Tuning the Luminescence of Layered Halide Perovskite

Chemical Reviews 119, 3104-3139 DOI: 10.1021/acs.chemrev.8b00477

Citation Report

#	Article	IF	CITATIONS
1	Electron–Phonon Couplings Inherent in Polarons Drive Exciton Dynamics in Two-Dimensional Metal-Halide Perovskites. Chemistry of Materials, 2019, 31, 7085-7091.	6.7	40
2	Lead-Free Halide Perovskites and Perovskite Variants as Phosphors toward Light-Emitting Applications. ACS Applied Materials & Interfaces, 2019, 11, 31575-31584.	8.0	114
3	Fluorinated Spacers Regulate the Emission and Bandgap of Two-Dimensional Single-Layered Lead Bromide Perovskites by Hydrogen Bonding. Journal of Physical Chemistry Letters, 2019, 10, 5271-5276.	4.6	28
4	Orange to Red, Emission-Tunable Mn-Doped Two-Dimensional Perovskites with High Luminescence and Stability. ACS Applied Materials & Interfaces, 2019, 11, 34109-34116.	8.0	75
5	Two-Dimensional Dion–Jacobson Hybrid Lead Iodide Perovskites with Aromatic Diammonium Cations. Journal of the American Chemical Society, 2019, 141, 12880-12890.	13.7	241
6	Synthetic Variation and Structural Trends in Layered Two-Dimensional Alkylammonium Lead Halide Perovskites. Chemistry of Materials, 2019, 31, 5592-5607.	6.7	80
7	Emerging 2D materials for room-temperature polaritonics. Nanophotonics, 2019, 8, 1547-1558.	6.0	30
8	Synthesis of Polycrystalline Ruddlesden–Popper Organic Lead Halides and Their Growth Dynamics. Chemistry of Materials, 2019, 31, 9472-9479.	6.7	18
9	Mechanochromic and Electroluminescence Properties of a Layered Hybrid Perovskite Belonging to the <110> Series. European Journal of Inorganic Chemistry, 2019, 2019, 4527-4531.	2.0	15
10	Single omponent Whiteâ€Light Emission in 2D Hybrid Perovskites with Hybridized Halogen Atoms. Advanced Optical Materials, 2019, 7, 1901335.	7.3	71
11	Essential Amino Acid–Enabled Lead Bromide Perovskite Nanocrystals with High Stability. Particle and Particle Systems Characterization, 2019, 36, 1900328.	2.3	13
12	Tuning Electronic Structure in Layered Hybrid Perovskites with Organic Spacer Substitution. Nano Letters, 2019, 19, 8732-8740.	9.1	41
13	Inorganic Cage Motion Dominates Excited-State Dynamics in 2D-Layered Perovskites (C <i>_x</i> H ₂ <i>_x</i> ₊₁ NH ₃) ₂ Pbl (<i>x</i> = 4–9). Journal of Physical Chemistry C, 2019, 123, 27904-27916.	<s816>4<td>subo</td></s816>	subo
14	Intrinsic Selfâ€Trapped Emission in 0D Leadâ€Free (C ₄ H ₁₄ N ₂) ₂ In ₂ Br ₁₀ Single Crystal. Angewandte Chemie, 2019, 131, 15581-15586.	2.0	190
15	Two-dimensional lead-free halide perovskite materials and devices. Journal of Materials Chemistry A, 2019, 7, 23563-23576.	10.3	65
16	Seven-Layered 2D Hybrid Lead Iodide Perovskites. CheM, 2019, 5, 2593-2604.	11.7	79
17	Intrinsic Selfâ€Trapped Emission in 0D Leadâ€Free (C ₄ H ₁₄ N ₂) ₂ In ₂ Br ₁₀ Single Crystal. Angewandte Chemie - International Edition, 2019, 58, 15435-15440.	13.8	244
18	A hybrid blue perovskite@metal–organic gel (MOC) nanocomposite: simultaneous improvement of luminescence and stability. Chemical Science, 2019, 10, 10524-10530.	7.4	30

#	Article	IF	CITATIONS
19	Resolving Rotational Stacking Disorder and Electronic Level Alignment in a 2D Oligothiophene-Based Lead Iodide Perovskite. Chemistry of Materials, 2019, 31, 8523-8532.	6.7	26
20	Active meta-optics and nanophotonics with halide perovskites. Applied Physics Reviews, 2019, 6, 031307.	11.3	68
21	Lead–Organic Frameworks Containing Trimesic Acid: Facile Dissolution–Crystallization and Near-White Light Emission. Crystal Growth and Design, 2019, 19, 6274-6282.	3.0	12
22	Layered Lead Iodide of [Methylhydrazinium] ₂ PbI ₄ with a Reduced Band Gap: Thermochromic Luminescence and Switchable Dielectric Properties Triggered by Structural Phase Transitions. Chemistry of Materials, 2019, 31, 8563-8575.	6.7	72
23	Metal halide perovskites under compression. Journal of Materials Chemistry A, 2019, 7, 16089-16108.	10.3	42
24	Optically Modulated Ultra-Broad-Band Warm White Emission in Mn ²⁺ -Doped (C ₆ H ₁₈ N ₂ O ₂)PbBr ₄ Hybrid Metal Halide Phosphor. Chemistry of Materials, 2019, 31, 5788-5795.	6.7	131
25	Two-dimensional Ruddlesden-Popper perovskite nanosheets: Synthesis, optoelectronic properties and miniaturized optoelectronic devices. FlatChem, 2019, 17, 100116.	5.6	13
26	Tunable internal quantum well alignment in rationally designed oligomer-based perovskite films deposited by resonant infrared matrix-assisted pulsed laser evaporation. Materials Horizons, 2019, 6, 1707-1716.	12.2	48
27	Dual phosphorescence from the organic and inorganic moieties of 1D hybrid perovskites of the Pb _{n′} Br _{4n′+2} series (<i>n</i> ′ = 2, 3, 4, 5). Journal of Materials Chemistry C, 20 7, 4424-4433.)19.5	38
28	Simple fabrication of layered halide perovskite platelets and enhanced photoluminescence from mechanically exfoliated flakes. Nanoscale, 2019, 11, 8334-8342.	5.6	31
29	Direct emission from quartet excited states triggered by upconversion phenomena in solid-phase synthesized fluorescent lead-free organic–inorganic hybrid compounds. Journal of Materials Chemistry A, 2019, 7, 26504-26512.	10.3	35
30	Lead-Free Perovskites for Lighting and Lasing Applications: A Minireview. Materials, 2019, 12, 3845.	2.9	28
31	Origin of Broad-Band Emission and Impact of Structural Dimensionality in Tin-Alloyed Ruddlesden–Popper Hybrid Lead Iodide Perovskites. ACS Energy Letters, 2020, 5, 347-352.	17.4	55
32	A moisture-stable organosulfonate-based metal–organic framework with intrinsic self-trapped white-light emission. Chemical Communications, 2020, 56, 1325-1328.	4.1	12
33	0D Cs ₃ Cu ₂ X ₅ (X = I, Br, and Cl) Nanocrystals: Colloidal Syntheses and Optical Properties. Small, 2020, 16, e1905226.	10.0	158
34	Breaking Forbidden Transitions for Emission of Self-Trapped Excitons in Two Dimensional (F ₂ CHCH ₂ NH ₃) ₂ CdBr ₄ Perovskite through Pb Alloying. Journal of Physical Chemistry Letters, 2020, 11, 199-205.	4.6	50
35	Structural phase transition, electrical and semiconducting properties in a leadâ€free 2D hybrid perovskiteâ€like compound: [Clâ€(CH 2) 2 â€NH 3] 2 [CuCl 4]. Applied Organometallic Chemistry, 2020, 34, e5293.	3.5	10
36	Homo- and Heterovalent Doping-Mediated Self-Trapped Exciton Emission and Energy Transfer in Mn-Doped Cs ₂ Na _{1–<i>x</i>} Ag _{<i>x</i>} BiCl ₆ Double Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 340-348.	4.6	104

#	Article	IF	CITATIONS
37	Photoelectrochemical Cells for Artificial Photosynthesis: Alternatives to Water Oxidation. ChemNanoMat, 2020, 6, 185-203.	2.8	38
38	Multicolor Tunable Polymeric Nanoparticle from the Tetraphenylethylene Cage for Temperature Sensing in Living Cells. Journal of the American Chemical Society, 2020, 142, 512-519.	13.7	102
39	Two Origins of Broadband Emission in Multilayered 2D Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 8565-8572.	4.6	61
40	Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials. Journal of the American Chemical Society, 2020, 142, 19413-19437.	13.7	76
41	Expanded Analogs of Threeâ€Dimensional Leadâ€Halide Hybrid Perovskites. Angewandte Chemie, 2020, 132, 19249-19256.	2.0	6
42	NMR and Raman Scattering Studies of Temperature- and Pressure-Driven Phase Transitions in CH ₃ NH ₂ NH ₂ PbCl ₃ Perovskite. Journal of Physical Chemistry C, 2020, 124, 26999-27008.	3.1	30
43	Recent Advances in Luminescent Zeroâ€Ðimensional Organic Metal Halide Hybrids. Advanced Optical Materials, 2021, 9, 2001766.	7.3	118
44	Low-Dimensional Hybrid Indium/Antimony Halide Perovskites: Supramolecular Assembly and Electronic Properties. Journal of Physical Chemistry C, 2020, 124, 25686-25700.	3.1	23
45	Structural variations in (001)-oriented layered lead halide perovskites, templated by 1,2,4-triazolium. Dalton Transactions, 2020, 49, 17274-17280.	3.3	10
46	Zeroâ€Dimensional Hybrid Cdâ€Based Perovskites with Broadband Bluish Whiteâ€Light Emissions. Chemistry - an Asian Journal, 2020, 15, 3050-3058.	3.3	18
47	White Electroluminescence from Perovskite–Organic Heterojunction. ACS Energy Letters, 2020, 5, 2690-2697.	17.4	21
48	Efficient Lone-Pair-Driven Luminescence: Structure–Property Relationships in Emissive 5s ² Metal Halides. , 2020, 2, 1218-1232.		220
49	Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 8257-8265.	5.1	21
51	A zero-dimensional hybrid lead perovskite with highly efficient blue-violet light emission. Journal of Materials Chemistry C, 2020, 8, 11890-11895.	5.5	42
52	Influence of the Vibrational Modes from the Organic Moieties in 2D Lead Halides on Excitonic Recombination and Phase Transition. Advanced Optical Materials, 2020, 8, 2001431.	7.3	19
53	The Emergence of Halide Layered Double Perovskites. ACS Energy Letters, 2020, 5, 3591-3608.	17.4	88
54	Variable dimensionality in â€~hollow' hybrid tin iodide perovskites. Dalton Transactions, 2020, 49, 15171-15174.	3.3	6
55	Conformational disorder of organic cations tunes the charge carrier mobility in two-dimensional organic-inorganic perovskites. Nature Communications, 2020, 11, 5481.	12.8	55

