A defined commensal consortium elicits CD8 T cells and

Nature 565, 600-605 DOI: 10.1038/s41586-019-0878-z

Citation Report

#	Article	IF	CITATIONS
1	Gut microbes as a therapeutic armory. Drug Discovery Today: Disease Models, 2018, 28, 51-59.	1.2	3
2	Microbiology and immunology: An ideal partnership for a tango at the gut surface—A tribute toPhilippe Sansonetti. Cellular Microbiology, 2019, 21, e13097.	1.1	2
3	Design of synthetic microbial consortia for gut microbiota modulation. Current Opinion in Pharmacology, 2019, 49, 52-59.	1.7	37
4	Harnessing host–virus evolution in antiviral therapy and immunotherapy. Clinical and Translational Immunology, 2019, 8, e1067.	1.7	27
5	Possible Biomarkers for Cancer Immunotherapy. Cancers, 2019, 11, 935.	1.7	35
6	Microenvironmental Metabolism Regulates Antitumor Immunity. Cancer Research, 2019, 79, 4003-4008.	0.4	91
7	Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity, 2019, 51, 285-297.e5.	6.6	378
8	The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor?. Annals of Oncology, 2019, 30, 1572-1579.	0.6	153
9	The Diversity of Gut Microbiome is Associated With Favorable Responses to Anti–Programmed Death 1 Immunotherapy in Chinese Patients With NSCLC. Journal of Thoracic Oncology, 2019, 14, 1378-1389.	0.5	310
10	Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity. Journal of Immunology Research, 2019, 2019, 1-10.	0.9	96
11	Death and the Miser: microbiota regulate the outcome of checkpoint inhibition immunotherapy. Expert Review of Anticancer Therapy, 2019, 19, 831-834.	1.1	3
12	Impact of the microbiome on checkpoint inhibitor treatment in patients with non-small cell lung cancer and melanoma. EBioMedicine, 2019, 48, 642-647.	2.7	38
13	Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduction and Targeted Therapy, 2019, 4, 41.	7.1	150
14	Gastrointestinal Tract Dysbiosis Enhances Distal Tumor Progression through Suppression of Leukocyte Trafficking. Cancer Research, 2019, 79, 5999-6009.	0.4	21
15	Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental relationship?. Clinical Chemistry and Laboratory Medicine, 2019, 58, 18-24.	1.4	13
16	Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy. EBioMedicine, 2019, 48, 648-655.	2.7	72
17	Recoding the metagenome: microbiome engineering in situ. Current Opinion in Microbiology, 2019, 50, 28-34.	2.3	12
18	Gut Microbiome: A Promising Biomarker for Immunotherapy in Colorectal Cancer. International Journal of Molecular Sciences, 2019, 20, 4155.	1.8	83

ITATION REDO

#	Article	IF	CITATIONS
19	Therapeutic Opportunities in Inflammatory Bowel Disease: Mechanistic Dissection of Host-Microbiome Relationships. Cell, 2019, 178, 1041-1056.	13.5	156
20	Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity, 2019, 51, 225-239.	6.6	105
21	A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nature Medicine, 2019, 25, 1442-1452.	15.2	255
22	Probiotics in health and disease: fooling Mother Nature?. Infection, 2019, 47, 911-917.	2.3	23
23	Immunopathogenesis of Immune Checkpoint Inhibitor-Related Adverse Events: Roles of the Intestinal Microbiome and Th17 Cells. Frontiers in Immunology, 2019, 10, 2254.	2.2	51
24	A gut punch fights cancer and infection. Nature, 2019, 565, 573-574.	13.7	7
25	Atmospheric reaction networks affecting climate are more complex than was thought. Nature, 2019, 565, 574-575.	13.7	1
26	Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment?. International Journal of Molecular Sciences, 2019, 20, 4584.	1.8	72
27	Decoding the microbiome for the development of translational applications: Overview, challenges and pitfalls. Journal of Biosciences, 2019, 44, 1.	0.5	1
28	Epithelial Cells as a Transmitter of Signals From Commensal Bacteria and Host Immune Cells. Frontiers in Immunology, 2019, 10, 2057.	2.2	47
29	Microbes as biomarkers and targets in pancreatic cancer. Nature Reviews Clinical Oncology, 2019, 16, 665-666.	12.5	15
30	Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 690-704.	8.2	686
31	Commensal cocktail for CD8s. Nature Reviews Immunology, 2019, 19, 136-137.	10.6	0
32	The next step towards anticancer microbiota therapeutics. Nature Reviews Microbiology, 2019, 17, 125-125.	13.6	8
33	The microbiome and immune memory formation. Immunology and Cell Biology, 2019, 97, 625-635.	1.0	45
34	Save your gut save your age: The role of the microbiome in stem cell ageing. Journal of Cellular and Molecular Medicine, 2019, 23, 4866-4875.	1.6	22
35	Intestinal microbiome and fitness in kidney disease. Nature Reviews Nephrology, 2019, 15, 531-545.	4.1	140
36	Microbial genes and pathways inÂinflammatory bowel disease. Nature Reviews Microbiology, 2019, 17, 497-511.	13.6	447

#	Article	IF	CITATIONS
37	New insights and therapeutic implication of gut microbiota in non-alcoholic fatty liver disease and its associated liver cancer. Cancer Letters, 2019, 459, 186-191.	3.2	30
38	The cancer microbiome. Nature Reviews Cancer, 2019, 19, 371-376.	12.8	153
39	Response to Comment on "Trapping of Lipopolysaccharide to Promote Immunotherapy against Colorectal Cancer and Attenuate Liver Metastasis― Advanced Materials, 2019, 31, e1902569.	11.1	0
40	Culturomics provides critical prokaryote strains for anti-Listeria and anti-cancer probiotics. International Journal of Antimicrobial Agents, 2019, 54, 407-409.	1.1	9
41	Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacological Research, 2019, 145, 104258.	3.1	115
42	Microbiota-Dependent Regulation of Antimicrobial Immunity in the Lung. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 284-289.	1.4	14
43	Effects of Intestinal Microbial–Elaborated Butyrate on Oncogenic Signaling Pathways. Nutrients, 2019, 11, 1026.	1.7	102
44	Exploring the emerging role of the microbiome in cancer immunotherapy. , 2019, 7, 108.		217
45	Cancer Immune Checkpoint Inhibitor Therapy and the Gut Microbiota. Integrative Cancer Therapies, 2019, 18, 153473541984637.	0.8	48
46	Modulating inflammation for cancer therapy. Journal of Experimental Medicine, 2019, 216, 1234-1243.	4.2	108
47	Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annual Review of Immunology, 2019, 37, 599-624.	9.5	214
48	Mining the microbiota for microbial and metabolite-based immunotherapies. Nature Reviews Immunology, 2019, 19, 305-323.	10.6	211
49	Could the menagerie of the gut microbiome really cure cancer? Hope or hype. , 2019, 7, 92.		16
50	Towards the Native Binding Modes of Antibiotics that Target Lipidâ€II. ChemBioChem, 2019, 20, 1731-1738.	1.3	19
51	Bacterial strains modulate CD8+ T cell function and cancer immunity. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 141-141.	8.2	1
52	Microbiota and immune cell interplay. Nature Reviews Cancer, 2019, 19, 182-182.	12.8	1
53	Microbiota modification in hematology: still at the bench or ready for the bedside?. Blood Advances, 2019, 3, 3461-3472.	2.5	24
54	Interferon target-gene expression and epigenomic signatures in health and disease. Nature Immunology, 2019, 20, 1574-1583.	7.0	316

		CITATION I	Report	
#	Article		IF	CITATIONS
55	Gut microbiome and CAR-T therapy. Experimental Hematology and Oncology, 2019, 8, 3	31.	2.0	33
56	The Gut Microbiome Influences Responses to Programmed Death 1 Therapy in Chinese I Patients $\hat{a} \in $ ["] the Benefits of Diversity. Journal of Thoracic Oncology, 2019, 14, 1319-132	Lung Cancer 22.	0.5	10
57	The Life Cycle of <i>Dictyostelium discoideum</i> Is Accele Kinase Cascade by a Culture Extract Produced by a Synthetic Microbial Consortium. Jour Molecular Microbiology and Biotechnology, 2019, 29, 35-42.	erated via MAP mal of	1.0	1
58	Identification of responders to immune checkpoint therapy: which biomarkers have the Journal of the European Academy of Dermatology and Venereology, 2019, 33, 52-56.	highest value?.	1.3	23
59	The Microbiome and Its Potential for Pharmacology. Handbook of Experimental Pharmac 260, 301-326.	cology, 2019,	0.9	14
60	Nanotechnology intervention of the microbiome for cancer therapy. Nature Nanotechno 1093-1103.	ology, 2019, 14,	15.6	151
61	The role of the changing human microbiome in the asthma pandemic. Journal of Allergy Immunology, 2019, 144, 1457-1466.	and Clinical	1.5	34
62	Antibiotic-induced microbiome depletion is associated with resilience in mice after chror defeat stress. Journal of Affective Disorders, 2020, 260, 448-457.	nic social	2.0	67
63	Drugging the gut microbiota: towardÂrational modulation of bacterial composition in th Current Opinion in Chemical Biology, 2020, 56, 10-15.	ie gut.	2.8	11
64	Immune-resistant mechanisms in cancer immunotherapy. International Journal of Clinica 2020, 25, 810-817.	l Oncology,	1.0	39
65	Current issues and perspectives in PD-1 blockade cancer immunotherapy. International J Clinical Oncology, 2020, 25, 790-800.	ournal of	1.0	120
66	Gut microbiome and response to checkpoint inhibitors in non-small cell lung cancer—A Critical Reviews in Oncology/Hematology, 2020, 145, 102841.	A review.	2.0	28
67	Bugs, Drugs, and Shrugs. Arthritis and Rheumatology, 2020, 72, 515-517.		2.9	0
68	The gut microbiome: an unexpected player in cancer immunity. Current Opinion in Neur 62, 48-52.	obiology, 2020,	2.0	23
69	Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical and biochemical characterization. Nature Protocols, 2020, 15, 40-67.	separation	5.5	130
70	Understanding immune–microbiota interactions in the intestine. Immunology, 2020,	159, 4-14.	2.0	62
71	Oral delivery of bacteria: Basic principles and biomedical applications. Journal of Control 2020, 327, 801-833.	led Release,	4.8	55
72	The Oral Microbiome and Cancer. Frontiers in Immunology, 2020, 11, 591088.		2.2	134

