Shape-directed rotation of homogeneous micromotors

Nature Communications 10, 495 DOI: 10.1038/s41467-019-08423-7

Citation Report

#	Article	IF	CITATIONS
1	The shape of things to come. Nature Materials, 2019, 18, 1146-1147.	13.3	4
2	Active Patchy Colloids with Shape-Tunable Dynamics. Journal of the American Chemical Society, 2019, 141, 14853-14863.	6.6	57
3	Engineering Micromotors with Droplet Microfluidics. ACS Nano, 2019, 13, 6319-6329.	7.3	68
4	Microfluidic Pump Driven by Anisotropic Phoresis. Physical Review Applied, 2019, 11, .	1.5	14
5	The Boundary Element Method for Fluctuating Active Colloids. , 2019, , .		0
6	Reorientation behavior in the helical motility of light-responsive spiral droplets. Nature Communications, 2019, 10, 5238.	5.8	43
7	Steering Active Emulsions with Liquid Crystals. Langmuir, 2020, 36, 6948-6956.	1.6	14
8	Electrochemistryâ€Based Lightâ€Emitting Mobile Systems. ChemElectroChem, 2020, 7, 4853-4862.	1.7	12
9	Acoustic Vibrationâ€Induced Actuation of Multiple Microrotors in Microfluidics. Advanced Materials Technologies, 2020, 5, 2000323.	3.0	25
10	Dielectrophoretic separation of platelet cells in a microfluidic channel and optimization with fuzzy logic. RSC Advances, 2020, 10, 33731-33738.	1.7	13
11	Tadpole‧haped Catalytic Janus Microrotors Enabled by Facile and Controllable Growth of Silver Nanotails. Advanced Functional Materials, 2020, 30, 2004858.	7.8	23
12	Spontaneous Electrokinetic Magnus Effect. Physical Review Letters, 2020, 124, 208002.	2.9	5
13	Hybrid Biodegradable Nanomotors through Compartmentalized Synthesis. Nano Letters, 2020, 20, 4472-4480.	4.5	56
14	Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy and Environmental Science, 2020, 13, 2178-2190.	15.6	166
15	Chemically Active Particles: From One to Few on the Way to Many. Langmuir, 2020, 36, 6861-6870.	1.6	21
16	Micromotor-Based Biosensing Using Directed Transport of Functionalized Beads. ACS Sensors, 2020, 5, 936-942.	4.0	39
17	Comparison of time reversal symmetric and asymmetric nano-swimmers oriented with an electric field in soft matter. Journal of Chemical Physics, 2020, 152, 024503.	1.2	4
18	Recent Advances in Nano―and Micromotors. Advanced Functional Materials, 2020, 30, 1908283.	7.8	149

#	Article	IF	CITATIONS
19	Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem‣ike Cell Stimulation. Advanced Functional Materials, 2020, 30, 1910108.	7.8	81
20	Reconfigurable structure and tunable transport in synchronized active spinner materials. Science Advances, 2020, 6, eaaz8535.	4.7	51
21	Trends in Micro″Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Advanced Materials, 2021, 33, e2002047.	11.1	256
22	Enhanced cargo loading of electrically powered metallo-dielectric pollen bearing multiple dielectrophoretic traps. Journal of Colloid and Interface Science, 2021, 588, 611-618.	5.0	8
23	Visible Light-Driven Micromotor with Incident-Angle-Controlled Motion and Dynamic Collective Behavior. Langmuir, 2021, 37, 180-187.	1.6	13
24	Designing bioactive micro-/nanomotors for engineered regeneration. Engineered Regeneration, 2021, 2, 109-115.	3.0	60
25	Orientation of motion of a flat folding nano-swimmer in soft matter. Physical Chemistry Chemical Physics, 2021, 23, 8836-8846.	1.3	3
26	Rotating ellipsoidal catalytic micro-swimmers <i>via</i> glancing angle evaporation. Materials Advances, 2021, 2, 7045-7053.	2.6	4
27	Self-Morphing, Chemically Driven Gears and Machines. Matter, 2021, 4, 600-617.	5.0	9
28	Rapid Capture and Photocatalytic Inactivation of Target Cells from Whole Blood by Rotating Janus Nanotubes. ACS Applied Materials & Interfaces, 2021, 13, 12972-12981.	4.0	8
29	Inferring non-equilibrium interactions from tracer response near confined active Janus particles. Science Advances, 2021, 7, .	4.7	22
30	Accurate localization microscopy by intrinsic aberration calibration. Nature Communications, 2021, 12, 3925.	5.8	8
31	Engineering Active Micro and Nanomotors. Micromachines, 2021, 12, 687.	1.4	11
32	Lorentz Force-Driven Autonomous Janus Swimmers. Journal of the American Chemical Society, 2021, 143, 12708-12714.	6.6	17
33	Photoâ€Fenton Degradation of Nitroaromatic Explosives by Lightâ€Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. Small Methods, 2021, 5, e2100617.	4.6	22
34	Autonomous navigation of shape-shifting microswimmers. Physical Review Research, 2019, 1, .	1.3	9
35	lonic Species Affect the Self-Propulsion of Urease-Powered Micromotors. Research, 2020, 2020, 2424972.	2.8	25
36	Oxygen Generation Using Catalytic Nano/Micromotors. Micromachines, 2021, 12, 1251.	1.4	10