#	Article	IF	CITATIONS
56	Reaching 90% Photoluminescence Quantum Yield in One-Dimensional Metal Halide C ₄ N ₂ H ₁₄ PbBr ₄ by Pressure-Suppressed Nonradiative Loss. Journal of the American Chemical Society, 2020, 142, 16001-16006.	13.7	109
57	Halide Perovskite, a Potential Scintillator for Xâ€Ray Detection. Small Methods, 2020, 4, 2000506.	8.6	160
58	Broadband emission in all-inorganic metal halide perovskites with intrinsic vacancies. Journal of Materials Chemistry C, 2020, 8, 13976-13981.	5.5	13
59	Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling. Nature Communications, 2020, 11, 4699.	12.8	200
60	Charge carrier dynamics in two-dimensional hybrid perovskites: Dion–Jacobson <i>vs.</i> Ruddlesden–Popper phases. Journal of Materials Chemistry A, 2020, 8, 22009-22022.	10.3	72
61	Self-trapped excitons in two-dimensional perovskites. Frontiers of Optoelectronics, 2020, 13, 225-234.	3.7	77
62	Library of Two-Dimensional Hybrid Lead Halide Perovskite Scintillator Crystals. Chemistry of Materials, 2020, 32, 8530-8539.	6.7	80
63	2D layered all-inorganic halide perovskites: recent trends in their structure, synthesis and properties. Nanoscale, 2020, 12, 21094-21117.	5.6	45
64	Defect-Related Broadband Emission in Two-Dimensional Lead Bromide Perovskite Microsheets. Journal of Physical Chemistry Letters, 2020, 11, 8157-8163.	4.6	54
65	Single Ensemble Non-exponential Photoluminescent Population Decays from a Broadband White-Light-Emitting Perovskite. Journal of the American Chemical Society, 2020, 142, 16622-16631.	13.7	44
66	Structural Evolution of Layered Hybrid Lead Iodide Perovskites in Colloidal Dispersions. ACS Nano, 2020, 14, 11294-11308.	14.6	18
67	A Guanidinium-Based Mn ⁴⁺ -Doped Red-Emitting Hybrid Phosphor with High Stability. ACS Applied Electronic Materials, 2020, 2, 4134-4145.	4.3	24
68	Halide Perovskites: A Progress Report on Photon Interconversion. Advanced Optical Materials, 2021, 9, 2001470.	7.3	20
69	Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden–Popper Phases. Journal of the American Chemical Society, 2020, 142, 19705-19714.	13.7	83
70	Observation of Two Thresholds Leading to Polariton Condensation in 2D Hybrid Perovskites. Advanced Optical Materials, 2020, 8, 2000176.	7.3	32
71	Recent Progress in Engineering Metal Halide Perovskites for Efficient Visible‣ightâ€Driven Photocatalysis. ChemSusChem, 2020, 13, 4005-4025.	6.8	79
72	Tailorable Indirect to Direct Band-Gap Double Perovskites with Bright White-Light Emission: Decoding Chemical Structure Using Solid-State NMR. Journal of the American Chemical Society, 2020, 142, 10780-10793.	13.7	58
73	Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden–Popper perovskites. Nature Communications, 2020, 11, 2344.	12.8	101

#	Article	IF	CITATIONS
74	Threeâ€Ðimensional Cuprous Lead Bromide Framework with Highly Efficient and Stable Blue Photoluminescence Emission. Angewandte Chemie, 2020, 132, 16607.	2.0	3
75	Threeâ€Ðimensional Cuprous Lead Bromide Framework with Highly Efficient and Stable Blue Photoluminescence Emission. Angewandte Chemie - International Edition, 2020, 59, 16465-16469.	13.8	51
76	Negative Pressure Engineering with Large Cage Cations in 2D Halide Perovskites Causes Lattice Softening. Journal of the American Chemical Society, 2020, 142, 11486-11496.	13.7	84
77	Establishing charge-transfer excitons in 2D perovskite heterostructures. Nature Communications, 2020, 11, 2618.	12.8	58
78	Dimensional reduction of the small-bandgap double perovskite Cs ₂ AgTlBr ₆ . Chemical Science, 2020, 11, 7708-7715.	7.4	43
79	Emissive Nature and Molecular Behavior of Zero-Dimensional Organic–Inorganic Metal Halides Bmpip ₂ MX ₄ . Journal of Physical Chemistry Letters, 2020, 11, 5234-5240.	4.6	33
80	Correlation of Dielectric Confinement and Excitonic Binding Energy in 2D Layered Hybrid Perovskites Using Temperature Dependent Photoluminescence. Journal of Physical Chemistry C, 2020, 124, 16177-16185.	3.1	59
81	Chirality control in white-light emitting 2D perovskites. Journal of Materials Chemistry C, 2020, 8, 9602-9607.	5.5	24
82	Supramolecular Approach for Fine-Tuning of the Bright Luminescence from Zero-Dimensional Antimony(III) Halides. , 2020, 2, 845-852.		94
83	Disordered structures, vibrational spectroscopy, thermal behavior, and electrical properties of two new tetrachlorometallates complexes [(CH3CH2CH2)4N]2MIICl4 with MIIÂ=ÂCo and Mn. Journal of Saudi Chemical Society, 2020, 24, 567-583.	5.2	13
84	Bright Blue and Green Luminescence of Sb(III) in Double Perovskite Cs ₂ MInCl ₆ (M = Na, K) Matrices. Chemistry of Materials, 2020, 32, 5118-5124.	6.7	196
85	Bandgap widening by pressure-induced disorder in two-dimensional lead halide perovskite. Applied Physics Letters, 2020, 116, 101901.	3.3	12
86	Shining Light on the Photoluminescence Properties of Metal Halide Perovskites. Advanced Functional Materials, 2020, 30, 1910004.	14.9	101
87	Charge Carrier Recombination Dynamics of Two-Dimensional Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 2570-2576.	4.6	61
88	Unveiling Mn ²⁺ Dopant States in Two-Dimensional Halide Perovskite toward Highly Efficient Photoluminescence. Journal of Physical Chemistry Letters, 2020, 11, 2510-2517.	4.6	56
89	Broad-band emission in metal halide perovskites: Mechanism, materials, and applications. Materials Science and Engineering Reports, 2020, 141, 100548.	31.8	208
90	Optoelectronic Properties of Two-Dimensional Bromide Perovskites: Influences of Spacer Cations. Journal of Physical Chemistry Letters, 2020, 11, 2955-2964.	4.6	50
91	Polarons in Halide Perovskites: A Perspective. Journal of Physical Chemistry Letters, 2020, 11, 3271-3286.	4.6	110

#	Article	IF	CITATIONS
92	Expanded Analogs of Threeâ€Ðimensional Leadâ€Halide Hybrid Perovskites. Angewandte Chemie - International Edition, 2020, 59, 19087-19094.	13.8	35
93	FA _{<i>x</i>} Cs _{1–<i>x</i>} PbI ₃ Nanocrystals: Tuning Crystal Symmetry by A-Site Cation Composition. ACS Energy Letters, 2020, 5, 2475-2482.	17.4	34
94	Enhancing Photoluminescence Quantum Yield in 0D Metal Halides by Introducing Water Molecules. Advanced Functional Materials, 2020, 30, 2002468.	14.9	89
95	Tunable Color Temperatures and Emission Enhancement in 1D Halide Perovskites under High Pressure. Advanced Optical Materials, 2020, 8, 2000713.	7.3	36
96	Theoretical Progress on the Relationship between the Structures and Properties of Perovskite Solar Cells. Advanced Theory and Simulations, 2020, 3, 2000022.	2.8	10
97	Narrow-band emitters in LED backlights for liquid-crystal displays. Materials Today, 2020, 40, 246-265.	14.2	118
98	Recent Developments of Mn(II)-Doped 2D-Layered and 2D Platelet Perovskite Nanostructures. Frontiers in Materials, 2020, 7, .	2.4	14
99	Control of Crystal Symmetry Breaking with Halogen-Substituted Benzylammonium in Layered Hybrid Metal-Halide Perovskites. Journal of the American Chemical Society, 2020, 142, 5060-5067.	13.7	65
100	Organic additive engineering toward efficient perovskite lightâ€emitting diodes. InformaÄnÃ-Materiály, 2020, 2, 1095-1108.	17.3	26
101	Inorganic Halide Double Perovskites with Optoelectronic Properties Modulated by Sublattice Mixing. Journal of the American Chemical Society, 2020, 142, 5135-5145.	13.7	62
102	One-step synthesis at room temperature of low dimensional perovskite single crystals with high optical quality. Journal of Luminescence, 2020, 221, 117079.	3.1	10
103	Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chemical Society Reviews, 2020, 49, 1109-1143.	38.1	211
104	Coupling halide perovskites with different materials: From doping to nanocomposites, beyond photovoltaics. Progress in Materials Science, 2020, 110, 100639.	32.8	38
105	Materials chemistry and engineering in metal halide perovskite lasers. Chemical Society Reviews, 2020, 49, 951-982.	38.1	263
106	What Defines a Halide Perovskite?. ACS Energy Letters, 2020, 5, 604-610.	17.4	228
107	Dual-source vacuum deposition of pure and mixed halide 2D perovskites: thin film characterization and processing guidelines. Journal of Materials Chemistry C, 2020, 8, 1902-1908.	5.5	15
108	Elucidating the Role of the Organic Cation in Tuning the Optical Response of Two-Dimensional Organic–Inorganic Halide Perovskites by Computational Investigation. Journal of Physical Chemistry C, 2020, 124, 3224-3232.	3.1	4
109	Highly Luminescent and Stable Green Quasiâ€2D Perovskiteâ€Embedded Polymer Sheets by Inkjet Printing. Advanced Functional Materials, 2020, 30, 1910817.	14.9	58