#	Article	IF	Citations
73	Bacteroides fragilis alleviates the symptoms of lupus nephritis via regulating CD1d and CD86 expressions in B cells. European Journal of Pharmacology, 2020, 884, 173421.	1.7	16
74	The Resistance Mechanisms of Lung Cancer Immunotherapy. Frontiers in Oncology, 2020, 10, 568059.	1.3	47
75	Impact of the intestinal environment on the immune responses to vaccination. Vaccine, 2020, 38, 6959-6965.	1.7	12
76	SSAT State-of-the-Art Conference: Advancements in the Microbiome. Journal of Gastrointestinal Surgery, 2021, 25, 1885-1895.	0.9	1
77	Immunotherapy for advanced hepatocellular carcinoma, where are we?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188441.	3.3	52
78	Nonalcoholic fatty liver disease and colorectal cancer: Correlation and missing links. Life Sciences, 2020, 262, 118507.	2.0	15
79	Does the gut microbiota play a key role in PD-1/PD-L1 blockade therapy?. Translational Lung Cancer Research, 2020, 9, 438-440.	1.3	3
80	Can we harness the microbiota to enhance the efficacy of cancer immunotherapy?. Nature Reviews Immunology, 2020, 20, 522-528.	10.6	54
81	Association of Probiotic <i>Clostridium butyricum</i> Therapy with Survival and Response to Immune Checkpoint Blockade in Patients with Lung Cancer. Cancer Immunology Research, 2020, 8, 1236-1242.	1.6	115
82	Bacteria-immune cells dialog and the homeostasis of the systems. Current Opinion in Immunology, 2020, 66, 82-89.	2.4	11
83	Immunomodulation in Pancreatic Cancer. Cancers, 2020, 12, 3340.	1.7	12
84	Early Life Inoculation With Adult-Derived Microbiota Accelerates Maturation of Intestinal Microbiota and Enhances NK Cell Activation in Broiler Chickens. Frontiers in Veterinary Science, 2020, 7, 584561.	0.9	22
85	The gut microbiota is associated with immune cell dynamics in humans. Nature, 2020, 588, 303-307.	13.7	273
86	Power calculations for detecting differences in efficacy of fecal microbiota donors. Contemporary Clinical Trials Communications, 2020, 20, 100674.	0.5	1
87	Proof of Concept of Culturomics Use of Time of Care. Frontiers in Cellular and Infection Microbiology, 2020, 10, 524769.	1.8	12
88	The gut microbiome: an under-recognised contributor to the COVID-19 pandemic?. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482097491.	1.4	50
89	Colorectal cancer stem cell vaccine with high expression of MUC1 serves as a novel prophylactic vaccine for colorectal cancer. International Immunopharmacology, 2020, 88, 106850.	1.7	18
90	Engineered Live Biotherapeutics: Progress and Challenges. Biotechnology Journal, 2020, 15, e2000155.	1.8	13

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
91	The Gut Microbiome Associates with Immune Checkpoint Inhibition Outcomes in Patients with Advanced Non–Small Cell Lung Cancer. Cancer Immunology Research, 2020, 8, 1243-1250.	1.6	154
92	Combination of Detoxified Pneumolysin Derivative ΔA146Ply and Berbamine as a Treatment Approach for Breast Cancer. Molecular Therapy - Oncolytics, 2020, 18, 247-261.	2.0	8
93	The role of gut microbiota in cancer treatment: friend or foe?. Gut, 2020, 69, 1867-1876.	6.1	189
94	Microbial modulation of intestinal T helper cell responses and implications for disease and therapy. Mucosal Immunology, 2020, 13, 855-866.	2.7	23
95	Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science, 2020, 369, 1481-1489.	6.0	635
96	Treating Colorectal Cancer with Immunotherapy: Implications for Single Versus Combination Therapy. Current Colorectal Cancer Reports, 2020, 16, 107-117.	1.0	2
97	Promising predictors of checkpoint inhibitor response in NSCLC. Expert Review of Anticancer Therapy, 2020, 20, 931-937.	1.1	15
98	The Role of the Microbiome in Cancer and Therapy Efficacy: Focus on Lung Cancer. Anticancer Research, 2020, 40, 4807-4818.	0.5	26
99	Genome sequence of segmented filamentous bacteria present in the human intestine. Communications Biology, 2020, 3, 485.	2.0	27
100	Mechanisms underpinning the efficacy of faecal microbiota transplantation in treating gastrointestinal disease. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482094690.	1.4	21
101	Microbiota and Cancer: The Emerging Beneficial Role of Bifidobacteria in Cancer Immunotherapy. Frontiers in Microbiology, 2020, 11, 575072.	1.5	40
102	CD8 T cells drive anorexia, dysbiosis, and blooms of a commensal with immunosuppressive potential after viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24998-25007.	3.3	10
103	Elucidating the gut microbiota composition and the bioactivity of immunostimulatory commensals for the optimization of immune checkpoint inhibitors. Oncolmmunology, 2020, 9, 1794423.	2.1	7
104	The Great Debate at â€ [~] Immunotherapy Bridge', Naples, December 5, 2019. , 2020, 8, e000921.		3
105	<i>Akkermansia muciniphila</i> Enhances the Antitumor Effect of Cisplatin in Lewis Lung Cancer Mice. Journal of Immunology Research, 2020, 2020, 1-13.	0.9	30
106	Electrospun Solid Formulation of Anaerobic Gut Microbiome Bacteria. AAPS PharmSciTech, 2020, 21, 214.	1.5	8
107	Cancer immunotherapy–related adverse events: causes and challenges. Supportive Care in Cancer, 2020, 28, 6111-6117.	1.0	22
108	Perspectives in melanoma: meeting report from the "Melanoma Bridge―(December 5th–7th, 2019,) Tj	ETQq1 _{.8} 1 0.	784 <u>3</u> 14 rgBT

#	Article	IF	CITATIONS
109	Glycans as Immune Checkpoints: Removal of Branched N-glycans Enhances Immune Recognition Preventing Cancer Progression. Cancer Immunology Research, 2020, 8, 1407-1425.	1.6	33
110	Interactions between Gut Microbiota and Immunomodulatory Cells in Rheumatoid Arthritis. Mediators of Inflammation, 2020, 2020, 1-14.	1.4	41
111	Enhancing mucosal immunity by transient microbiota depletion. Nature Communications, 2020, 11, 4475.	5.8	12
112	An oral bacterial cocktail for kidney protection. Nature Biomedical Engineering, 2020, 4, 847-848.	11.6	1
113	An intact gut microbiome protects genetically predisposed mice against leukemia. Blood, 2020, 136, 2003-2017.	0.6	64
114	Predictive values of colon microbiota in the treatment response to colorectal cancer. Pharmacogenomics, 2020, 21, 1045-1059.	0.6	4
115	Cross-reactivity between tumor MHC class l–restricted antigens and an enterococcal bacteriophage. Science, 2020, 369, 936-942.	6.0	217
116	Targeting the Gut Microbiota in Chagas Disease: What Do We Know so Far?. Frontiers in Microbiology, 2020, 11, 585857.	1.5	9
117	Microbiome-based interventions: therapeutic strategies in cancer immunotherapy. Immuno-Oncology Technology, 2020, 8, 12-20.	0.2	9
118	The Emerging Role of Microbiota and Microbiome in Pancreatic Ductal Adenocarcinoma. Biomedicines, 2020, 8, 565.	1.4	15
119	Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy. Cancers, 2020, 12, 3729.	1.7	55
120	The effect of intestinal flora on immune checkpoint inhibitors in tumor treatment: a narrative review. Annals of Translational Medicine, 2020, 8, 1097-1097.	0.7	3
121	Molecular Mechanisms of Gut Microbiota-Associated Colorectal Carcinogenesis. Infectious Microbes & Diseases, 2020, 2, 96-106.	0.5	3
122	Synergistic Cues from Diverse Bacteria Enhance Multicellular Development in a Choanoflagellate. Applied and Environmental Microbiology, 2020, 86, .	1.4	12
123	Changes in the cervical microbiota of cervical cancer patients after primary radio-chemotherapy. International Journal of Gynecological Cancer, 2020, 30, 1326-1330.	1.2	12
124	Adaptogenic flower buds exert cancer preventive effects by enhancing the SCFA-producers, strengthening the epithelial tight junction complex and immune responses. Pharmacological Research, 2020, 159, 104809.	3.1	35
125	Nanoparticle delivery of immunostimulatory oligonucleotides enhances response to checkpoint inhibitor therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13428-13436.	3.3	51
126	Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients. European Urology, 2020, 78, 195-206.	0.9	192

#	Article	IF	CITATIONS
127	Interaction between drugs and the gut microbiome. Gut, 2020, 69, 1510-1519.	6.1	451
128	Overcoming resistance to anti-PD1 and anti-PD-L1 treatment in gastrointestinal malignancies. , 2020, 8, e000404.		29
129	Interaction between microbiota and immunity in health and disease. Cell Research, 2020, 30, 492-506.	5.7	1,724
130	Insulin- and Lipopolysaccharide-Mediated Signaling in Adipose Tissue Macrophages Regulates Postprandial Glycemia through Akt-mTOR Activation. Molecular Cell, 2020, 79, 43-53.e4.	4.5	29
131	Rational Cancer Treatment Combinations: An Urgent Clinical Need. Molecular Cell, 2020, 78, 1002-1018.	4.5	95
132	Relationship between T cells and microbiota in health and disease. Progress in Molecular Biology and Translational Science, 2020, 171, 95-129.	0.9	4
133	Biogenic Hybrid Nanosheets Activated Photothermal Therapy and Promoted Anti-PD-L1 Efficacy for Synergetic Antitumor Strategy. ACS Applied Materials & Interfaces, 2020, 12, 29122-29132.	4.0	6
134	Microbiota stimulation generates LCMV-specific memory CD8+ T cells in SPF mice and determines their TCR repertoire during LCMV infection. Molecular Immunology, 2020, 124, 125-141.	1.0	4
135	The Cancer-Immune Set Point in Oesophageal Cancer. Frontiers in Oncology, 2020, 10, 891.	1.3	15
136	Biological Factors behind Melanoma Response to Immune Checkpoint Inhibitors. International Journal of Molecular Sciences, 2020, 21, 4071.	1.8	23
137	From cellular microbiology to bacteriaâ€based next generations of cancer immunotherapies. Cellular Microbiology, 2020, 22, e13187.	1.1	3
138	Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	37
139	Predictable modulation of cancer treatment outcomes by the gut microbiota. Microbiome, 2020, 8, 28.	4.9	102
140	Comprehensive review of targeted therapy for colorectal cancer. Signal Transduction and Targeted Therapy, 2020, 5, 22.	7.1	853
141	Immune-Microbiota Interplay and Colonization Resistance in Infection. Molecular Cell, 2020, 78, 597-613.	4.5	50
142	Gut bacteria affect the tumoral immune milieu: distorting the efficacy of immunotherapy or not?. Gut Microbes, 2020, 11, 691-705.	4.3	2
143	Memory T cells: strategies for optimizing tumor immunotherapy. Protein and Cell, 2020, 11, 549-564.	4.8	135
144	Gut dysbiosis and multiple sclerosis. Clinical Immunology, 2022, 235, 108380.	1.4	28

