015–2016 Zika virus outbreak in Cabo Verde. Scientific Reports, 2022, 12, .	1.6	2
77	Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission?. Parasites and Vectors, 2022, 15, .	1.0	25
78	Spatio-temporal clusters and patterns of spread of dengue, chikungunya, and Zika in Colombia. PLoS Neglected Tropical Diseases, 2022, 16, e0010334.	1.3	5
79	Re-emergence of arbovirus diseases in the State of Rio de Janeiro, Brazil: The role of simultaneous viral circulation between 2014 and 2019. One Health, 2022, 15, 100427.	1.5	2
80	Animal models of alphavirus infection and human disease. Advances in Virus Research, 2022, , 25-88.	0.9	2

CITATION REPORT

	CHATOWR		
#	Article	IF	Citations
81	Heart Disease and Arboviruses: A Systematic Review and Meta-Analysis. Viruses, 2022, 14, 1988.	1.5	7
82	Arbovirus infection in Aedes aegypti from different departments of Colombia. Frontiers in Ecology and Evolution, 0, 10, .	1.1	2
83	Interactions between seasonal temperature variation and temporal synchrony drive increased arbovirus co-infection incidence. Royal Society Open Science, 2022, 9, .	1.1	1
84	Co-infection of Peruvian horse sickness virus and West Nile virus associated with neurological diseases in horses from Brazil. Heliyon, 2022, 8, e12097.	1.4	0
85	Vector-virus interaction affects viral loads and co-occurrence. BMC Biology, 2022, 20, .	1.7	6
86	Niche theory for withinâ€host parasite dynamics: Analogies to food web modules via feedback loops. Ecology Letters, 2023, 26, 351-368.	3.0	2
87	Low Transmission of Chikungunya Virus by AedesÂaegypti from Vientiane Capital, Lao PDR. Pathogens, 2023, 12, 31.	1.2	2
88	Mosquito defense mechanisms against medically important arboviruses: The vector-pathogen interface. , 2023, , 151-159.		0
89	Arboviral disease outbreaks, Aedes mosquitoes, and vector control efforts in the Pacific. Frontiers in Tropical Diseases, 0, 4, .	0.5	0
90	Antibody seropositivity and endemicity of chikungunya and Zika viruses in Nigeria. Animal Diseases, 2023, 3, .	0.6	2
91	Simultaneous Coinfections with West Nile Virus and Usutu Virus in Culex pipiens and Aedes vexans Mosquitoes. Transboundary and Emerging Diseases, 2023, 2023, 1-13.	1.3	1
92	Spatiotemporal overlapping of dengue, chikungunya, and malaria infections in children in Kenya. BMC Infectious Diseases, 2023, 23, .	1.3	3
93	Detection of DENV-2 and ZIKV coinfection in southeastern Brazil by serum and urine testing. Medical Microbiology and Immunology, 0, , .	2.6	0
94	Hospitalization status and gender recognition over the arboviral medical records using shallow and RNN-based deep models. Results in Engineering, 2023, 18, 101109.	2.2	1

TION REDO