ARTICLE IF CITATIONS # Enhanced photoconversion efficiency in cesium-antimony-halide perovskite derivatives by tuning 110 4.3 32 crystallographic dimensionality. Applied Materials Today, 2020, 19, 100637. Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. 18.8 Coordination Chemistry Reviews, 2020, 415, 213316. Direct evidence of weakly dispersed and strongly anharmonic optical phonons in hybrid perovskites. 112 5.3 49 Communications Physics, 2020, 3, . Frenkel–Holstein Hamiltonian applied to absorption spectra of quaterthiophene-based 2D hybrid 3.0 organic–inorganic perovskites. journal of Chemical Physics, 2020, 152, 144702. 2D layered perovskite containing functionalised benzothieno-benzothiophene molecules: formation, degradation, optical properties and photoconductivity. Journal of Materials Chemistry C, 2020, 8, 114 5.5 17 7181-7188. Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand. Beilstein Journal of Nanotechnology, 2020, 11, 466-479. 2.8 Three-Dimensional Perovskite Methylhydrazinium Lead Chloride with Two Polar Phases and Unusual 116 Second-Harmonic Generation Bistability above Room Temperature. Chemistry of Materials, 2020, 32, 6.7 104 4072-4082. The Key Role of the Interface in the Highly Sensitive Mechanochromic Luminescence Properties of 2.0 Hybrid Perovskites. Angewandte Chemie, 2021, 133, 847-852. Enabling AC electroluminescence in quasi-2D perovskites by uniformly arranging different-n-value 118 16.0 8 nanoplates to allow bidirectional charge transport. Nano Energy, 2021, 79, 105413. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and 16.0 therapy. Nano Energy, 2021, 79, 105437. Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 2021, 120 12.4 412 404, 124082. Pb alloying enables efficient broadband emission of two dimensional [NH3(CH2)4NH3]CdBr4. Journal 121 of Solid State Chemistry, 2021, 293, 121772. Halide Perovskite Nanocrystal Emitters. Advanced Photonics Research, 2021, 2, 2000118. 122 3.6 17 Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants. Nano Research, 2021, 14, 1551-1558. 10.4 Diamine tailored smooth and continuous perovskite single crystal with enhanced photoconductivity. 124 5.514 Journal of Materials Chemistry C, 2021, 9, 1303-1309. Phase Transitions in Low-Dimensional Layered Double Perovskites: The Role of the Organic Moieties. 23 Journal of Physical Chemistry Letters, 2021, 12, 280-286. Photo-electrical properties of 2D quantum confined metal \hat{e}° organic chalcogenide nanocrystal films. 126 5.6 16 Nanoscale, 2021, 13, 233-241. Photoluminescent and vapochromic properties of the Mn(II)-doped (C6H11NH3)2PbBr4 layered 2.2 organic–inorganic hybrid perovskite. Polyhedron, 2021, 193, 114840.

#	Article	IF	CITATIONS
128	Ultrathin Monolayer Mn ²⁺ â€Alloyed 2D Perovskite Colloidal Quantum Wells. Advanced Optical Materials, 2021, 9, 2001135.	7.3	13
129	Mechanochemistry enables optical-electrical multifunctional response and tunability in two-dimensional hybrid perovskites. Science China Materials, 2021, 64, 706-716.	6.3	40
130	Leadâ€Free Perovskiteâ€inspired Absorbers for Indoor Photovoltaics. Advanced Energy Materials, 2021, 11, 2002761.	19.5	95
131	Leadâ€Free Halide Double Perovskites: Structure, Luminescence, and Applications. Small Structures, 2021, 2, 2000071.	12.0	71
132	The Key Role of the Interface in the Highly Sensitive Mechanochromic Luminescence Properties of Hybrid Perovskites. Angewandte Chemie - International Edition, 2021, 60, 834-839.	13.8	8
133	Low-Dimensional Hybrid Lead Iodide Perovskites Single Crystals via Bifunctional Amino Acid Cross-Linkage: Structural Diversity and Properties Controllability. ACS Applied Materials & Interfaces, 2021, 13, 3325-3335.	8.0	6
134	The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chemical Reviews, 2021, 121, 2230-2291.	47.7	506
135	Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals. ACS Nano, 2021, 15, 6243-6256.	14.6	29
136	Dynamic Motion of Organic Spacer Cations in Ruddlesden–Popper Lead Iodide Perovskites Probed by Solid-State NMR Spectroscopy. Chemistry of Materials, 2021, 33, 642-656.	6.7	33
137	A-site cation with high vibrational motion in ABX ₃ perovskite effectively induces dielectric phase transition. Dalton Transactions, 2021, 50, 3841-3847.	3.3	15
138	Manipulation of Cl/Br transmutation in zero-dimensional Mn ²⁺ -based metal halides toward tunable photoluminescence and thermal quenching behaviors. Journal of Materials Chemistry C, 2021, 9, 2047-2053.	5.5	44
139	Co-luminescence in a zero-dimensional organic–inorganic hybrid antimony halide with multiple coordination units. Dalton Transactions, 2021, 50, 3586-3592.	3.3	38
140	Highly efficient and stable broadband near-infrared-emitting lead-free metal halide double perovskites. Journal of Materials Chemistry C, 2021, 9, 13474-13483.	5.5	13
141	Using steric hindrance to manipulate and stabilize metal halide perovskites for optoelectronics. Chemical Science, 2021, 12, 7231-7247.	7.4	31
142	Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior. Journal of Materials Chemistry A, 2021, 9, 13209-13219.	10.3	34
143	Overview of recent progress in electrohydrodynamic jet printing in practical printed electronics: focus on the variety of printable materials for each component. Materials Advances, 2021, 2, 5593-5615.	5.4	42
144	High-Pressure Structural Phase Transformation of Ferroelectric Bis-benzylammonium Lead Tetrachloride Studied by Raman Spectroscopy and X-ray Diffraction. Inorganic Chemistry, 2021, 60, 3657-3666.	4.0	5
145	Stable Lead-Free Cesium Tin Halide Double-Perovskite Nanocrystals Embedded in Polydimethylsiloxane for Candlelight Light-Emitting Diodes. ACS Applied Nano Materials, 2021, 4, 1924-1931.	5.0	14

#	Article	IF	CITATIONS
146	Pentadiamond: A Highly Efficient Electron Transport Layer for Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 5372-5379.	3.1	18
147	Mechanochemical Synthesis, Optical and Magnetic Properties of Pb-Free Ruddlesden–Popper-Type Layered Rb ₂ CuCl ₂ Br ₂ Perovskite. Journal of Physical Chemistry C, 2021, 125, 4720-4729.	3.1	21
148	Synthesis of Gramâ€Scale Ultrastable Mnâ€Doped 2D Perovskites for Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2002175.	3.7	10
149	Solution-processed lead-free bulk 0D Cs ₃ Cu ₂ I ₅ single crystal for indirect gamma-ray spectroscopy application. Photonics Research, 2021, 9, 351.	7.0	22
150	Tuning the Excitonic Properties of the 2D (PEA) ₂ (MA) _{<i>n</i>â^'1} Pb _{<i>n</i>} I _{3<i>n</i>+1} Perovskite Family via Quantum Confinement. Journal of Physical Chemistry Letters, 2021, 12, 1638-1643.	4.6	49
151	Impact of Dimensionality on Optoelectronic Properties of Hybrid Perovskites. International Journal of Photoenergy, 2021, 2021, 1-7.	2.5	0
152	Multiple Roles of 1,4-Diazabicyclo[2.2.2]octane in the Solvothermal Synthesis of Iodobismuthates. Inorganic Chemistry, 2021, 60, 5333-5342.	4.0	8
153	Doubling the Stakes: The Promise of Halide Double Perovskites. Angewandte Chemie - International Edition, 2021, 60, 16264-16278.	13.8	77
154	Distance Dependence of Förster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length. Journal of the American Chemical Society, 2021, 143, 4244-4252.	13.7	54
155	The photophysics of Ruddlesden-Popper perovskites: A tale of energy, charges, and spins. Applied Physics Reviews, 2021, 8, .	11.3	34
156	[Methylhydrazinium] ₂ PbBr ₄ , a Ferroelectric Hybrid Organic–Inorganic Perovskite with Multiple Nonlinear Optical Outputs. Chemistry of Materials, 2021, 33, 2331-2342.	6.7	97
157	Unprecedented 2D Homochiral Hybrid Leadâ€lodide Perovskite Thermochromic Ferroelectrics with Ferroelastic Switching. Angewandte Chemie - International Edition, 2021, 60, 10730-10735.	13.8	89
158	2D Phase Purity Determines Charge-Transfer Yield at 3D/2D Lead Halide Perovskite Heterojunctions. Journal of Physical Chemistry Letters, 2021, 12, 3312-3320.	4.6	13
159	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie, 2021, 133, 8418-8424.	2.0	9
160	Reversible Emission Tunability from 2D‣ayered Perovskites with Conjugated Organic Cations. Advanced Photonics Research, 2021, 2, 2100005.	3.6	10
161	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie - International Edition, 2021, 60, 8337-8343.	13.8	47
162	Engineering the Optical Emission and Robustness of Metalâ€Halide Layered Perovskites through Ligand Accommodation. Advanced Materials, 2021, 33, e2008004.	21.0	23
163	Lead-Free Organic–Perovskite Hybrid Quantum Wells for Highly Stable Light-Emitting Diodes. ACS Nano, 2021, 15, 6316-6325.	14.6	73