#	Article	IF	CITATIONS
145	Immune Checkpoint Inhibitors in Thoracic Malignancies: Review of the Existing Evidence by an IASLC Expert Panel and Recommendations. Journal of Thoracic Oncology, 2020, 15, 914-947.	0.5	119
146	Strategies to Facilitate Translational Advances from Microbiome Surveys. Trends in Microbiology, 2020, 28, 329-330.	3.5	7
147	Modulation of gut microbiota to overcome resistance to immune checkpoint blockade in cancer immunotherapy. Current Opinion in Pharmacology, 2020, 54, 1-10.	1.7	35
148	Microbiome therapeutics and patent protection. Nature Biotechnology, 2020, 38, 806-810.	9.4	10
149	Role of the oral microbiota in cancer evolution and progression. Cancer Medicine, 2020, 9, 6306-6321.	1.3	68
150	Metagenome Data on Intestinal Phage-Bacteria Associations Aids the Development of Phage Therapy against Pathobionts. Cell Host and Microbe, 2020, 28, 380-389.e9.	5.1	51
151	Immunotherapy in Colorectal Cancer: Potential of Fecal Transplant and Microbiota-Augmented Clinical Trials. Current Colorectal Cancer Reports, 2020, 16, 81-88.	1.0	14
152	Hemolysin BL from novel <i>Bacillus toyonensis</i> BV-17 induces antitumor activity both in vitro and in vivo. Gut Microbes, 2020, 12, 1782158.	4.3	7
153	Design and Conduct of Early Clinical Studies of Immunotherapy: Recommendations from the Task Force on Methodology for the Development of Innovative Cancer Therapies 2019 (MDICT). Clinical Cancer Research, 2020, 26, 2461-2465.	3.2	6
154	Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism?. Trends in Microbiology, 2020, 28, 401-423.	3.5	135
155	Gut Microbiome Modulates Response to Cancer Immunotherapy. Digestive Diseases and Sciences, 2020, 65, 885-896.	1.1	38
156	Polymeric Films for the Encapsulation, Storage, and Tunable Release of Therapeutic Microbes. Advanced Healthcare Materials, 2020, 9, e1901643.	3.9	12
157	The Composition Alteration of Respiratory Microbiota in Lung Cancer. Cancer Investigation, 2020, 38, 158-168.	0.6	10
158	Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut, 2020, 69, 1608-1619.	6.1	142
159	The Impact of Lactobacillus Probiotics on the Gut Microbiota in Children With Short Bowel Syndrome. Journal of Surgical Research, 2020, 251, 112-118.	0.8	18
160	Prebiotic-Induced Anti-tumor Immunity Attenuates Tumor Growth. Cell Reports, 2020, 30, 1753-1766.e6.	2.9	105
161	Colibactinâ€positive <scp><i>Escherichia coli</i></scp> induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. International Journal of Cancer, 2020, 146, 3147-3159.	2.3	59
162	Gut Microbiome as a Potential Factor for Modulating Resistance to Cancer Immunotherapy. Frontiers in Immunology, 2019, 10, 2989.	2.2	86

		CITATION REPORT		
#	Article		IF	CITATIONS
163	Computational Modeling of the Human Microbiome. Microorganisms, 2020, 8, 197.		1.6	22
164	TMB: a promising immune-response biomarker, and potential spearhead in advancing trials. Cancer Gene Therapy, 2020, 27, 841-853.	targeted therapy	2.2	94
165	Cell Intrinsic and Systemic Metabolism in Tumor Immunity and Immunotherapy. Cance	ers, 2020, 12, 852.	1.7	19
166	Pancreatic Cancer, Gut Microbiota, and Therapeutic Efficacy. Journal of Cancer, 2020,	11, 2749-2758.	1.2	38
167	Gut Microbiota Modulate CD8ÂT Cell Responses to Influence Colitis-Associated Tumor Reports, 2020, 31, 107471.	igenesis. Cell	2.9	103
168	A purified membrane protein from <i>Akkermansia muciniphila</i> or the pasteurised colitis associated tumourigenesis by modulation of CD8 ⁺ T cells in mice. 1988-1997.	bacterium blunts Gut, 2020, 69,	6.1	304
169	The Route to Palatable Fecal Microbiota Transplantation. AAPS PharmSciTech, 2020, 2	1, 114.	1.5	16
170	Emerging role of microbiota in immunomodulation and cancer immunotherapy. Semin Biology, 2021, 70, 37-52.	ars in Cancer	4.3	19
171	Gut microbiome: A possible common therapeutic target for treatment of atheroscleros Seminars in Cancer Biology, 2021, 70, 85-97.	sis and cancer.	4.3	21
172	Gut microbiota contributes towards immunomodulation against cancer: New frontiers cancer therapeutics. Seminars in Cancer Biology, 2021, 70, 11-23.	in precision	4.3	26
173	How does the gut microbiome influence immune checkpoint blockade therapy?. Immu Biology, 2021, 99, 361-372.	nology and Cell	1.0	11
174	Bugs as drugs: The role of microbiome in cancer focusing on immunotherapeutics. Can Reviews, 2021, 92, 102125.	ncer Treatment	3.4	15
175	Ileal immune tonus is a prognosis marker of proximal colon cancer in mice and patient and Differentiation, 2021, 28, 1532-1547.	s. Cell Death	5.0	11
177	Cancer and the Microbiome—Influence of the Commensal Microbiota on Cancer, Imr and Immunotherapy. Gastroenterology, 2021, 160, 600-613.	nune Responses,	0.6	167
178	Batch Culture Formulation of Live Biotherapeutic Products. Advanced Therapeutics, 20)21, 4, 2000226.	1.6	3
179	Atypical immunometabolism and metabolic reprogramming in liver cancer: Decipherin microbiome. Advances in Cancer Research, 2021, 149, 171-255.	g the role of gut	1.9	13
180	Intervention on gut microbiota may change the strategy for management of colorecta Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 1508-1517.	l cancer.	1.4	11
181	Fecal microbiota transplant promotes response in immunotherapy-refractory melanom Science, 2021, 371, 602-609.	na patients.	6.0	784

ARTICLE IF CITATIONS Fecal microbiota diversity disruption and clinical outcomes after auto-HCT: a multicenter 182 0.6 42 observational study. Blood, 2021, 137, 1527-1537. Tweak to Treat: Reprograming Bacteria for Cancer Treatment. Trends in Cancer, 2021, 7, 447-464. 3.8 Gut microbiome, liver immunology, and liver diseases. Cellular and Molecular Immunology, 2021, 18, 184 4.8 182 4-17. The Gut Microbiome and Colorectal Cancer. Physiology in Health and Disease, 2021, , 63-96. 185 0.2 Human gut microbial communities dictate efficacy of anti-PD-1 therapy in a humanized microbiome 186 0.4 10 mouse model of glioma. Neuro-Oncology Advances, 2021, 3, vdab023. Investigating causality with fecal microbiota transplantation in rodents: applications, 4.3 recommendations and pitfalls. Gut Microbes, 2021, 13, 1941711. Butyrate-producing human gut symbiont, <i>Clostridium butyricum</i>, and its role in health and 188 4.3 157 disease. Gut Microbes, 2021, 13, 1-28. Gut microbiota as the key controllers of $\hat{a} \in \hat{a}$ healthy $\hat{a} \in \hat{a}$ aging of elderly people. Immunity and Ageing, 2021, 189 1.8 161 18, 2. The Gut Microbiome and Cancer: A Comprehensive Review of Melanoma, Lung, Head and Neck and 190 0 Gastrointestinal Tumors., 2021, , 339-339. Creation of an experimental rearing environment for microbiome animal research using an individually ventilated cage system and bioBUBBLE enclosure. Experimental Animals, 2021, 70, 177-184. Effects of concomitant proton pump inhibitor use on immune checkpoint inhibitor efficacy among 192 32 2.1 patients with advanced cancer. Oncolmmunology, 2021, 10, 1929727. Gold digging: Searching for gut microbiota that enhancesÂantitumor immunity. Journal of Cellular Physiology, 2021, 236, 5495-5511. 2.0 Effect of Duyun Compound Green Tea on Gut Microbiota Diversity in High-Fat-Diet-Induced Mice Revealed by Illumina High-Throughput Sequencing. Evidence-based Complementary and Alternative 194 0.5 2 Medicine, 2021, 2021, 1-10. The aging microbiome and response to immunotherapy: Considerations for the treatment of older adults with cancer. Journal of Geriatric Oncology, 2021, 12, 985-989. Exploring the impact of gut microbiota and diet on breast cancer risk and progression. International 196 2.322 Journal of Cancer, 2021, 149, 494-504. Reduced immune-regulatory molecule expression on human colonic memory CD4 T cells in older 1.8 adults. Immunity and Ageing, 2021, 18, 6. Gastrointestinal microbiota composition predicts peripheral inflammatory state during treatment of 199 5.828 human tuberculosis. Nature Communications, 2021, 12, 1141. New Insights Into the Cancer–Microbiome–Immune Axis: Decrypting a Decade of Discoveries. Frontiers 200 2.2 in Immunology, 2021, 12, 622064.