CITATION REPORT

#	Article	IF	CITATIONS
37	Spontaneous chiralization of polar active particles. Physical Review E, 2021, 104, 044607.	0.8	2
38	Ionic Effects in Ionic Diffusiophoresis in Chemically Driven Active Colloids. Physical Review Letters, 2021, 127, 168001.	2.9	26
39	A Practical Guide to Analyzing and Reporting the Movement of Nanoscale Swimmers. ACS Nano, 2021, 15, 15446-15460.	7.3	22
40	Direct dynamic read-out of molecular chirality with autonomous enzyme-driven swimmers. Nature Chemistry, 2021, 13, 1241-1247.	6.6	24
41	Electrocatalytic Reaction Driven Flow: Role of pH in Flow Reversal. Journal of Physical Chemistry C, 2021, 125, 24876-24886.	1.5	4
42	Harnessing the power of chemically active sheets in solution. Nature Reviews Physics, 2022, 4, 125-137.	11.9	13
43	Simulation of a flat folding nano-swimmer confined in a nanopore. Physics of Fluids, 2021, 33, .	1.6	4
44	Generic Rules for Distinguishing Autophoretic Colloidal Motors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
45	Generic Rules for Distinguishing Autophoretic Colloidal Motors. Angewandte Chemie, 2022, 134, .	1.6	5
46	Time irreversibility in active matter, from micro to macro. Nature Reviews Physics, 2022, 4, 167-183.	11.9	51
47	Nitric oxide producing artificial enzymes based on metalloporphyrins. Materials Today Chemistry, 2022, 23, 100743.	1.7	4
49	Enzyme-Based Mesoporous Nanomotors with Near-Infrared Optical Brakes. Journal of the American Chemical Society, 2022, 144, 3892-3901.	6.6	70
50	AC electrohydrodynamic propulsion and rotation of active particles of engineered shape and asymmetry. Current Opinion in Colloid and Interface Science, 2022, 59, 101586.	3.4	14
51	Reversing a Platinum Micromotor by Introducing Platinum Oxide. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
52	Reversing A Platinum Micromotor by Introducing Platinum Oxide. Angewandte Chemie, 0, , .	1.6	2
53	Superassembled Hierarchical Asymmetric Magnetic Mesoporous Nanorobots Driven by Smart Confined Catalytic Degradation. Chemistry - A European Journal, 2022, 28, e202200307.	1.7	2
54	Liquid metal droplets enabled soft robots. Applied Materials Today, 2022, 27, 101423.	2.3	31
55	Distinct dynamics of self-propelled bowl-shaped micromotors caused by shape effect: Concave vs convex. Physics of Fluids, 2021, 33, .	1.6	6