#	Article	IF	CITATIONS
164	Mixed Conductivity of Hybrid Halide Perovskites: Emerging Opportunities and Challenges. Frontiers in Energy Research, 2021, 9, .	2.3	26
165	Doubling the Stakes: The Promise of Halide Double Perovskites. Angewandte Chemie, 2021, 133, 16400-16414.	2.0	12
166	A Review on X-ray Excited Emission Decay Dynamics in Inorganic Scintillator Materials. Photonics, 2021, 8, 71.	2.0	45
167	Unprecedented 2D Homochiral Hybrid Leadâ€iodide Perovskite Thermochromic Ferroelectrics with Ferroelastic Switching. Angewandte Chemie, 2021, 133, 10825-10830.	2.0	13
168	Layered Arrangement of 1D Wavy Chains in the Leadâ€Free Hybrid Perovskite (PyrCO ₂ H) ₂ Bil ₅ : Structural Investigations and Properties. European Journal of Inorganic Chemistry, 2021, 2021, 1452-1458.	2.0	5
169	Role of octahedral deformation in the broad-band emission in Mn-doped lead halide perovskite: First-principles investigation for the case of CsPb <i>X</i> 3 (<i>X</i> = Cl, Br, I). Applied Physics Letters, 2021, 118, .	3.3	8
170	Introducing Tb4+ in (Ce0.09/Eu0.96)Tb0.92Mo1.1O6.93 Metal Oxide at Room Temperature and Its Use in Amyloid Defibrillation. ACS Applied Materials & Interfaces, 2021, 13, 18184-18193.	8.0	2
171	Crystalline Metalâ€Organic Materials with Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2021, 9, 2100081.	7.3	30
172	Probing Carrier Transport in Layered Perovskites with Nonlinear Optical and Photocurrent Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 8021-8030.	3.1	4
173	Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites. Frontiers of Optoelectronics, 2021, 14, 252-259.	3.7	66
174	Formation of Corrugated <i>n</i> = 1 2D Tin Iodide Perovskites and Their Use as Lead-Free Solar Absorbers. ACS Nano, 2021, 15, 6395-6409.	14.6	18
175	Gold-Cage Perovskites: A Three-Dimensional Au ^{III} –X Framework Encasing Isolated MX ₆ ^{3–} Octahedra (M ^{III} = In, Sb, Bi; X = Cl [–] ,) Tj ETQq1 I	l 0138⁄4314	4 ngBT /Overl
176	Interlayer Triplet Energy Transfer in Dion–Jacobson Two-Dimensional Lead Halide Perovskites Containing Naphthalene Diammonium Cations. Journal of Physical Chemistry Letters, 2021, 12, 4793-4798.	4.6	19
177	Systematic Approach of One-Dimensional Lead Perovskites with Face-Sharing Connectivity to Realize Efficient and Tunable Broadband Light Emission. Journal of Physical Chemistry C, 2021, 125, 10850-10859.	3.1	13
178	<scp>Twoâ€dimensional</scp> halide perovskite <scp>quantumâ€well</scp> emitters: A critical review. EcoMat, 2021, 3, e12104.	11.9	45
179	The Role of Dimensionality on the Optoelectronic Properties of Oxide and Halide Perovskites, and their Halide Derivatives. Advanced Energy Materials, 2022, 12, 2100499.	19.5	66
180	Polarons and Charge Localization in Metalâ€Halide Semiconductors for Photovoltaic and Lightâ€Emitting Devices. Advanced Materials, 2021, 33, e2007057.	21.0	53
181	An Overview for Zeroâ€Dimensional Broadband Emissive Metalâ€Halide Single Crystals. Advanced Optical Materials, 2021, 9, 2100544.	7.3	114

		CITATION REPORT		
#	Article		IF	Citations
182	Multidimensional time-of-flight spectroscopy. Journal of Chemical Physics, 2021, 154, 220901.		3.0	7
183	Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films*. Chinese Physics B, 2021, 30, 067802.		1.4	5
184	Study on the Dynamics of Phase Formation and Degradation of 2D Layered Hybrid Perovskites and Lowâ€dimensional Hybrids Containing Monoâ€functionalized Oligothiophene Cations. ChemNanol 2021, 7, 1013-1019.	Vlat,	2.8	4
185	Emerging Indoor Photovoltaic Technologies for Sustainable Internet of Things. Advanced Energy Materials, 2021, 11, 2100698.		19.5	117
186	<i>In Situ</i> Phase-Transition Crystallization of All-Inorganic Water-Resistant Exciton-Radiative Heteroepitaxial CsPbBr ₃ –CsPb ₂ Br ₅ Core–Shell Perovsk Nanocrystals. Chemistry of Materials, 2021, 33, 4948-4959.	ite	6.7	47
187	Lowâ€Dimensional Metal Halide Perovskite Crystal Materials: Structure Strategies and Luminescen Applications. Advanced Science, 2021, 8, e2004805.	ce	11.2	116
188	Structural chemistry of layered lead halide perovskites containing single octahedral layers. IUCrJ, 2021, 8, 485-513.		2.2	31
189	Layered Double Perovskites. Annual Review of Materials Research, 2021, 51, 351-380.		9.3	33
190	Ligand size effects in two-dimensional hybrid copper halide perovskites crystals. Communications Materials, 2021, 2, .		6.9	12
191	Tuning Organic Roomâ€Temperature Phosphorescence through the Confinement Effect of Inorgan Micro/Nanostructures. Small Structures, 2021, 2, 2100044.	ic	12.0	43
192	ELECTRONIC AND OPTICAL MODIFICATION OF ORGANIC-HYBRID PEROVSKITES. Surface Review an 2021, 28, 2140010.	d Letters,	1.1	1
193	Hybrid Organic–Inorganic Halide Postâ€Perovskite 3â€Cyanopyridinium Lead Tribromide for Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2102338.		14.9	18
194	Layered metal halide perovskite solar cells: A review from structureâ€properties perspective towarc maximization of their performance and stability. EcoMat, 2021, 3, e12124.	S	11.9	27
195	One-Dimensional Organic–Metal Halide with Highly Efficient Warm White-Light Emission and Its Moisture-Induced Structural Transformation. Chemistry of Materials, 2021, 33, 5668-5674.		6.7	30
196	New Variants of (110)â€Oriented Layered Lead Bromide Perovskites, Templated by Formamidinium Pyrazolium. European Journal of Inorganic Chemistry, 2021, 2021, 3404-3411.	or	2.0	7
197	Pressure-Tuned Quantum Well Configuration in Two-Dimensional PA ₈ Pb ₅ I ₁₈ Perovskites for Highly Efficient Yellow Fluoresce ACS Applied Energy Materials, 2021, 4, 10003-10011.	nce.	5.1	7
198	Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 2021, 15, 656-669.		31.4	136
199	Metal Halide Scaffolded Assemblies of Organic Molecules with Enhanced Emission and Room Temperature Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 8229-8236.		4.6	27

ARTICLE IF CITATIONS # Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites. Nature Communications, 200 12.8 78 2021, 12, 4982. Strong out-of-plane excitons in 2D hybrid halide double perovskites. Applied Physics Letters, 2021, 119, 3.3 051103. Indium-antimony-halide single crystals for high-efficiency white-light emission and 202 10.3 134 anti-counterfeiting. Science Advances, 2021, 7, . Dimension-controlled halide perovkites using templates. Nano Today, 2021, 39, 101181. 11.9 Highly radiation resistant room temperature organic perovskite halide (FAPbI3) crystal for direct detection of gamma-ray photons down to nano curie activity. Journal Physics D: Applied Physics, 2021, 204 2.8 8 54, 455104. Mechanics-coupled stability of metal-halide perovskites. Matter, 2021, 4, 2765-2809. Growth-Controlled Broad Emission in Phase-Pure Two-Dimensional Hybrid Perovskite Films. Chemistry 206 6.7 13 of Materials, 2021, 33, 7290-7300. Synthesis, characterization and optoelectronic properties of 2D hybrid RPbX4 semiconductors based on an isomer mixture of hexanediamine-based dications. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, . Ultrafast Study of Exciton Transfer in Sb(III)-Doped Two-Dimensional 208 [NH₃(CH₂)₄NH₃]CdBr₄ Perovskite. ACS 14.6 47 Nano, 2021, 15, 15354-15361. Moisture tolerant solar cells by encapsulating 3D perovskite with long-chain alkylammonium 209 cation-based 2D perovskite. Communications Materials, 2021, 2, . Magnetocaloric effect and critical behavior in arylamine-based copper chloride layered 210 2.35 organic-inorganic perovskite. Journal of Magnetism and Magnetic Materials, 2022, 542, 168598. Relationships between Distortions of Inorganic Framework and Band Gap of Layered Hybrid Halide 211 Perovskites. Chemistry of Materials, 2021, 33, 7518-7526. Directed assembly of layered perovskite heterostructures as single crystals. Nature, 2021, 597, 355-359. 212 27.8 58 Ligand-Driven Grain Engineering of High Mobility Two-Dimensional Perovskite Thin-Film Transistors. Journal of the American Chemical Society, 2021, 143, 15215-15223. 13.7 Intrinsic white-light emission from low-dimensional perovskites for white-light-emitting diodes with 214 5.6 21 high-color-rendering index. Cell Reports Physical Science, 2021, 2, 100585. Multimode dynamic luminescent switching of lead halide hybrids for anti-counterfeiting and encryption. Chemical Engineering Journal, 2021, 424, 130544. Synthesis, crystal structure, optical, thermal and magnetic studies of a new organic-inorganic hybrid 216 2.9 3 based on tetrachloroferrate (III). Journal of Solid State Chemistry, 2021, 303, 122504. Molecular spectroscopy of hybrid organic–inorganic perovskites and related compounds. 18.8 Coordination Chemistry Reviews, 2021, 448, 214180.