#	Article	IF	CITATIONS
201	Congruent microbiome signatures in fibrosis-prone autoimmune diseases: IgG4-related disease and systemic sclerosis. Genome Medicine, 2021, 13, 35.	3.6	26
202	Systemic Immunoregulatory Consequences of Gut Commensal Translocation. Trends in Immunology, 2021, 42, 137-150.	2.9	26
203	Dysbiotic stress increases the sensitivity of the tumor vasculature to radiotherapy and c-Met inhibitors. Angiogenesis, 2021, 24, 597-611.	3.7	3
204	Identification of an N-acetylneuraminic acid-presenting bacteria isolated from a human microbiome. Scientific Reports, 2021, 11, 4763.	1.6	16
205	Historical Perspective: Metchnikoff and the intestinal microbiome. Journal of Leukocyte Biology, 2021, 109, 513-517.	1.5	6
206	Tumor-Associated Microbiome: Where Do We Stand?. International Journal of Molecular Sciences, 2021, 22, 1446.	1.8	31
207	Therapeutic interventions and mechanisms associated with gut microbiota-mediated modulation of immune checkpoint inhibitor responses. Microbes and Infection, 2021, 23, 104804.	1.0	5
208	Primary Human Dendritic Cells and Whole-Blood Based Assays to Evaluate Immuno-Modulatory Properties of Heat-Killed Commensal Bacteria. Vaccines, 2021, 9, 225.	2.1	2
209	The human microbiome and genetic disease: towards the integration of metagenomic and multi-omics data. Human Genetics, 2021, 140, 701-702.	1.8	1
210	Low diversity of gut microbiota in the early phase of post-bone marrow transplantation increases the risk of chronic graft-versus-host disease. Bone Marrow Transplantation, 2021, 56, 1728-1731.	1.3	3
211	The microbiome and human cancer. Science, 2021, 371, .	6.0	506
212	CD8+ T Cells in GCA and GPA: Bystanders or Active Contributors?. Frontiers in Immunology, 2021, 12, 654109.	2.2	6
213	Towards a mechanistic understanding of reciprocal drug–microbiome interactions. Molecular Systems Biology, 2021, 17, e10116.	3.2	64
214	Gut Microbiota: Influence on Carcinogenesis and Modulation Strategies by Drug Delivery Systems to Improve Cancer Therapy. Advanced Science, 2021, 8, 2003542.	5.6	26
215	A review on the role of gut microbiota in immune checkpoint blockade therapy for cancer. Mammalian Genome, 2021, 32, 223-231.	1.0	17
216	A combination of PD‑1/PD‑L1 inhibitors: The prospect of overcoming the weakness of tumor immunotherapy (Review). Molecular Medicine Reports, 2021, 23, .	1.1	16
217	In respond to commensal bacteria: γÎT cells play a pleiotropic role in tumor immunity. Cell and Bioscience, 2021, 11, 48.	2.1	5
218	Biomarker Technologies to Support Early Clinical Immuno-oncology Development: Advances and Interpretation. Clinical Cancer Research, 2021, 27, 4147-4159.	3.2	5

#	Article	IF	CITATIONS
219	Defined gut microbial communities: promising tools to understand and combat disease. Microbes and Infection, 2021, 23, 104816.	1.0	6
220	<i>Lactobacillus rhamnosus</i> GG induces cGAS/STING- dependent type I interferon and improves response to immune checkpoint blockade. Gut, 2022, 71, 521-533.	6.1	108
221	Integrating Systems and Synthetic Biology to Understand and Engineer Microbiomes. Annual Review of Biomedical Engineering, 2021, 23, 169-201.	5.7	23
222	Relating Gut Microbiome and Its Modulating Factors to Immunotherapy in Solid Tumors: A Systematic Review. Frontiers in Oncology, 2021, 11, 642110.	1.3	32
223	Gut Microbiota and Antitumor Immunity: Potential Mechanisms for Clinical Effect. Cancer Immunology Research, 2021, 9, 365-370.	1.6	28
224	Systemic immunity in cancer. Nature Reviews Cancer, 2021, 21, 345-359.	12.8	605
226	Interferons at the crossroad of cell death pathways during gastrointestinal inflammation and infection. International Journal of Medical Microbiology, 2021, 311, 151491.	1.5	5
227	Assessment of the microbiome during bacteriophage therapy in combination with systemic antibiotics to treat a case of staphylococcal device infection. Microbiome, 2021, 9, 92.	4.9	40
228	Staphylococcus cohnii is a potentially biotherapeutic skin commensal alleviating skin inflammation. Cell Reports, 2021, 35, 109052.	2.9	26
229	Mining Gut Microbiota From Bariatric Surgery for MAFLD. Frontiers in Endocrinology, 2021, 12, 612946.	1.5	5
230	Control of Immunity by the Microbiota. Annual Review of Immunology, 2021, 39, 449-479.	9.5	129
231	Impact of the microbiome on tumor immunity. Current Opinion in Immunology, 2021, 69, 39-46.	2.4	9
232	Exploring the Modulatory Effects of Gut Microbiota in Anti-Cancer Therapy. Frontiers in Oncology, 2021, 11, 644454.	1.3	27
233	Immunomodulation by the Commensal Microbiome During Immune-Targeted Interventions: Focus on Cancer Immune Checkpoint Inhibitor Therapy and Vaccination. Frontiers in Immunology, 2021, 12, 643255.	2.2	6
234	Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nature Communications, 2021, 12, 3105.	5.8	82
235	Rethinking phage-bacteria-eukaryotic relationships and their influence on human health. Cell Host and Microbe, 2021, 29, 681-688.	5.1	36
236	Ginseng polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) immunotherapy. Gut, 2022, 71, 734-745.	6.1	177
237	Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Frontiers in Immunology, 2021, 12, 658354.	2.2	171

#	Article	IF	CITATIONS
238	Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death and Differentiation, 2021, 28, 2778-2796.	5.0	72
239	The Immunomodulatory Effect of the Gut Microbiota in Kidney Disease. Journal of Immunology Research, 2021, 2021, 1-16.	0.9	48
240	Immune Gene Expression Covaries with Gut Microbiome Composition in Stickleback. MBio, 2021, 12, .	1.8	15
241	Acute Radiation Syndrome and the Microbiome: Impact and Review. Frontiers in Pharmacology, 2021, 12, 643283.	1.6	21
242	Navigating in Deep Waters: How Tissue Damage and Inflammation Shape Effector and Memory CD8+ T Cell Responses. ImmunoHorizons, 2021, 5, 338-348.	0.8	3
243	Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ TÂcell immunity. Cell Metabolism, 2021, 33, 988-1000.e7.	7.2	264
244	The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy. Molecules and Cells, 2021, 44, 356-362.	1.0	10
245	Design of synthetic human gut microbiome assembly and butyrate production. Nature Communications, 2021, 12, 3254.	5.8	83
246	Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. ELife, 2021, 10, .	2.8	808
247	Mechanisms of PD-L1 Regulation in Malignant and Virus-Infected Cells. International Journal of Molecular Sciences, 2021, 22, 4893.	1.8	12
248	Analysis of the Gut Microbiota: An Emerging Source of Biomarkers for Immune Checkpoint Blockade Therapy in Non-Small Cell Lung Cancer. Cancers, 2021, 13, 2514.	1.7	19
249	The Potential Role of the Intestinal Micromilieu and Individual Microbes in the Immunobiology of Chimeric Antigen Receptor T-Cell Therapy. Frontiers in Immunology, 2021, 12, 670286.	2.2	16
250	Metabolic regulation in the immune response to cancer. Cancer Communications, 2021, 41, 661-694.	3.7	23
251	Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer. Genome Medicine, 2021, 13, 107.	3.6	74
253	Systematic analysis of molecular characterization and clinical relevance of m6A regulators in digestive system pan-cancers. Experimental Biology and Medicine, 2021, 246, 2007-2018.	1.1	1
254	The relationship between gastrointestinal cancers and the microbiota. The Lancet Gastroenterology and Hepatology, 2021, 6, 498-509.	3.7	25
255	Microbiota regulate innate immune signaling and protective immunity against cancer. Cell Host and Microbe, 2021, 29, 959-974.e7.	5.1	67
256	Components of the Gut Microbiome That Influence Bone Tissue-Level Strength. Journal of Bone and Mineral Research, 2020, 36, 1823-1834.	3.1	11

#	Article	IF	CITATIONS
257	Commensal microbiota contributes to predicting the response to immune checkpoint inhibitors in nonâ€smallâ€cell lung cancer patients. Cancer Science, 2021, 112, 3005-3017.	1.7	31
258	Effects of Bacillus amyloliquefaciens Instead of Antibiotics on Growth Performance, Intestinal Health, and Intestinal Microbiota of Broilers. Frontiers in Veterinary Science, 2021, 8, 679368.	0.9	14
259	The role of gut microbiota in tumorigenesis and treatment. Biomedicine and Pharmacotherapy, 2021, 138, 111444.	2.5	19
261	Proanthocyanidin-enriched cranberry extract induces resilient bacterial community dynamics in a gnotobiotic mouse model. Microbial Cell, 2021, 8, 131-142.	1.4	12
262	MiMiC: a bioinformatic approach for generation of synthetic communities from metagenomes. Microbial Biotechnology, 2021, 14, 1757-1770.	2.0	12
263	The Application of High-Throughput Technologies for the Study of Microbiome and Cancer. Frontiers in Genetics, 2021, 12, 699793.	1.1	13
264	Gut Microbiota and Probiotics/Synbiotics for Modulation of Immunity in Critically Ill Patients. Nutrients, 2021, 13, 2439.	1.7	22
266	Gut microbiota-mediated immunomodulation in tumor. Journal of Experimental and Clinical Cancer Research, 2021, 40, 221.	3.5	42
267	Gut Microbiota in Cancer Immune Response and Immunotherapy. Trends in Cancer, 2021, 7, 647-660.	3.8	136
268	Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nature Communications, 2021, 12, 4077.	5.8	222
269	Hematopoietic Cell Transplantation Rescues Inflammatory Bowel Disease and Dysbiosis of Gut Microbiota in XIAP Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3767-3780.	2.0	15
270	Nutritional Interventions Targeting Gut Microbiota during Cancer Therapies. Microorganisms, 2021, 9, 1469.	1.6	6
271	Intestinal microbiota: A potential target for enhancing the antitumor efficacy and reducing the toxicity of immune checkpoint inhibitors. Cancer Letters, 2021, 509, 53-62.	3.2	13
272	The Role of Gut Microbiota in Overcoming Resistance to Checkpoint Inhibitors in Cancer Patients: Mechanisms and Challenges. International Journal of Molecular Sciences, 2021, 22, 8036.	1.8	11
273	The gut microbiome: what the oncologist ought to know. British Journal of Cancer, 2021, 125, 1197-1209.	2.9	74
274	Influence of immunomodulatory drugs on the gut microbiota. Translational Research, 2021, 233, 144-161.	2.2	14
275	MPI-based bioinformatic analysis and co-inhibitory therapy with mannose for oral squamous cell carcinoma. Medical Oncology, 2021, 38, 103.	1.2	3
276	Nonâ€zeroâ€sum microbiome immune system interactions. European Journal of Immunology, 2021, 51, 2120-2136.	1.6	3