CITATION REPORT

#	Article	IF	CITATIONS
56	Photocatalytic-induced bubble-propelled isotropic g-C ₃ N ₄ -coated carbon microsphere micromotors for dynamic removal of organic pollutants. RSC Advances, 2022, 12, 13116-13126.	1.7	2
57	Reversible morphology-resolved chemotactic actuation and motion of Janus emulsion droplets. Nature Communications, 2022, 13, 2562.	5.8	14
58	Breaking action-reaction with active apolar colloids: emergent transport and velocity inversion. Soft Matter, 0, , .	1.2	0
59	Solutal-buoyancy-driven intertwining and rotation of patterned elastic sheets. , 2022, 1, .		1
60	Activation induced fluidization of a confined viscous liquid. Journal of Molecular Liquids, 2022, 360, 119545.	2.3	2
61	Confined Motion: Motility of Active Microparticles in Cell-Sized Lipid Vesicles. Journal of the American Chemical Society, 2022, 144, 13831-13838.	6.6	16
62	Geometric and Scaling Effects in the Speed of Catalytic Enzyme Micropumps. ACS Applied Materials & Interfaces, 2022, 14, 39515-39523.	4.0	3
63	Estimating the velocity of chemically-driven Janus colloids considering the anisotropic concentration field. Frontiers in Chemistry, 0, 10, .	1.8	1
64	Autonomous Chiral Microswimmers with Selfâ€mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angewandte Chemie, 0, , .	1.6	1
65	Engineering shapes of active colloids for tunable dynamics. Current Opinion in Colloid and Interface Science, 2022, 61, 101608.	3.4	10
66	Self-propelled swimming droplets. Current Opinion in Colloid and Interface Science, 2022, 61, 101614.	3.4	20
67	Autonomous Chiral Microswimmers with Selfâ€mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	2
68	A guide to design the trajectory of active particles: From fundamentals to applications. Current Opinion in Colloid and Interface Science, 2022, 61, 101612.	3.4	10
69	Reversible speed control of one-stimulus-double-response, temperature-sensitive asymmetric hydrogel micromotors. Chemical Communications, 2022, 58, 10333-10336.	2.2	3
70	Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. Micromachines, 2022, 13, 1473.	1.4	13
72	Smallâ \in Scale Robotics with Tailored Wettability. Advanced Materials, 2023, 35, .	11.1	14
73	Emergent microrobotic oscillators via asymmetry-induced order. Nature Communications, 2022, 13, .	5.8	5
74	High-efficiency removal of organic pollutants by visible-light-driven tubular heterogeneous micromotors through a photocatalytic Fenton process. Journal of Colloid and Interface Science, 2023 630 121-133	5.0	8

#	Article	IF	Citations
75	Self-locomotive composites based on asymmetric micromotors and covalently attached nanosorbents for selective uranium recovery. Separation and Purification Technology, 2023, 308, 122844.	3.9	2
76	Achieving Control in Microâ€/Nanomotor Mobility. Angewandte Chemie - International Edition, 2023, 62,	7.2	18
77	Light-Activated Colloidal Micromotors with Synthetically Tunable Shapes and Shape-Directed Propulsion. ACS Applied Materials & amp; Interfaces, 2022, 14, 57113-57121.	4.0	3
78	Achieving Control in Microâ€∕Nanomotor Mobility. Angewandte Chemie, 2023, 135, .	1.6	4
79	Shape-Tunable Biconcave Disc-Like Polymer Particles by Swelling-Induced Phase Separation of Seeded Particles with Hydrophilic Shells. Langmuir, 2023, 39, 1190-1197.	1.6	3
80	An axis-asymmetric self-driven micromotor that can perform precession multiplying "on-the-fly―mass transfer. Matter, 2023, 6, 907-924.	5.0	6
81	Going in circles: Slender body analysis of a self-propelling bent rod. Physical Review Fluids, 2023, 8, .	1.0	7
82	Three-Dimensionally Complex Phase Behavior and Collective Phenomena in Mixtures of Acoustically Powered Chiral Microspinners. ACS Nano, 2023, 17, 7911-7919.	7.3	7
83	Propulsion of Homonuclear Colloidal Chains Based on Orientation Control under Combined Electric and Magnetic Fields. Langmuir, 2023, 39, 2751-2760.	1.6	1
84	Active Colloids as Models, Materials, and Machines. Annual Review of Chemical and Biomolecular Engineering, 2023, 14, 1-30.	3.3	10
85	Programming Motion of Platinum Microparticles: From Linear to Orbital. , 2023, 1, 1126-1133.		4
86	Bubbleâ€Based Microrobots with Rapid Circular Motions for Epithelial Pinning and Drug Delivery. Small, 2023, 19, .	5.2	8
88	Active Synthetic Microrotors: Design Strategies and Applications. ACS Nano, 2023, 17, 11969-11993.	7.3	6

CITATION REPORT