#	Article	IF	CITATIONS
218	Photoluminescent ionic metal halides based on s2 typed ions and aprotic ionic liquid cations. Coordination Chemistry Reviews, 2021, 448, 214185.	18.8	39
219	Photoluminescence of pefloxacindi-ium manganese(II) and zinc(II) tetrahalides. Journal of Molecular Structure, 2022, 1248, 131468.	3.6	4
220	Brightly luminescent (NH4)xCs1-xPbBr3 quantum dots for in vitro imaging and efficient photothermal ablation therapy. Journal of Colloid and Interface Science, 2022, 605, 500-512.	9.4	16
221	A new organic-inorganic hybrid compound (C10H28N4)[CuCl4][BF4]2: Structural, optical, thermal studies and DFT-TDDFT calculations. Journal of Molecular Structure, 2022, 1248, 131441.	3.6	4
222	Role of spacer cations and structural distortion in two-dimensional germanium halide perovskites. Journal of Materials Chemistry C, 2021, 9, 9899-9906.	5.5	28
223	Interfaces in metal halide perovskites probed by solid-state NMR spectroscopy. Journal of Materials Chemistry A, 2021, 9, 19206-19244.	10.3	28
224	Recent progress of zero-dimensional luminescent metal halides. Chemical Society Reviews, 2021, 50, 2626-2662.	38.1	405
225	A sandwich-like structural model revealed for quasi-2D perovskite films. Journal of Materials Chemistry C, 2021, 9, 5362-5372.	5.5	14
226	Impact of noncovalent interactions on structural and photophysical properties of zero-dimensional tellurium(<scp>iv</scp>) perovskites. Journal of Materials Chemistry C, 2021, 9, 3271-3286.	5.5	9
227	Leadâ€Free Halide Perovskites for Light Emission: Recent Advances and Perspectives. Advanced Science, 2021, 8, 2003334.	11.2	155
228	An enhanced fluorescent ZIF-8 film by capturing guest molecules for light-emitting applications. Journal of Materials Chemistry C, 2021, 9, 5819-5826.	5.5	12
229	Lead chlorine cluster assembled one-dimensional halide with highly efficient broadband white-light emission. Chemical Communications, 2021, 57, 1218-1221.	4.1	23
230	Mechanism of ultrafast energy transfer between the organic–inorganic layers in multiple-ring aromatic spacers for 2D perovskites. Nanoscale, 2021, 13, 15668-15676.	5.6	9
231	Halogen Substitution in Zeroâ€Dimensional Mixed Metal Halides toward Photoluminescence Modulation and Enhanced Quantum Yield. Advanced Optical Materials, 2020, 8, 2000418.	7.3	29
232	Perovskiteâ€Related 2D Compounds in the System 5â€Amino Valerian Acid Cation/MA/Pb/ <i>X</i> (<i>X</i> =) T Chemistry, 2020, 2020, 4581-4592.	j ETQq0 0 2.0	0 rgBT /Ove 14
233	Insight into the structural, electronic, mechanical and optical properties of inorganic lead bromide perovskite APbBr3 (AÂ= Li, Na, K, Rb, and Cs). Computational Condensed Matter, 2020, 24, e00478.	2.1	17
234	Perovskite Multiple Quantum Wells on Layered Materials toward Narrow-Band Green Emission for Backlight Display Applications. ACS Applied Materials & Interfaces, 2020, 12, 27386-27393.	8.0	14
235	Optically pumped white light-emitting diodes based on metal halide perovskites and perovskite-related materials. APL Materials, 2020, 8, .	5.1	34

#	Article	IF	CITATIONS
236	Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers. Chinese Physics Letters, 2020, 37, 117102.	3.3	3
237	Physical properties of bulk, defective, 2D and 0D metal halide perovskite semiconductors from a symmetry perspective. JPhys Materials, 2020, 3, 042001.	4.2	29
238	lonic indium(iii) chloride hybrids incorporating a 2,2′-bipyrimidine ligand: studies on photoluminescence and structural transformation. Dalton Transactions, 2021, 50, 16406-16413.	3.3	6
239	0D Perovskites: Unique Properties, Synthesis, and Their Applications. Advanced Science, 2021, 8, e2102689.	11.2	142
240	Luminescent Lead Halide Ionic Liquids for High-Spatial-Resolution Fast Neutron Imaging. ACS Photonics, 2021, 8, 3357-3364.	6.6	2
241	Alkyl–Aryl Cation Mixing in Chiral 2D Perovskites. Journal of the American Chemical Society, 2021, 143, 18114-18120.	13.7	57
242	Cyan Emission in Two-Dimensional Colloidal Cs ₂ CdCl ₄ :Sb ³⁺ Ruddlesden–Popper Phase Nanoplatelets. ACS Nano, 2021, 15, 17729-17737.	14.6	34
243	Managing Growth and Dimensionality of Quasi 2D Perovskite Singleâ€Crystalline Flakes for Tunable Excitons Orientation. Advanced Materials, 2021, 33, e2102326.	21.0	20
244	Toward a General Understanding of Exciton Self-Trapping in Metal Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 10472-10478.	4.6	38
245	Enabling Quasiâ€2D Perovskiteâ€Compatible Growth Environment for Efficient Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	7.3	7
246	Structureâ€Property Relationships and Idiosyncrasies of Bulk, 2D Hybrid Lead Bromide Perovskites. Israel Journal of Chemistry, 0, , .	2.3	9
247	Tuning the Optical Absorption of Sn-, Ge-, and Zn-Substituted Cs ₂ AgBiBr ₆ Double Perovskites: Structural and Electronic Effects. Chemistry of Materials, 2021, 33, 8028-8035.	6.7	18
248	Intramolecular triplet energy transfer in two-dimensional hybrid perovskite nanosheets. Chemical Physics Letters, 2021, 785, 139132.	2.6	3
249	Narrow and broadband light emission in layered organic lead halide perovskites: interplay between weak electron-lattice interactions and defect-related effects. , 2020, , .		1
250	Multi-Dopant Engineering in Perovskite Cs ₂ SnCl ₆ : White Light Emitter and Spatially Luminescent Heterostructure. Inorganic Chemistry, 2021, 60, 17357-17363.	4.0	32
251	Full color emission of all-bromide inorganic perovskite nanocrystals. Applied Physics Letters, 2020, 117, .	3.3	3
252	Enhancing the stability of CsPbX ₃ (X = Br, I) through combination with Y-zeolites for WLED application. Dalton Transactions, 2021, 50, 17281-17289.	3.3	2
253	Antimonyâ€Doped Leadâ€Free Zeroâ€Dimensional Tin(IV)â€Based Organic–Inorganic Metal Halide Hybrids with High Photoluminescence Quantum Yield and Remarkable Stability. Advanced Optical Materials, 2021, 9, 2101637.	7.3	39

#	Article	IF	CITATIONS
254	Vacancyâ€Ordered Double Perovskite Rb ₂ ZrCl _{6â^'} <i>_x</i> Br <i>_x</i> Eacile Synthesis and Insight into Efficient Intrinsic Selfâ€Trapped Emission. Advanced Optical Materials, 2022, 10, 2101661.	7.3	30
255	A New Corner-Shared 1D Hybrid Lead Halide: Broad-Band Photoluminescence and Semiconductive Properties. Inorganic Chemistry Communication, 2021, , 109042.	3.9	3
256	Guest-Induced Reversible Phase Transformation of Organic–Inorganic Phenylpiperazinium Antimony (III) Chlorides with Solvatochromic Photoluminescence. Journal of Physical Chemistry C, 2021, 125, 25112-25118.	3.1	12
257	Color-Stable and High-Efficiency Blue Perovskite Nanocrystal Light-Emitting Diodes via Monovalent Copper Ion Lowering Lead Defects. ACS Applied Materials & Interfaces, 2021, 13, 55380-55390.	8.0	10
258	Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffraction. ACS Nano, 2021, 15, 20341-20352.	14.6	17
259	Size and Quality Enhancement of 2D Semiconducting Metal–Organic Chalcogenolates by Amine Addition. Journal of the American Chemical Society, 2021, 143, 20256-20263.	13.7	20
260	Investigation on lead-free Mn-doped Cs2NaInCl6 double perovskite phosphors and their optical properties. Optical Materials, 2021, 122, 111802.	3.6	16
261	Topological Control of 2D Perovskite Emission in the Strong Coupling Regime. Nano Letters, 2021, 21, 10076-10085.	9.1	22
262	Engineering of Annealing and Surface Passivation toward Efficient and Stable Quasi-2D Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 11645-11651.	4.6	9
263	Crystalline Intermarriage of Hybrid Organic–Inorganic Halide Perovskite and Epoxide: Enhanced Stability and Modified Optical Properties. ACS Applied Energy Materials, 2021, 4, 13550-13555.	5.1	4
264	Modeling Methods for Plasmonic Effects in Halide Perovskite Based Systems for Photonics Applications. , 2021, , 1-52.		0
265	Two-Dimensional Layered Perovskites for Photonic Devices. , 2021, , 1-32.		0
266	Optical characteristics of self-trapped excitons in 2D (iso-BA) ₂ PbI ₄ perovskite crystals. Photonics Research, 2022, 10, 594.	7.0	6
267	Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites. Angewandte Chemie, 2022, 134, .	2.0	1
268	On the optical anisotropy in 2D metal-halide perovskites. Nanoscale, 2022, 14, 752-765.	5.6	15
269	White-light defect emission and enhanced photoluminescence efficiency in a 0D indium-based metal halide. Journal of Materials Chemistry C, 2022, 10, 1999-2007.	5.5	30
270	Regulation of the luminescence mechanism of two-dimensional tin halide perovskites. Nature Communications, 2022, 13, 60.	12.8	48
271	The halogen chemistry of halide perovskites. Trends in Chemistry, 2022, 4, 206-219.	8.5	14