		CITATION REPORT		
# 277	ARTICLE Toward the development of defined microbial therapeutics. International Immunology, 20	021, 33, 761-766.	IF 1.8	Citations 8
278	Tying Small Changes to Large Outcomes: The Cautious Promise in Incorporating the Micr Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 7900.	obiome into	1.8	3
279	Endogenous retroviruses promote homeostatic and inflammatory responses to the micro 2021, 184, 3794-3811.e19.	biota. Cell,	13.5	90
280	Impact of gut microbiota on immune system. Acta Microbiologica Et Immunologica Hung	arica, 2021, , .	0.4	8
281	Causative Microbes in Host-Microbiome Interactions. Annual Review of Microbiology, 202	21, 75, 223-242.	2.9	9
282	Novel insights on gut microbiota manipulation and immune checkpoint inhibition in canc International Journal of Oncology, 2021, 59, .	er (Review).	1.4	17
283	The Role of Gut Microbiota in Tumor Immunotherapy. Journal of Immunology Research, 20	021, 2021, 1-12.	0.9	20
284	Influence of the microbiome on solid organ transplant survival. Journal of Heart and Lung Transplantation, 2021, 40, 745-753.		0.3	9
285	The interplay of obesity, gut microbiome and diet in the immune check point inhibitors th Seminars in Cancer Biology, 2021, 73, 356-376.	erapy era.	4.3	32
286	Commensal Clostridiales strains mediate effective anti-cancer immune response against s Cell Host and Microbe, 2021, 29, 1573-1588.e7.	solid tumors.	5.1	71
287	Precision strategies for cancer treatment by modifying the tumor-related bacteria. Applied Microbiology and Biotechnology, 2021, 105, 6183-6197.	t	1.7	9
288	Immunosuppressive activity is attenuated by <i>Astragalus polysaccharides</i> through r the gut microenvironment in melanoma mice. Cancer Science, 2021, 112, 4050-4063.	remodeling	1.7	36
289	Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cel Molecular Immunology, 2022, 19, 370-383.	lular and	4.8	38
290	IFN \hat{I}^3 signaling integrity in colorectal cancer immunity and immunotherapy. Cellular and N Immunology, 2022, 19, 23-32.	10lecular	4.8	57
291	Altered gut microbiome in FUT2 loss-of-function mutants in support of personalized medi inflammatory bowel diseases. Journal of Genetics and Genomics, 2021, 48, 771-780.	icine for	1.7	21
292	The Inflammatory Processes Driven by Gut Microbiota. Acta Medica, 2021, 52, 171-179.		0.0	0
293	Microbiota-Centered Interventions: The Next Breakthrough in Immuno-Oncology?. Cance 2021, 11, 2396-2412.	r Discovery,	7.7	81
294	Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Communications, 2021, 41, 937-967.		3.7	18

#	Article	IF	CITATIONS
295	Ultrafine Jujube Powder Enhances the Infiltration of Immune Cells during Anti-PD-L1 Treatment against Murine Colon Adenocarcinoma. Cancers, 2021, 13, 3987.	1.7	11
296	Aged Ripe Pu-erh Tea Reduced Oxidative Stress-Mediated Inflammation in Dextran Sulfate Sodium-Induced Colitis Mice by Regulating Intestinal Microbes. Journal of Agricultural and Food Chemistry, 2021, 69, 10592-10605.	2.4	51
297	Leveraging diet to engineer the gut microbiome. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 885-902.	8.2	86
298	Microbiota and Colorectal Cancer: From Gut to Bedside. Frontiers in Pharmacology, 2021, 12, 760280.	1.6	22
299	Microbiome and cancer. Cancer Cell, 2021, 39, 1317-1341.	7.7	199
300	Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell, 2021, 184, 5015-5030.e16.	13.5	102
301	Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nature Communications, 2021, 12, 5674.	5.8	95
302	Interaction between intestinal microbiota and tumour immunity in the tumour microenvironment. Immunology, 2021, 164, 476-493.	2.0	35
303	Gut Microbiota in Lung Cancer: Where Do We Stand?. International Journal of Molecular Sciences, 2021, 22, 10429.	1.8	23
304	Antibiotic-induced disturbances of the gut microbiota result in accelerated breast tumor growth. IScience, 2021, 24, 103012.	1.9	41
305	Inflammasomes in T cells. Journal of Molecular Biology, 2022, 434, 167275.	2.0	14
306	The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers, 2021, 13, 4932.	1.7	19
307	Advances and new frontiers for immunotherapy in colorectal cancer: Setting the stage for neoadjuvant success?. Molecular Therapy - Oncolytics, 2021, 22, 1-12.	2.0	24
308	Enhanced Storage of Anaerobic Bacteria through Polymeric Encapsulation. ACS Applied Materials & Interfaces, 2021, 13, 46282-46290.	4.0	2
309	Spare and repair the gut microbiota from antibiotic-induced dysbiosis: state-of-the-art. Drug Discovery Today, 2021, 26, 2159-2163.	3.2	15
310	A Perspective on the Role of Microbiome for Colorectal Cancer Treatment. Cancers, 2021, 13, 4623.	1.7	11
311	Cytotoxic T-Cell Trafficking Chemokine Profiles Correlate With Defined Mucosal Microbial Communities in Colorectal Cancer. Frontiers in Immunology, 2021, 12, 715559.	2.2	7
312	Mining the Gut Microbiota for Microbial-Based Therapeutic Strategies in Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 721249.	1.3	3

#	Article	IF	Citations
313	Listening in on the conversation between the human gut microbiome and its host. Current Opinion in Microbiology, 2021, 63, 150-157.	2.3	5
314	Stress and the Gut-Brain Axis: Implications for Cancer, Inflammation and Sepsis. Journal of Surgical Research, 2021, 266, 336-344.	0.8	9
315	IL-18 maintains the homeostasis of mucosal immune system via inflammasome-independent but microbiota-dependent manner. Science Bulletin, 2021, 66, 2115-2123.	4.3	3
316	Metabolic reprogramming and immunity in cancer. , 2022, , 137-196.		1
317	Role of microbiome in cancer immunotherapy. , 2022, , 321-352.		1
318	Gut Microbiota and Colorectal Cancer. , 2022, , 357-357.		0
319	Lactobacillus rhamnosus GG Orchestrates an Antitumor Immune Response. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1311-1327.	2.3	47
320	Pectin supplement significantly enhanced the anti-PD-1 efficacy in tumor-bearing mice humanized with gut microbiota from patients with colorectal cancer. Theranostics, 2021, 11, 4155-4170.	4.6	84
321	The role of microbiota in allogeneic hematopoietic stem cell transplantation. Expert Opinion on Biological Therapy, 2021, 21, 1121-1131.	1.4	5
322	The commensal consortium of the gut microbiome is associated with favorable responses to anti-programmed death protein 1 (PD-1) therapy in thoracic neoplasms. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	9
323	Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nature Communications, 2021, 12, 187.	5.8	209
324	Antitumor efficacy of a neoantigen cancer vaccine delivered by electroporation is influenced by microbiota composition. Oncolmmunology, 2021, 10, 1898832.	2.1	15
325	Gut Microbial Signatures in Sporadic and Hereditary Colorectal Cancer. International Journal of Molecular Sciences, 2021, 22, 1312.	1.8	14
326	Immune Cell Isolation from Murine Intestine for Antibody Array Analysis. Methods in Molecular Biology, 2021, 2237, 247-256.	0.4	1
327	Microbiome as an Immunological Modifier. Methods in Molecular Biology, 2020, 2055, 595-638.	0.4	23
328	Gut Microbiota and Cancer of the Host: Colliding Interests. Advances in Experimental Medicine and Biology, 2020, 1219, 93-107.	0.8	21
329	Gut Microbiota and Lung Injury. Advances in Experimental Medicine and Biology, 2020, 1238, 55-72.	0.8	34
330	Fighting cancer with microbes. Nature, 2020, 577, S16-S18.	13.7	20

#	Article	IF	CITATIONS
331	A quantitative sequencing framework for absolute abundance measurements of mucosal and lumenal microbial communities. Nature Communications, 2020, 11, 2590.	5.8	74
332	IDO1+ Paneth cells promote immune escape of colorectal cancer. Communications Biology, 2020, 3, 252.	2.0	26
340	The gut microbiome in solid organ transplantation. Pediatric Transplantation, 2020, 24, e13866.	0.5	17
341	Commensal bacteria stimulate antitumor responses via T cell cross-reactivity. JCI Insight, 2020, 5, .	2.3	95
342	Microbiota modification in hematology: still at the bench or ready for the bedside?. Hematology American Society of Hematology Education Program, 2019, 2019, 303-314.	0.9	4
343	Antibiotic-induced microbiome depletion protects against MPTP-induced dopaminergic neurotoxicity in the brain. Aging, 2019, 11, 6915-6929.	1.4	55
344	Immunotherapy in Solid Tumors and Gut Microbiota: The Correlation—A Special Reference to Colorectal Cancer. Cancers, 2021, 13, 43.	1.7	17
345	Antibiotic-Related Changes in Microbiome: The Hidden Villain behind Colorectal Carcinoma Immunotherapy Failure. International Journal of Molecular Sciences, 2021, 22, 1754.	1.8	19
346	Exploring the food-gut axis in immunotherapy response of cancer patients. World Journal of Gastroenterology, 2020, 26, 4919-4932.	1.4	17
347	Gegen Qinlian decoction enhances immunity and protects intestinal barrier function in colorectal cancer patients <i>via</i> gut microbiota. World Journal of Gastroenterology, 2020, 26, 7633-7651.	1.4	27
348	Association between the gut microbiota and patient responses to cancer immune checkpoint inhibitors (Review). Oncology Letters, 2020, 20, 1-1.	0.8	11
349	Regulation of Gene Expression through Gut Microbiota-Dependent DNA Methylation in Colonic Epithelial Cells. ImmunoHorizons, 2020, 4, 178-190.	0.8	6
350	Cancer systems immunology. ELife, 2020, 9, .	2.8	14
351	New Insights on CD8+ T Cells in Inflammatory Bowel Disease and Therapeutic Approaches. Frontiers in Immunology, 2021, 12, 738762.	2.2	46
352	Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell, 2021, 184, 5338-5356.e21.	13.5	229
353	Toward a postbiotic era of microbiome science: opportunities to advance immunotherapies for hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2021, , .	1.4	3
354	Infections due to dysregulated immunity: an emerging complication of cancer immunotherapy. Thorax, 2022, 77, 304-311.	2.7	44
355	Spiking immunotherapy with a bacterial cocktail brings TÂcells back to the fight. Cell Reports Medicine, 2021, 2, 100430.	3.3	0