#	Article	IF	CITATIONS
272	Morphological Control of 2D Hybrid Organic–Inorganic Semiconductor AgSePh. ACS Nano, 2022, 16, 2054-2065.	14.6	13
273	Fabrication of 2D perovskite (PMA)2PbI4 crystal and Cu ion implantation improved x-ray detector. Applied Physics Letters, 2022, 120, .	3.3	23
274	Three-dimensional all-inorganic dual halogen emitter Cs ₂ Cd ₂ BrCl ₅ exhibiting broadband white-light emission. Journal of Materials Chemistry C, 2022, 10, 13844-13850.	5.5	8
275	Interfacial Chemistry Triggers Ultrafast Radiative Recombination in Metal Halide Perovskites. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
276	Mechanochromic Luminescence of Composites Based on (CH 3 NH 3)PbBr 3 and Layered HPs: Influence of 2D Components and Interface Multilayered Phases. European Journal of Inorganic Chemistry, 0, , .	2.0	0
277	Two-dimensional material-based printed photonics: a review. 2D Materials, 2022, 9, 042003.	4.4	5
278	Structural Reconstruction in Lead-Free Two-Dimensional Tin Iodide Perovskites Leading to High Quantum Yield Emission. ACS Energy Letters, 2022, 7, 975-983.	17.4	19
279	Brownian Treeâ€Shaped Dendrites in Quasiâ€2D Perovskite Films and Their Impact on Photovoltaic Performance. Advanced Materials Interfaces, 0, , 2102231.	3.7	4
280	Efficient charge transfer from organometal lead halide perovskite nanocrystals to free base <i>meso</i> -tetraphenylporphyrins. Nanoscale Advances, 2022, 4, 1779-1785.	4.6	7
281	High-efficiency red photoluminescence achieved by antimony doping in organic–inorganic halide (C ₁₁ H ₂₄ N ₂) ₂ [InBr ₆][InBr ₄]. Journal of Materials Chemistry C, 2022, 10, 5905-5913.	5.5	17
282	Quantitative lon Exchange Reactions to Form from Li2 Xvac2-2 X La2ti3o9+ X Defect Layered Perovskites from H2la2ti3o10 Via Solid Acid/Base Reaction. SSRN Electronic Journal, 0, , .	0.4	0
283	Correlating Symmetries of Lowâ€Frequency Vibrations and Selfâ€Trapped Excitons in Layered Perovskites for Light Emission with Different Colors. Small, 2022, , 2106759.	10.0	10
284	Origin of layered perovskite device efficiencies revealed by multidimensional time-of-flight spectroscopy. Journal of Chemical Physics, 2022, 156, 084202.	3.0	3
285	Tetrabutylammonium (TBA)-Doped Methylammonium Lead Iodide: High Quality and Stable Perovskite Thin Films. Frontiers in Energy Research, 2022, 10, .	2.3	30
286	Ligand Control of Structural Diversity in Luminescent Hybrid Copper(I) Iodides. Chemistry of Materials, 2022, 34, 3206-3216.	6.7	23
287	Light Emission of Selfâ€Trapped Excitons in Inorganic Metal Halides for Optoelectronic Applications. Advanced Materials, 2022, 34, e2201008.	21.0	81
288	Polyoxomolybdate Layered Crystals Constructed from a Heterocyclic Surfactant: Syntheses, Pseudopolymorphism and Introduction of Metal Cations. Materials, 2022, 15, 2429.	2.9	0
289	Interfacial Defect Passivation Effect of <i>N</i> -Methyl- <i>N</i> -(thien-2-ylmethyl)amine for Highly Effective Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 4270-4278.	5.1	2

щ		IF	CITATIONS
#	ARTICLE	IF	CHATIONS
290	Ruddlesden–Popper Perovskites. Chemistry of Materials, 2022, 34, 3109-3122.	6.7	27
291	Corrugated 1D Hybrid Metal Halide [C ₆ H ₇ ClN]CdCl ₃ Exhibiting Broadband White-Light Emission. Inorganic Chemistry, 2022, 61, 4752-4759.	4.0	15
292	Design of Active Defects in Semiconductors: 3D Electron Diffraction Revealed Novel Organometallic Lead Bromide Phases Containing Ferrocene as Redox Switches. Advanced Functional Materials, 0, , 2201126.	14.9	2
293	Structural, electronic and optoelectronic properties of asymmetric organic ligands in Dion-Jacobson phase perovskites. Solid State Communications, 2022, 350, 114761.	1.9	4
294	Recent progress of perovskite devices fabricated using thermal evaporation method: Perspective and outlook. Materials Today Advances, 2022, 14, 100232.	5.2	28
295	Iodine–Iodine Interactions Suppressing Phase Transitions of 2D Layered Hybrid (I-(CH ₂) _{<i>n</i>} -NH ₃) ₂ PbI ₄ (<i>n</i> =) Tj ETC	∑գ Շ. ⊉ 0.78	4 3 44 rgBT /(
296	Zero-Dimensional Lead-Free Halide with Indirect Optical Gap and Enhanced Photoluminescence by Sb Doping. Journal of Physical Chemistry Letters, 2022, 13, 198-207.	4.6	35
297	Exciton Self-Trapping for White Emission in 100-Oriented Two-Dimensional Perovskites via Halogen Substitution. ACS Energy Letters, 2022, 7, 453-460.	17.4	50
298	Revealing Weak Dimensional Confinement Effects in Excitonic Silver/Bismuth Double Perovskites. Jacs Au, 2022, 2, 136-149.	7.9	12
299	Near-Infrared Phosphorescent Hybrid Organic–Inorganic Perovskite with High-Contrast Dielectric and Third-Order Nonlinear Optical Switching Functionalities. ACS Applied Materials & Interfaces, 2022, 14, 1460-1471.	8.0	42
300	Toward ecoâ€friendly and stable halide perovskiteâ€inspired materials for lightâ€emitting devices applications by dimension classification: Recent advances and opportunities. EcoMat, 2022, 4, .	11.9	6
301	Charge Reservoirs in an Expanded Halide Perovskite Analog: Enhancing Highâ€Pressure Conductivity through Redoxâ€Active Molecules. Angewandte Chemie, 0, , .	2.0	0
302	Tailoring Photoluminescence by Strain-Engineering in Layered Perovskite Flakes. Nano Letters, 2022, 22, 4153-4160.	9.1	8
303	Charge Reservoirs in an Expanded Halide Perovskite Analog: Enhancing Highâ€Pressure Conductivity through Redoxâ€Active Molecules. Angewandte Chemie - International Edition, 2022, , .	13.8	9
304	Luminescence and structural properties of Ca1-xZrO3:Eux: An experimental and theoretical approach. Ecletica Quimica, 2022, 47, 90-104.	0.5	1
305	Self-Trapped Interlayer Excitons in van der Waals Heterostructures. Journal of Physical Chemistry Letters, 2022, 13, 3732-3739.	4.6	5
306	Alternative Approaches for Scalable Artificial Photosynthesis <i>via</i> Sustainable Redox Processes. RSC Green Chemistry, 2022, , 175-206.	0.1	0
307	Zhihong Jing. SSRN Electronic Journal, 0, , .	0.4	0

# 308	ARTICLE OD chiral hybrid indium(<scp>iii</scp>) halides for second harmonic generation. Dalton Transactions, 2022, 51, 8593-8599.	IF 3.3	Citations
309	Rational design of multi-functional thermally activated delayed fluorescence emitters for both sensor and OLED applications. New Journal of Chemistry, 2022, 46, 10940-10950.	2.8	2
310	Perovskite Singleâ€Crystal Solar Cells: Advances and Challenges. Solar Rrl, 2022, 6, .	5.8	19
311	Isoreticular Postsynthetic Modification of Robust Organocopper(I) Halide Hybrids for Enhanced Broad-Band Emission and Turn-On NH ₃ Sensing. Chemistry of Materials, 2022, 34, 4403-4413.	6.7	6
312	<i>cis/trans</i> -lsomeric Cation Tuning Photoluminescence and Photodetection in 2D Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 4119-4124.	4.6	11
313	Luminescent Organicâ€Inorganic Hybrid Metal Halides: An Emerging Class of Stimuliâ€Responsive Materials. Chemistry - A European Journal, 2022, 28, .	3.3	28
314	Unique Photoelectric Properties and Defect Tolerance of Lead-Free Perovskite Cs ₃ Cu ₂ I ₅ with Highly Efficient Blue Emission. Journal of Physical Chemistry Letters, 2022, 13, 4177-4183.	4.6	12
315	Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials, 2022, 32, .	14.9	25
316	Unravelling Alkaliâ€Metalâ€Assisted Domain Distribution of Quasiâ€2D Perovskites for Cascade Energy Transfer toward Efficient Blue Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2200393.	11.2	26
317	Charge-carrier dynamics and regulation strategies in perovskite light-emitting diodes: From materials to devices. Applied Physics Reviews, 2022, 9, .	11.3	20
318	Color-tunable persistent luminescence in 1D zinc–organic halide microcrystals for single-component white light and temperature-gating optical waveguides. Chemical Science, 2022, 13, 7429-7436.	7.4	51
319	Perovskite Mediated Vibronic Coupling of Semiconducting SERS for Biosensing. Advanced Functional Materials, 2022, 32, .	14.9	15
320	Anomalous and colossal thermal expansion, photoluminescence, and dielectric properties in lead halide-layered perovskites with cyclohexylammonium and cyclopentylammonium cations. IScience, 2022, 25, 104450.	4.1	3
321	Single‣ayer Sheets of Alkylammonium Lead Iodide Perovskites with Tunable and Stable Green Emission for White Lightâ€Emitting Devices. Advanced Optical Materials, 2022, 10, .	7.3	2
322	Highly stable metal halides Cs2ZnX4 (X = Cl, Br) with Sn2+ as dopants for efficient deep-red photoluminescence. Chinese Chemical Letters, 2023, 34, 107556.	9.0	5
324	The Role of Position and Orientation of Organic Fa Central Cation in Physical Properties of Formamidinium Lead Chloride Perovskite. SSRN Electronic Journal, 0, , .	0.4	0
325	Antimony and bismuth cooperation to enhance the broad yellow photoluminescence of zero-dimensional hybrid halide. Journal of Materials Chemistry C, 2022, 10, 9841-9848.	5.5	8
326	Insight on noncovalent interactions and orbital constructs in low-dimensional antimony halide perovskites. Physical Chemistry Chemical Physics, 2022, 24, 15305-15320.	2.8	1

	CITATION RE	PORT	
#	ARTICLE	IF	Citations
327	Morphology and temperature dependence of a dual excitonic emissive 2D bromoplumbate hybrid perovskite: the key role of crystal edges. Journal of Materials Chemistry C, 2022, 10, 10284-10291.	5.5	2
328	Zero-dimensional antimony(III) halides templated by ruthenium complexes: photoluminescence, thermochromism and photo/electrical performances. Inorganic and Nano-Metal Chemistry, 2023, 53, 428-436.	1.6	0
329	Screening of Excitons by Organic Cations in Quasi-Two-Dimensional Organic–Inorganic Lead-Halide Perovskites. Nano Letters, 2022, 22, 4870-4878.	9.1	24
330	Fineâ€Tuning Singleâ€Source Whiteâ€Light Emission from Allâ€Inorganic Corrugated 2D Antimonyâ€Halide Perovskite. Advanced Optical Materials, 2022, 10, .	7.3	6
331	Bright Green Emission from Self-Trapped Excitons Triggered by Sb ³⁺ Doping in Rb ₄ CdCl ₆ . Chemistry of Materials, 2022, 34, 5717-5725.	6.7	72
332	Quasiâ€2D Hybrid Perovskite Formation Using Benzothieno[3,2â€ <i>b</i>]Benzothiophene (BTBT) Ammonium Cations: Substantial Cesium Lead(II) Iodide Black Phase Stabilization. Advanced Optical Materials, 2022, 10, .	7.3	9
333	Core–shell carbon-polymer quantum dot passivation for near infrared perovskite light emitting diodes. JPhys Photonics, 2022, 4, 034007.	4.6	1
334	Centimeter-Sized Na-Doped CsPb ₂ Br ₅ Single Crystals with Efficient Self-Trapped Exciton Emission. Crystal Growth and Design, 2022, 22, 4025-4030.	3.0	6
335	Enhancing and Extinguishing the Different Emission Features of 2D (EA _{1â^²} <i>_x</i> FA <i>_x</i>) ₄ Pb ₃ Br _{10Perovskite Films. Advanced Optical Materials, 2022, 10, .}	16 7. 3	2
336	Quantitative ion exchange reactions to form Li2Vac2-2La2Ti3O9+ defect layered perovskites from H2La2Ti3O10 via solid acid/base reaction. Journal of Solid State Chemistry, 2022, 314, 123354.	2.9	1
337	Raman spectroscopy in layered hybrid organic-inorganic metal halide perovskites. JPhys Materials, 2022, 5, 034004.	4.2	7
338	Perovskite as recyclable heterogeneous photocatalyst for synthesis of bis-1,3-dicarbonyl compounds. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 432, 114070.	3.9	5
339	Synthesis and Characterization of (FA) ₃ (HEA) ₂ Pb ₃ I ₁₁ : A Rare Example of <1 1 0>-Oriented Multilayered Halide Perovskites. Chemistry of Materials, 2022, 34, 5780-5790.	6.7	2
340	Understanding Electron–Phonon Interactions in 3D Lead Halide Perovskites from the Stereochemical Expression of 6s ² Lone Pairs. Journal of the American Chemical Society, 2022, 144, 12247-12260.	13.7	38
341	Efficient Self-Trapped Exciton Emission in Ruddlesden–Popper Sb-Doped Cs ₃ Cd ₂ Cl ₇ Perovskites. Journal of Physical Chemistry C, 2022, 126, 11238-11245.	3.1	21
342	Passivating Lead Halide Perovskites Using Pyridinium Salts with Superhalogen Atoms. Journal of Physical Chemistry Letters, 2022, 13, 6074-6078.	4.6	3
343	Zero-Dimensional (Piperidinium) ₂ MnBr ₄ : Ring Puckering-Induced Isostructural Transition and Strong Electron–Phonon Coupling-Mediated Self-Trapped Exciton Emission. Inorganic Chemistry, 2022, 61, 11377-11386.	4.0	10
344	Solventâ€Free Preparation and Moderate Congruent Melting Temperature of Layered Lead Iodide Perovskites for Thinâ€Film Formation. Angewandte Chemie - International Edition, 0, , .	13.8	3

#	Article	IF	CITATIONS
345	Solventâ€Free Preparation and Moderate Congruent Melting Temperature of Layered Lead Iodide Perovskites for Thinâ€Film Formation. Angewandte Chemie, 0, , .	2.0	1
346	Enhanced Stokes Shift and Phase Stability by Cosynthesizing Perovskite Nanoparticles (MAPbI ₃ /MAPbBr ₃) in a Single Solution. Advanced Photonics Research, 2022, 3,	3.6	6
347	Structural evolution and photoluminescence properties of hybrid antimony halides. Journal of Solid State Chemistry, 2022, 314, 123404.	2.9	5
348	Reversible Triple-Mode Switching in Photoluminescence from 0D Hybrid Antimony Halides. Chemistry of Materials, 2022, 34, 6985-6995.	6.7	52
349	A Cd-based perovskite with optical-electrical multifunctional response. New Journal of Chemistry, 2022, 46, 17928-17933.	2.8	4
350	Photophysical and Magnetic Properties in Zero-Dimensional (H ₂ DABCO)MX ₄ Â< <i>n</i> H ₂ O (M = Mn and Cu; X = Cl and Br;) Tj ETQq1	130.7843	14 s gBT /O
351	Pressure-Driven Phase Transition in Two-Dimensional Perovskite MHy ₂ PbBr ₄ . Chemistry of Materials, 2022, 34, 7867-7877.	6.7	21
352	Gated Photodetector with a Bipolar Response from Single-Crystal Halide Perovskite Using a Polymeric Electrolyte as the Gate Dielectric. ACS Applied Electronic Materials, 2022, 4, 4298-4305.	4.3	2
353	Tuning Selfâ€Trapped Exciton States via Trivalentâ€Metal Alloying in Leadâ€Free 2D Doubleâ€Perovskites. Laser and Photonics Reviews, 2022, 16, .	8.7	10
354	Luminescence from Selfâ€Trapped Excitons and Energy Transfers in Vacancyâ€Ordered Hexagonal Halide Perovskite Cs ₂ HF ₆ Doped with Rare Earths for Radiation Detection. Advanced Optical Materials, 2022, 10, .	7.3	5
355	Kinetically Controlled Structural Transitions in Layered Halide-Based Perovskites: An Approach to Modulate Spin Splitting. Journal of the American Chemical Society, 2022, 144, 15223-15235.	13.7	11
356	Selfâ€ŧrapped exciton states in metal halide perovskites van der Waals heterostructures. Physica Status Solidi - Rapid Research Letters, 0, , .	2.4	0
357	Optimizing Broadband Emission in 2D Halide Perovskites. Chemistry of Materials, 2022, 34, 9344-9349.	6.7	19
358	Charge Transfer Dynamics of Two-Dimensional Ruddlesden Popper Perovskite in the Presence of Short-Chain Aromatic Thiol Ligands. Journal of Physical Chemistry C, 2022, 126, 14590-14597.	3.1	6
359	Structural and optoelectronic properties of Ge- and Si -based inorganic two dimensional Ruddlesden Popper halide perovskites. Materials Today Communications, 2022, 33, 104368.	1.9	1
360	Upconversion and multiexciton generation in organic Mn(<scp>ii</scp>) complex boost the quantum yield to > 100%. Materials Chemistry Frontiers, 2022, 6, 3102-3114.	5.9	10
361	Lowering the dimensionality of cationic lead bromide units in robust coordination polymers for enhanced self-trapped broadband emission. Journal of Materials Chemistry C, 2022, 10, 13254-13261.	5.5	7
362	Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. , 2022, 1, 220006-220006.		17

#	Article	IF	CITATIONS
363	The effect of halogenated spacer cations on structural symmetry-breaking in 2D halide double perovskites. Chemical Communications, 2022, 58, 10504-10507.	4.1	2
364	Reliably obtaining white light from layered halide perovskites at room temperature. Chemical Science, 2022, 13, 9973-9979.	7.4	10
365	Effect of Dimensionality on Photoluminescence and Dielectric Properties of Imidazolium Lead Bromides. Inorganic Chemistry, 2022, 61, 15225-15238.	4.0	11
366	Multicolor ultralong phosphorescence from perovskite-like octahedral α-AlF3. Nature Communications, 2022, 13, .	12.8	9
367	New Strategy and Excellent Fluorescence Property of Unique Core–Shell Structure Based on Liquid Metals/Metal Halides. Small, 2022, 18, .	10.0	7
368	[Methylhydrazinium] ₂ PbCl ₄ , a Two-Dimensional Perovskite with Polar and Modulated Phases. Inorganic Chemistry, 2022, 61, 15520-15531.	4.0	11
369	Amphiphilicityâ€Controlled Polychromatic Emissive Supramolecular Selfâ€Assemblies for Highly Sensitive and Efficient Artificial Lightâ€Harvesting Systems. Small, 2022, 18, .	10.0	16
370	Switchable Dielectric Two-Dimensional Lead-Free Perovskite with Reversible Thermochromic Response. Journal of Physical Chemistry C, 2022, 126, 16437-16446.	3.1	11
371	Structural Descriptors to Correlate Pb Ion Displacement and Broadband Emission in 2D Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 18595-18606.	13.7	40
372	Nonequilibrium Lattice Dynamics in Photoexcited 2D Perovskites. Advanced Materials, 2022, 34, .	21.0	6
373	[PPh ₃ H] ₂ [SbCl ₅]: A Zero-Dimensional Hybrid Metal Halide with a Supramolecular Framework and Stable Dual-Band Emission. Journal of Physical Chemistry C, 2022, 126, 17381-17389.	3.1	11
374	Spectral Tuning, Stabilities under External Exposures, and Spontaneous Enhancement of Emission Intensity in Grownâ€intoâ€Glass Allâ€inorganic Metal Halide Perovskite Nanocrystals. Laser and Photonics Reviews, 2023, 17, .	8.7	7
375	Realizing Efficient Emission in Three-Dimensional CsCdCl ₃ Single Crystals by Introducing Separated Emitting Centers. Inorganic Chemistry, 2022, 61, 17902-17910.	4.0	4
376	The Origin of Broad Emission in ⟠100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes. ACS Energy Letters, 2022, 7, 4232-4241.	17.4	20
377	Electron–Phonon Coupling Mediated Self-Trapped-Exciton Emission and Internal Quantum Confinement in Highly Luminescent Zero-Dimensional (Guanidinium) ₆ Mn ₃ X ₁₂ (X = Cl and Br). Inorganic Chemistry, 2022, 61, 17026-17036.	4.0	10
378	Intrinsic Ion Migration Dynamics in a One-Dimensional Organic Metal Halide Hybrid. ACS Energy Letters, 2022, 7, 3753-3760.	17.4	3
379	[(4AMTP)PbBr ₂] ₂ PbBr ₄ : a Nontypical Cation-Coordinated Perovskite Showing Deep-Blue Emissions and Blue-Light Photoelectric Response. Inorganic Chemistry, 2022, 61, 17738-17745.	4.0	5
380	Phase Segregation and Sequential Expulsion of Iodide and Bromide in Photoirradiated Ruddlesden–Popper 2D Perovskite Films. ACS Energy Letters, 2022, 7, 3982-3988.	17.4	10