#	Article	IF	CITATIONS
356	The intestinal flora of patients with GHPA affects the growth and the expression of PD-L1 of tumor. Cancer Immunology, Immunotherapy, 2022, 71, 1233-1245.	2.0	9
357	Archetypes of checkpoint-responsive immunity. Trends in Immunology, 2021, 42, 960-974.	2.9	5
358	Impact of the ileal microbiota on colon cancer. Seminars in Cancer Biology, 2022, 86, 955-966.	4.3	11
359	Non-immune Cell Components in the Gastrointestinal Tumor Microenvironment Influencing Tumor Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 729941.	1.8	4
360	FiberGrowth Pipeline: A Framework Toward Predicting Fiber-Specific Growth From Human Gut Bacteroidetes Genomes. Frontiers in Microbiology, 2021, 12, 632567.	1.5	1
361	Baseline co-medications may alter the anti-tumoural effect of checkpoint inhibitors as well as the risk of immune-related adverse events. European Journal of Cancer, 2021, 157, 474-484.	1.3	45
362	Implications of Lateral or Horizontal Gene Transfer from Bacteria to the Human Gastrointestinal System for Cancer Development and Treatment. , 2019, , 377-397.		1
363	Application of culture-based, mass spectrometry and molecular methods to the study of gut microbiota in children. Bulletin of Russian State Medical University, 2019, , 54-65.	0.3	3
367	固å¼2¢è«ç~ã«ãĚãiá,‹de novo Båž‹è,ç,Žå†æ´»æ€§åŒ–ã®é»åº¦ãïã,¿ã,₿fŸãƒ³ã,ºï¼ŒåŽŸç–¾æ,£ãïãfªã,1ã,¯å›å•,4	Act a Ho epat	ologica Japo
371	Single-Cell Proteomic Analysis Dissects the Complexity of Tumor Microenvironment in Muscle Invasive Bladder Cancer. Cancers, 2021, 13, 5440.	1.7	7
372	Effects of Docetaxel Injection and Docetaxel Micelles on the Intestinal Barrier and Intestinal Microbiota. Advanced Science, 2021, 8, e2102952.	5.6	12
377	Mg, K-containing microparticle: A possible active principle of a culture extract produced by a microbial consortium. PLoS ONE, 2021, 16, e0259297.	1.1	1
379	Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non-human primate. PLoS Pathogens, 2021, 17, e1009675.	2.1	22
379 381	Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non-human primate. PLoS Pathogens, 2021, 17, e1009675. Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors. Onkologie (Czech Republic), 2020, 14, 205-212.	2.1 0.0	22 0
	non-human primate. PLoS Pathogens, 2021, 17, e1009675. Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors. Onkologie		
381	non-human primate. PLoS Pathogens, 2021, 17, e1009675. Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors. Onkologie (Czech Republic), 2020, 14, 205-212.	0.0	0
381 382	non-human primate. PLoS Pathogens, 2021, 17, e1009675. Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors. Onkologie (Czech Republic), 2020, 14, 205-212. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines, 2021, 9, 1392. From Microbiome to Inflammation: The Key Drivers of Cervical Cancer. Frontiers in Microbiology,	0.0 2.1	0 7

#	Article	IF	CITATIONS
389	Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduction and Targeted Therapy, 2021, 6, 398.	7.1	84
390	The microbiome, gastrointestinal cancer, and immunotherapy. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 263-272.	1.4	9
391	Microbiome-based therapeutics. Nature Reviews Microbiology, 2022, 20, 365-380.	13.6	165
392	Bidirectional interactions of gut microbiome and medicinal products. Modern Gastroenterology, 2020, .	0.1	0
393	Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. , 2021, 9, e003334.		101
394	Human Microbiota and Immunotherapy in Breast Cancer - A Review of Recent Developments. Frontiers in Oncology, 2021, 11, 815772.	1.3	17
396	Host Microbiomes in Tumor Precision Medicine: How far are we?. Current Medicinal Chemistry, 2022, 29, 3202-3230.	1.2	7
398	A Natural Polyphenol Exerts Antitumor Activity and Circumvents Anti–PD-1 Resistance through Effects on the Gut Microbiota. Cancer Discovery, 2022, 12, 1070-1087.	7.7	86
399	T Cell Responses to the Microbiota. Annual Review of Immunology, 2022, 40, 559-587.	9.5	42
400	Mechanisms of immune activation and regulation: lessons from melanoma. Nature Reviews Cancer, 2022, 22, 195-207.	12.8	101
401	Cell-intrinsic view of the aryl hydrocarbon receptor in tumor immunity. Trends in Immunology, 2022, 43, 245-258.	2.9	16
402	Strategies targeting tumor immune and stromal microenvironment and their clinical relevance. Advanced Drug Delivery Reviews, 2022, 183, 114137.	6.6	28
403	Gut Microbiota in Colorectal Cancer: Associations, Mechanisms, and Clinical Approaches. Annual Review of Cancer Biology, 2022, 6, 65-84.	2.3	7
404	Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 2021, 374, 1632-1640.	6.0	369
405	Decoding the microbiome for the development of translational applications: Overview, challenges and pitfalls. Journal of Biosciences, 2019, 44, .	0.5	0
406	Commensal Microbiota and Cancer Immunotherapy: Harnessing Commensal Bacteria for Cancer Therapy. Immune Network, 2022, 22, e3.	1.6	11
407	Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses, 2022, 14, 477.	1.5	18
408	Regulation of tissue-resident memory T cells by the Microbiota. Mucosal Immunology, 2022, 15, 408-417.	2.7	16

# 409	ARTICLE Colorectal cancer: the facts in the case of the microbiota. Journal of Clinical Investigation, 2022, 132,	IF 3.9	Citations
410	Gut Microbiota: A Promising Milestone in Enhancing the Efficacy of PD1/PD-L1 Blockade Therapy. Frontiers in Oncology, 2022, 12, 847350.	1.3	6
411	Gut microbiome signatures and host colonization with multidrug-resistant bacteria. Trends in Microbiology, 2022, 30, 853-865.	3.5	16
412	Genome binning of viral entities from bulk metagenomics data. Nature Communications, 2022, 13, 965.	5.8	41
414	Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut, 2022, 71, 1412-1425.	6.1	79
416	The Insider: Impact of the Gut Microbiota on Cancer Immunity and Response to Therapies in Multiple Myeloma. Frontiers in Immunology, 2022, 13, 845422.	2.2	10
417	Effects of Gut Microbiota on Host Adaptive Immunity Under Immune Homeostasis and Tumor Pathology State. Frontiers in Immunology, 2022, 13, 844335.	2.2	12
418	Roles of Microbiota in Cancer: From Tumor Development to Treatment. Journal of Oncology, 2022, 2022, 1-15.	0.6	8
419	Visual Analysis of Colorectal Cancer Immunotherapy: A Bibliometric Analysis From 2012 to 2021. Frontiers in Immunology, 2022, 13, 843106.	2.2	32
420	The Role of the Gut Microbiota in the Development of Ischemic Stroke. Frontiers in Immunology, 2022, 13, 845243.	2.2	14
421	Intravenous Delivery of Living <i>Listeria monocytogenes</i> Elicits Gasdmermin-Dependent Tumor Pyroptosis and Motivates Anti-Tumor Immune Response. ACS Nano, 2022, 16, 4102-4115.	7.3	46
422	Insights into the Role of Commensal-Specific T Cells in Intestinal Inflammation. Journal of Inflammation Research, 2022, Volume 15, 1873-1887.	1.6	4
423	Lactobacillus Suppresses Tumorigenesis of Oropharyngeal Cancer via Enhancing Anti-Tumor Immune Response. Frontiers in Cell and Developmental Biology, 2022, 10, 842153.	1.8	8
424	Metabolic programs tailor TÂcell immunity in viral infection, cancer, and aging. Cell Metabolism, 2022, 34, 378-395.	7.2	41
426	â€~Know thyself' – host factors influencing cancer response to immune checkpoint inhibitors. Journal of Pathology, 2022, 257, 513-525.	2.1	8
427	Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy?. Frontiers in Oncology, 2022, 12, 852194.	1.3	5
428	The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metabolism, 2022, 34, 581-594.e8.	7.2	105
429	Dietary <i>Lactobacillus</i> -Derived Exopolysaccharide Enhances Immune-Checkpoint Blockade Therapy. Cancer Discovery, 2022, 12, 1336-1355.	7.7	56

ARTICLE

430

431	Harnessing the microbiome to restore immunotherapy response. Nature Cancer, 2021, 2, 1301-1304.	5.7	10
433	Microbiota in relation to cancer. , 2022, , 279-309.		0
434	The Gut Microbiome as a Biomarker of Cancer Progression Among Female Never-smokers With Lung Adenocarcinoma. Anticancer Research, 2022, 42, 1589-1598.	0.5	5
435	The IFNÎ ³ -PDL1 Pathway Enhances CD8T-DCT Interaction to Promote Hypertension. Circulation Research, 2022, 130, 1550-1564.	2.0	15
436	SMAD4 TGF-β–independent function preconditions naive CD8+ T cells to prevent severe chronic intestinal inflammation. Journal of Clinical Investigation, 2022, 132, .	3.9	18
437	Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host and Microbe, 2022, 30, 583-598.e8.	5.1	51
438	Humanized Germ-Free Mice for Investigating the Intervention Effect of Commensal Microbiome on Cancer Immunotherapy. Antioxidants and Redox Signaling, 2022, 37, 1291-1302.	2.5	Ο
439	Targeting the gut and tumor microbiota in cancer. Nature Medicine, 2022, 28, 690-703.	15.2	159
440	Engineered cellular immunotherapies in cancer and beyond. Nature Medicine, 2022, 28, 678-689.	15.2	106
441	Progress of engineered bacteria for tumor therapy. Advanced Drug Delivery Reviews, 2022, 185, 114296.	6.6	33
448	Extracellular Vesicles From a Gut Symbiont Mediate Adenosinergic Responses to Promote Immune Tolerance. SSRN Electronic Journal, 0, , .	0.4	Ο
449	Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. Journal of Hematology and Oncology, 2022, 15, 47.	6.9	121
450	The cure from within? a review of the microbiome and diet in melanoma. Cancer and Metastasis Reviews, 2022, 41, 261-280.	2.7	8
451	Biomarkers of Response and Resistance to Immunotherapy in Microsatellite Stable Colorectal Cancer: Toward a New Personalized Medicine. Cancers, 2022, 14, 2241.	1.7	26
452	Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annual Review of Immunology, 2022, 40, 45-74.	9.5	122
454	Gut Microbial Antigenic Mimicry in Autoimmunity. Frontiers in Immunology, 2022, 13, 873607.	2.2	28
455	Accessible analysis of longitudinal data with linear mixed effects models. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	6

ĐĐ¾Đ»ÑŒ Đ¼Ñ–ĐºÑ€Đ¾Đ±Ñ–Đ¾Đ¼Đ° Đ² Ñ€Đ¾ĐĐ2Đ,Ñ,ĐºÑƒ Đ¾Đ½ĐºĐ¾Đ»Đ¾Đ3Ň–Ñ‡Đ½Đ3¾Ň– χĐ½Đ¾Ň,Đ¾Đ3ÅĐ3Ň–Ň

#	Article	IF	Citations
456	Immunotherapy and Microbiota for Targeting of Liver Tumor-Initiating Stem-like Cells. Cancers, 2022, 14, 2381.	1.7	4
457	Bacteria in cancer therapy: A new generation of weapons. Cancer Medicine, 2022, 11, 4457-4468.	1.3	7
458	Diet-microbiome interactions in cancer treatment: Opportunities and challenges for precision nutrition in cancer. Neoplasia, 2022, 29, 100800.	2.3	15
459	Time 2EVOLVE: predicting efficacy of engineered T-cells – how far is the bench from the bedside?. , 2022, 10, e003487.		13
460	Interaction of Gut Microbiota with Endocrine Homeostasis and Thyroid Cancer. Cancers, 2022, 14, 2656.	1.7	9
461	Local barriers configure systemic communications between the host and microbiota. Science, 2022, 376, 950-955.	6.0	20
462	The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Frontiers in Immunology, 0, 13, .	2.2	14
463	Intratumor microbiome in cancer progression: current developments, challenges and future trends. Biomarker Research, 2022, 10, .	2.8	25
465	The Emerging Roles of Human Gut Microbiota in Gastrointestinal Cancer. Frontiers in Immunology, 0, 13, .	2.2	5
466	An oral WT1 protein vaccine composed of WT1-anchored, genetically engineered Bifidobacterium longum allows for intestinal immunity in mice with acute myeloid leukemia. Cancer Immunology, Immunotherapy, 2023, 72, 39-53.	2.0	8
467	MarZIC: A Marginal Mediation Model for Zero-Inflated Compositional Mediators with Applications to Microbiome Data. Genes, 2022, 13, 1049.	1.0	3
468	Gut microbiome in gastrointestinal cancer: a friend or foe?. International Journal of Biological Sciences, 2022, 18, 4101-4117.	2.6	21
469	Outer Membrane Vesicles From The Gut Microbiome Contribute to Tumor Immunity by Eliciting Cross-Reactive T Cells. Frontiers in Oncology, 0, 12, .	1.3	8
470	The Link Between the Microbiota and HER2+ Breast Cancer: The New Challenge of Precision Medicine. Frontiers in Oncology, 0, 12, .	1.3	7
471	Gut instincts in neuroimmunity from the eighteenth to twenty-first centuries. Seminars in Immunopathology, 2022, 44, 569-579.	2.8	6
472	Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. Journal of Translational Medicine, 2022, 20, .	1.8	42
473	Facts and Hopes for Gut Microbiota Interventions in Cancer Immunotherapy. Clinical Cancer Research, 2022, 28, 4370-4384.	3.2	15
474	The triple interactions between gut microbiota, mycobiota and host immunity. Critical Reviews in Food Science and Nutrition, 2023, 63, 11604-11624.	5.4	2

#	Article	IF	CITATIONS
475	Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut, 2022, 71, 2107-2122.	6.1	28
476	Antimicrobial strategy for targeted elimination of different microbes, including bacterial, fungal and viral pathogens. Communications Biology, 2022, 5, .	2.0	23
477	Microbial mechanisms to improve immune checkpoint blockade responsiveness. Neoplasia, 2022, 31, 100818.	2.3	3
478	Dynamics of gut microbiota in patients suffering from hematologic malignancies after allogeneic hematopoi-etic stem cell transplantation. , 2022, , 48-59.		0
479	Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. , 2022, 10, e004147.		28
480	Mapping trends and hotspot regarding gut microbiota and host immune response: A bibliometric analysis of global research (2011–2021). Frontiers in Microbiology, 0, 13, .	1.5	7
482	Interaction between microbiota and immunity and its implication in colorectal cancer. Frontiers in Immunology, 0, 13, .	2.2	10
483	Hedgehog blockade remodels the gut microbiota and the intestinal effector CD8+ T cells in a mouse model of mammary carcinoma. Laboratory Investigation, 0, , .	1.7	4
484	Gut Microbiome in Colorectal Cancer: Clinical Diagnosis and Treatment. Genomics, Proteomics and Bioinformatics, 2023, 21, 84-96.	3.0	9
485	Intestinal CD8 ⁺ tissueâ€resident memory T cells: From generation to function. European Journal of Immunology, 2022, 52, 1547-1560.	1.6	4
486	New insights into natural products that target the gut microbiota: Effects on the prevention and treatment of colorectal cancer. Frontiers in Pharmacology, 0, 13, .	1.6	22
487	Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. International Journal of Molecular Sciences, 2022, 23, 9588.	1.8	36
488	Global research trends on the links between gut microbiota and cancer immunotherapy: A bibliometric analysis (2012-2021). Frontiers in Immunology, 0, 13, .	2.2	14
489	Faecalibaculum rodentium remodels retinoic acid signaling to govern eosinophil-dependent intestinal epithelial homeostasis. Cell Host and Microbe, 2022, 30, 1295-1310.e8.	5.1	32
490	Roles of intestinal <i>Parabacteroides</i> in human health and diseases. FEMS Microbiology Letters, 2022, 369, .	0.7	77
491	Effects of microbiota on anticancer drugs: Current knowledge and potential applications. EBioMedicine, 2022, 83, 104197.	2.7	25
492	Microbiota-driven mechanisms at different stages of cancer development. Neoplasia, 2022, 32, 100829.	2.3	11
493	Relationship between gut microbiota and lymphocyte subsets in Chinese Han patients with spinal cord injury. Frontiers in Microbiology, 0, 13, .	1.5	11

#	Article	IF	Citations
494	The multifaceted roles of common gut microbiota in immune checkpoint inhibitor-mediated colitis: From mechanism to clinical application. Frontiers in Immunology, 0, 13, .	2.2	1
495	Identification of trypsin-degrading commensals in the large intestine. Nature, 2022, 609, 582-589.	13.7	18
496	The complex immunological role of Helicobacter in modulating cancer. Trends in Immunology, 2022, 43, 826-832.	2.9	0
497	Cross Talk Between Gut Microbiota and Host Immune Cells. , 2022, , 7-26.		1
498	Rethinking hereditary relations: the reconstitutor as the evolutionary unit of heredity. SynthÃ^se, 2022, 200, .	0.6	8
499	Harnessing Microbiota to Improve Immunotherapy for Gastrointestinal Cancers. Cancer Immunology Research, 2022, 10, 1292-1298.	1.6	4
500	Immunopathology of Behcet's Disease: An Overview of the Metagenomic Approaches. Rheumato, 2022, 2, 74-86.	0.2	4
501	Exploiting dietary fibre and the gut microbiota in pelvic radiotherapy patients. British Journal of Cancer, 2022, 127, 2087-2098.	2.9	7
502	From germ-free to wild: modulating microbiome complexity to understand mucosal immunology. Mucosal Immunology, 2022, 15, 1085-1094.	2.7	7
503	Immune chromatin reader SP140 regulates microbiota and risk for inflammatory bowel disease. Cell Host and Microbe, 2022, 30, 1370-1381.e5.	5.1	8
504	The effects of microbiota on reproductive health: A review. Critical Reviews in Food Science and Nutrition, 2024, 64, 1486-1507.	5.4	5
505	Perspectives in Melanoma: meeting report from the Melanoma Bridge (December 2nd – 4th, 2021, Italy). Journal of Translational Medicine, 2022, 20, .	1.8	0
506	A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell, 2022, 185, 3807-3822.e12.	13.5	114
508	Anti-cancer activity of human gastrointestinal bacteria. , 2022, 39, .		2
509	Inhibition of UBA6 by inosine augments tumour immunogenicity and responses. Nature Communications, 2022, 13, .	5.8	14
510	Selected commensals educate the intestinal vascular and immune system for immunocompetence. Microbiome, 2022, 10, .	4.9	4
511	Importance of temperature on immunoâ€metabolic regulation and cancer progression. FEBS Journal, 2024, 291, 832-845.	2.2	3
513	Onco-biome in pharmacotherapy for lung cancer: a narrative review. Translational Lung Cancer Research, 2022, 11, 2332-2345.	1.3	1

#	Article	IF	CITATIONS
514	The microbiota-gut-brain axis in Huntington's disease. International Review of Neurobiology, 2022, , 141-184.	0.9	4
515	Intestinal Microbiota: The Driving Force behind Advances in Cancer Immunotherapy. Cancers, 2022, 14, 4796.	1.7	4
516	Gut Microbiota and Therapy in Metastatic Melanoma: Focus on MAPK Pathway Inhibition. International Journal of Molecular Sciences, 2022, 23, 11990.	1.8	1
517	Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology, 2023, 164, 198-213.	0.6	48
518	Targeting the gut microbiota for cancer therapy. Nature Reviews Cancer, 2022, 22, 703-722.	12.8	61
519	Diet Influences Immunotherapy Outcomes in Cancer Patients: A Literature Review. Nutrition and Cancer, 2023, 75, 415-429.	0.9	1
520	Mining the microbiota to identify gut commensals modulating neuroinflammation in a mouse model of multiple sclerosis. Microbiome, 2022, 10, .	4.9	21
521	Gut microbiome-depleting antibiotic regimens are not tolerated by all mouse strains: learn from (our) bitter experience. , 2022, 10, e005575.		1
522	Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chemical Reviews, 2023, 123, 31-72.	23.0	54
523	The impact of microbiota on PD-1/PD-L1 inhibitor therapy outcomes: A focus on solid tumors. Life Sciences, 2022, 310, 121138.	2.0	14
524	Drugging the microbiome and bacterial live biotherapeutic consortium production. Current Opinion in Biotechnology, 2022, 78, 102801.	3.3	3
525	The crosstalk between intestinal bacterial microbiota and immune cells in colorectal cancer progression. Clinical and Translational Oncology, 0, , .	1.2	1
526	Correlation of the Gut Microbiota and Antitumor Immune Responses Induced by a Human Papillomavirus Therapeutic Vaccine. ACS Infectious Diseases, 2022, 8, 2494-2504.	1.8	1
527	Interactions between Dietary Micronutrients, Composition of the Microbiome and Efficacy of Immunotherapy in Cancer Patients. Cancers, 2022, 14, 5577.	1.7	3
528	Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer. Frontiers in Immunology, 0, 13, .	2.2	6
529	Tissue-resident memory T cells: The key frontier in local synovitis memory of rheumatoid arthritis. Journal of Autoimmunity, 2022, 133, 102950.	3.0	4
530	Prospect of bacteria for tumor diagnosis and treatment. Life Sciences, 2023, 312, 121215.	2.0	2
531	Inosine, gut microbiota, and cancer immunometabolism. American Journal of Physiology - Endocrinology and Metabolism, 2023, 324, E1-E8.	1.8	12

#	Article	IF	CITATIONS
532	Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Frontiers in Oncology, 0, 12, .	1.3	9
533	Engineering bacteria as interactive cancer therapies. Science, 2022, 378, 858-864.	6.0	74
534	The Species of Gut Bacteria Associated with Antitumor Immunity in Cancer Therapy. Cells, 2022, 11, 3684.	1.8	1
535	Gut microbiome in tumorigenesis and therapy of colorectal cancer. Journal of Cellular Physiology, 2023, 238, 94-108.	2.0	4
536	Chronic alcohol-induced dysbiosis of the gut microbiota and gut metabolites impairs sperm quality in mice. Frontiers in Microbiology, 0, 13, .	1.5	6
537	Pharmacomicrobiomics in Pediatric Oncology: The Complex Interplay between Commonly Used Drugs and Gut Microbiome. International Journal of Molecular Sciences, 2022, 23, 15387.	1.8	3
538	The heightened importance of the microbiome in cancer immunotherapy. Trends in Immunology, 2023, 44, 44-59.	2.9	17
539	Research Progress in Intestinal Microecology in Pancreatic Cancer Diagnosis and Treatment. Journal of Oncology, 2022, 2022, 1-10.	0.6	2
540	The Microbiome in PDAC—Vantage Point for Future Therapies?. Cancers, 2022, 14, 5974.	1.7	5
541	RANKL and RANK in Cancer Therapy. Physiology, 2023, 38, 110-124.	1.6	1
542	Gut-Spleen Axis: Microbiota via Vascular and Immune Pathways Improve Busulfan-Induced Spleen Disruption. MSphere, 2023, 8, .	1.3	3
543	Foods may modify responsiveness to cancer immune checkpoint blockers by altering both the gut microbiota and activation of estrogen receptors in immune cells. , 0, 1 , .		2
544	Oral commensal bacterial flora is responsible for peripheral differentiation of neutrophils in the oral mucosa in the steady state. Journal of Oral Biosciences, 2022, , .	0.8	2
545	Microbiota and their metabolites potentiate cancer immunotherapy: Therapeutic target or resource for small molecule drug discovery?. Frontiers in Pharmacology, 0, 13, .	1.6	Ο
546	Animal Models in the Study of Microbiome in Gastrointestinal Cancer. , 2023, , 181-192.		0
547	Role of gut microbiota in tumorigenesis and antitumoral therapies: an updated review. Biotechnology and Genetic Engineering Reviews, 0, , 1-27.	2.4	1
548	Immunological consequences of microbiome-based therapeutics. Frontiers in Immunology, 0, 13, .	2.2	7
549	Targeting Gut Microbiota in Colorectal Cancer. , 2023, , 251-267.		Ο

#	Article	IF	CITATIONS
550	Microenvironment-driven metabolic adaptations guiding CD8+ TÂcell anti-tumor immunity. Immunity, 2023, 56, 32-42.	6.6	33
552	Microbiome influencers of checkpoint blockade–associated toxicity. Journal of Experimental Medicine, 2023, 220, .	4.2	13
553	Intratumoral microbiota: roles in cancer initiation, development and therapeutic efficacy. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	51
554	Advanced development of biomarkers for immunotherapy in hepatocellular carcinoma. Frontiers in Oncology, 0, 12, .	1.3	3
555	Melanoma antigens recognized by T cells and their use for immunotherapy. Experimental Dermatology, 0, , .	1.4	3
556	Levofloxacin prophylaxis and parenteral nutrition have a detrimental effect on intestinal microbial networks in pediatric patients undergoing HSCT. Communications Biology, 2023, 6, .	2.0	4
557	Ion-Exchange Chromatography Coupled to Mass Spectrometry in Life Science, Environmental, and Medical Research. Analytical Chemistry, 2023, 95, 152-166.	3.2	12
558	The crosstalk between the gut microbiota and tumor immunity: Implications for cancer progression and treatment outcomes. Frontiers in Immunology, 0, 13, .	2.2	2
559	Microbiota in Cancer Immunotherapy: The Next Milestone of Immuno-oncology?. , 2023, , 269-287.		1
560	Gut Microbiota Modulation: Probiotics and Prebiotics in GI Cancer. , 2023, , 201-236.		1
561	Gut Microbiota Impacts on the Efficacy of Anticancer Treatment of Colorectal Cancer. , 2023, , 237-249.		3
562	The effect of probiotics on immune responses and their therapeutic application: A new treatment option for multiple sclerosis. Biomedicine and Pharmacotherapy, 2023, 159, 114195.	2.5	7
563	The Anti- and Pro-Tumorigenic Role of Microbiota and Its Role in Anticancer Therapeutic Strategies. Cancers, 2023, 15, 190.	1.7	0
564	Role of Gut Microbiome in Immune Regulation and Immune Checkpoint Therapy of Colorectal Cancer. Digestive Diseases and Sciences, 2023, 68, 370-379.	1.1	3
565	Ecological landscapes guide the assembly of optimal microbial communities. PLoS Computational Biology, 2023, 19, e1010570.	1.5	6
566	Gut microbiota: A novel and potential target for radioimmunotherapy in colorectal cancer. Frontiers in Immunology, 0, 14, .	2.2	1
567	The role of the microbiota in myelopoiesis during homeostasis and inflammation. International Immunology, 2023, 35, 267-274.	1.8	1
568	Untangling the CD4 T cell response to the microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	0

#	Article	IF	CITATIONS
569	Engineered skin bacteria induce antitumor T cell responses against melanoma. Science, 2023, 380, 203-210.	6.0	37
570	Future indications and clinical management for fecal microbiota transplantation (FMT) in immuno-oncology. Seminars in Immunology, 2023, 67, 101754.	2.7	4
573	CAR-T Cell Therapy and the Gut Microbiota. Cancers, 2023, 15, 794.	1.7	5
574	Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers, 2023, 15, 866.	1.7	15
575	Implication of the Gut Microbiome and Microbial-Derived Metabolites in Immune-Related Adverse Events: Emergence of Novel Biomarkers for Cancer Immunotherapy. International Journal of Molecular Sciences, 2023, 24, 2769.	1.8	7
576	Gut microbial signature in lung cancer patients highlights specific taxa as predictors for durable clinical benefit. Scientific Reports, 2023, 13, .	1.6	5
577	The effects of traditional Chinese medicine and dietary compounds on digestive cancer immunotherapy and gut microbiota modulation: A review. Frontiers in Immunology, 0, 14, .	2.2	0
578	Pretreatment with antibiotics is associated with reduced therapeutic response to atezolizumab plus bevacizumab in patients with hepatocellular carcinoma. PLoS ONE, 2023, 18, e0281459.	1.1	6
579	Regulation of innate immune system function by the microbiome: Consequences for tumor immunity and cancer immunotherapy. Seminars in Immunology, 2023, 66, 101724.	2.7	4
580	Consistent Stool Metagenomic Biomarkers Associated with the Response To Melanoma Immunotherapy. MSystems, 2023, 8, .	1.7	4
581	Emerging roles of the gut microbiota in cancer immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	5
582	Potential links between the microbiota and T cell immunity determine the tumor cell fate. Cell Death and Disease, 2023, 14, .	2.7	4
583	The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers, 2023, 15, 1588.	1.7	7
584	Microbial Components and Effector Molecules in T Helper Cell Differentiation and Function. Immune Network, 2023, 23, .	1.6	4
585	Interaction of gut microbiota with the tumor microenvironment: A new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer. Frontiers in Molecular Biosciences, 0, 10, .	1.6	4
587	The role of gut microbiota in T cell immunity and immune mediated disorders. International Journal of Biological Sciences, 2023, 19, 1178-1191.	2.6	20
588	Prognostic Model of Baseline Medications plus Neutrophil-to-lymphocyte Ratio in Patients with Advanced Non-small-cell Lung Cancer Receiving Immune Checkpoint Inhibitor plus Platinum Doublet: A Multicenter Retrospective Study. Journal of Cancer, 2023, 14, 676-688.	1.2	0
590	A Novel Fibromodulin Antagonist Peptide RP4 Exerts Antitumor Effects on Colorectal Cancer. Pharmaceutics, 2023, 15, 944.	2.0	4

#	Article	IF	CITATIONS
591	Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications. FEMS Microbiology Reviews, 2023, 47, .	3.9	10
592	Early Administration of Vancomycin Inhibits Pulmonary Embolism by Remodeling Gut Microbiota. Journal of Personalized Medicine, 2023, 13, 537.	1.1	1
593	Ligature-Induced Periodontitis Drives Colorectal Cancer: An Experimental Model in Mice. Journal of Dental Research, 0, , 002203452311582.	2.5	1
594	Gut microbial metabolite butyrate improves anticancer therapy by regulating intracellular calcium homeostasis. Hepatology, 2023, 78, 88-102.	3.6	6
595	Diet-gut microbial interactions influence cancer immunotherapy. Frontiers in Oncology, 0, 13, .	1.3	2
597	Mechanisms of resistance to melanoma immunotherapy. Onkologie (Czech Republic), 2023, 17, 51-56.	0.0	0
598	Non-human primate models for understanding the impact of the microbiome on pregnancy and the female reproductive tract. Biology of Reproduction, 0, , .	1.2	1
599	Comedications with Immune Checkpoint Inhibitors: Involvement of the Microbiota, Impact on Efficacy and Practical Implications. Cancers, 2023, 15, 2276.	1.7	6
600	The human-derived novel gut commensal <i>Luoshenia tenuis</i> regulates body weight and food intake in mice. , 2024, 13, 830-841.		1
601	Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer. Nature Microbiology, 2023, 8, 919-933.	5.9	21
610	Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	27
612	Microbiome therapeutics for the cancer management. , 2023, , 197-230.		0
618	Engineering the gut microbiome. , 2023, 1, 665-679.		5
621	Immune response to intestinal microbial dysbiosis. , 2023, , 125-136.		0
625	Gut Microbiota and Host Immune System in Cancer. , 2023, , 1-40.		0
630	Bacteria in cancer initiation, promotion and progression. Nature Reviews Cancer, 2023, 23, 600-618.	12.8	21
636	Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nature Reviews Clinical Oncology, 2023, 20, 697-715.	12.5	10
643	Breast cancers as ecosystems: a metabolic perspective. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	2

#	Article	IF	CITATIONS
647	Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	34
652	Microbiota-dependent regulation of costimulatory and coinhibitory pathways via innate immune sensors and implications for immunotherapy. Experimental and Molecular Medicine, 2023, 55, 1913-1921.	3.2	3
656	Gut microbiome and nutrition-related predictors of response to immunotherapy in cancer: making sense of the puzzle. , 2023, 1, .		0
657	Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5
658	The microbial landscape of colorectal cancer. Nature Reviews Microbiology, 0, , .	13.6	7
684	Mechanisms by which the intestinal microbiota affects gastrointestinal tumours and therapeutic effects. Molecular Biomedicine, 2023, 4, .	1.7	1
686	Recent advances in single-cell engineered live biotherapeutic products research for skin repair and disease treatment. Npj Biofilms and Microbiomes, 2023, 9, .	2.9	1
699	Emerging Role of Gut Microbiome in Cancer Immunotherapy. , 2023, , 409-427.		0
722	The Importance of the Microbiome in the Gut. , 2023, , 1-11.		0
736	Engineering immune response to regulate cardiovascular disease and cancer. Advances in Protein Chemistry and Structural Biology, 2024, , .	1.0	0