#	Article	IF	CITATIONS
381	Short Aromatic Diammonium Ions Modulate Distortions in 2D Lead Bromide Perovskites for Tunable White-Light Emission. Chemistry of Materials, 2022, 34, 9685-9698.	6.7	11
382	Tunable Broadband Molecular Emission in Mixed-Organic-Cation Two-Dimensional Hybrid Perovskites. , 2023, 1, 3-9.		3
383	Scalable synthesis of ultrastable lead halide perovskite-zeolite composites via a chemical vapor method in air. NPG Asia Materials, 2022, 14, .	7.9	4
384	Blue photoluminescence enhancement achieved by zero-dimensional organic indium halides <i>via</i> a metal ion doping strategy. Materials Chemistry Frontiers, 2022, 7, 137-144.	5.9	7
385	Hybrid Lead Bromide Perovskite Single Crystals Coupled with a Zinc(II) Complex for White Light Emission. Journal of Physical Chemistry Letters, 2022, 13, 10759-10766.	4.6	4
386	Ruddlesden–Popper Perovskite Nanocrystals Stabilized in Mesoporous Silica with Efficient Carrier Dynamics for Flexible Xâ€Ray Scintillator. Advanced Functional Materials, 2023, 33, .	14.9	12
387	Synthesis, Photoluminescence and Vibrational Properties of Aziridinium Lead Halide Perovskites. Molecules, 2022, 27, 7949.	3.8	17
388	Progress in all-inorganic heterometallic halide layered double perovskites. Trends in Chemistry, 2023, 5, 29-44.	8.5	9
389	Theory and experiments of pressure-tunable broadband light emission from self-trapped excitons in metal halide crystals. Materials Today Physics, 2023, 30, 100926.	6.0	3
390	Factors influencing self-trapped exciton emission of low-dimensional metal halides. Materials Advances, 2023, 4, 355-373.	5.4	13
391	Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites. Materials Science and Engineering Reports, 2023, 152, 100710.	31.8	12
392	Lead-free Dion–Jacobson halide perovskites CsMX2Y2 (M = Sb, Bi and X, Y = Cl, Br, I) used for optoelectronic applications via first principle calculations. Journal of Physics and Chemistry of Solids, 2023, 174, 111157.	4.0	8
393	Tailoring the Optical and Electronic Properties of 2D Hybrid Dion–Jacobson Copper Chloride Perovskites. Journal of Physical Chemistry C, 2022, 126, 21297-21307.	3.1	2
394	Exploring a Stable and Dense 3D Lead Chloride Hybrid with Emission of Selfâ€Trapped Excitons toward Xâ€Ray Scintillation. Advanced Functional Materials, 2023, 33, .	14.9	9
395	Quasi-One-Dimensional Metallicity in Compressed CsSnI ₃ . Journal of the American Chemical Society, 2022, 144, 23595-23602.	13.7	2
396	Maximally Chiral Emission via Chiral Quasibound States in the Continuum. Laser and Photonics Reviews, 2023, 17, .	8.7	10
397	Recent Advances on Mn ²⁺ â€Đoping in Diverse Metal Halide Perovskites. Laser and Photonics Reviews, 2023, 17, .	8.7	11
398	Visualization of X-rays with an Ultralow Detection Limit via Zero-Dimensional Perovskite Scintillators. ACS Applied Materials & Amp; Interfaces, 2022, 14, 56957-56962.	8.0	12

#	Article	IF	CITATIONS
399	Two organic-inorganic manganese(II) halide hybrids containing protonated N,N'-dialkylthioureas with efficient green-emission. Journal of Molecular Structure, 2023, 1277, 134851.	3.6	1
400	Two-Dimensional Layered Organic–Inorganic Hybrid Perovskite Thin-Film Fabrication by Langmuir–Blodgett and Intercalation Techniques. ACS Omega, 2022, 7, 47812-47820.	3.5	1
401	Singleâ€Component White Circularly Polarized Luminescence in Chiral 1D Doubleâ€Chain Perovskites. Advanced Optical Materials, 2023, 11, .	7.3	9
402	Achieving Nearâ€unity Photoluminescence Quantum Yields in Organicâ€Inorganic Hybrid Antimony (III) Chlorides with the [SbCl ₅] Geometry. Angewandte Chemie - International Edition, 2023, 62,	13.8	38
403	(C ₅ N ₂ H ₁₄)GeBr ₄ : A 2D Organic Germanium Bromide Perovskite with Strong Orange Photoluminescence Properties. Inorganic Chemistry, 2023, 62, 823-829.	4.0	7
404	Linear optical afterglow and nonlinear optical harmonic generation from chiral tin(<scp>iv</scp>) halides: the role of lattice distortions. Materials Horizons, 2023, 10, 1005-1011.	12.2	9
405	Achieving Nearâ€unity Photoluminescence Quantum Yields in Organic–Inorganic Hybrid Antimony (III) Chlorides with the [SbCl5] Geometry. Angewandte Chemie, 0, , .	2.0	0
406	Fabrication of two-dimensional hybrid organic–inorganic lead halide perovskites with controlled multilayer structures by liquid-phase laser ablation. Journal of Materials Chemistry C, 2023, 11, 910-916.	5.5	6
407	High-frequency pulsed-electroluminescence from light-emitting diodes based on quasi-2D perovskites (rubidium-doped CsPbBr3). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 289, 116247.	3.5	1
408	Band gap engineering and optoelectronic properties of all-inorganic Ruddlesden-Popper halide perovskites Cs2B(X1-uYu)4 (B = Pb, Sn; X/Y = Cl, Br, I). Materials Science in Semiconductor Processing, 2023, 157, 107308.	4.0	6
409	A new fast dense scintillator of Zr:GdTaO4 single crystal. Journal of Luminescence, 2023, 257, 119663.	3.1	1
410	Challenges and future prospects. , 2023, , 447-484.		1
411	Zn (II)â€Ðoped Cesium Copper Halide Nanocrystals with High Quantum Yield and Colloidal Stability for Highâ€Resolution X‑Ray Imaging. Advanced Optical Materials, 2023, 11, .	7.3	15
412	Predictably synthesizing a library of white-light-emitting perovskites. Science China Chemistry, 0, , .	8.2	1
413	Broadband yellow and white emission from large octahedral tilting in (110)-oriented layered perovskites: imidazolium-methylhydrazinium lead halides. Journal of Materials Chemistry C, 2023, 11, 4907-4915.	5.5	5
414	Effect of molecular configuration of additives on perovskite crystallization and hot carriers behavior in perovskite solar cells. Chemical Engineering Journal, 2023, 463, 142449.	12.7	13
415	Elucidating the structure-nonlinear optical property relationship of Te2O4(OH)2. Materials Today Physics, 2023, 34, 101075.	6.0	5
416	Ligand induced phase-controlled synthesis of copper halide perovskite nanocrystals towards tunable white light emission. Chemical Physics Letters, 2023, 819, 140446.	2.6	0

#	Article	IF	CITATIONS
417	Optical and scintillation properties of organic–inorganic perovskite-type compounds with various hydroxyl alkyl amines or alkyl ether amines. Radiation Physics and Chemistry, 2023, 209, 110981.	2.8	8
418	Low power paper electronics based wearable radiation detector using hybrid halide perovskite (MAPbBr ₃): A real time monitoring of gamma ray. Flexible and Printed Electronics, 2023, 8, 015010.	2.7	0
419	Chemical doping of lead-free metal-halide-perovskite related materials for efficient white-light photoluminescence. Materials Today Physics, 2023, 31, 100992.	6.0	12
420	Real-Time Visualization of Photobrightening in Lead Halide Perovskites Using Confocal Laser Scanning Microscopy. Journal of Physical Chemistry C, 2023, 127, 3256-3267.	3.1	0
421	Elucidating Structure–Property Correlation in Perovskitoid and Antiperovskite Piperidinium Manganese Chloride. Inorganic Chemistry, 2023, 62, 3202-3211.	4.0	13
422	Tuning charge carrier dynamics through spacer cation functionalization in layered halide perovskites: an <i>ab initio</i> quantum dynamics study. Journal of Materials Chemistry C, 2023, 11, 3521-3532.	5.5	0
423	Insight into Diphenyl Phosphine Oxygen-Based Molecular Additives as Defect Passivators toward Efficient Quasi-2D Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2023, 15, 10877-10884.	8.0	4
424	Polycrystalline formamidinium lead bromide (FAPbBr3) perovskite as a self-powered and fast visible-light photodetector. Microelectronic Engineering, 2023, 273, 111960.	2.4	1
425	Ultrafast optical investigation of carrier and spin dynamics in low-dimensional perovskites. Science China Technological Sciences, 2024, 67, 2-18.	4.0	1
426	Interactions of Pyridineâ€Based Organic Cations as Structureâ€Determining Factors in Perovskiteâ€Related Compounds <i>A</i> _x Pb(II) _y Br _z . European Journal of Inorganic Chemistry, 2023, 26, .	2.0	1
427	Mosaic Cu ^I â^'Cu ^{II} â^'In ^{III} 2D Perovskites: Pressureâ€Dependence of the Intervalence Charge Transfer and a Mechanochemical Alloying Method. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
428	Mosaic Cu ^I â^'Cu ^{II} â^'In ^{III} 2D Perovskites: Pressureâ€Dependence of the Intervalence Charge Transfer and a Mechanochemical Alloying Method. Angewandte Chemie, 0, , .	2.0	0
429	Effect of the Substrate on Photoluminescent Properties of Organometallic Perovskite Nanocrystals. Physics of Atomic Nuclei, 2022, 85, 1625-1628.	0.4	0
430	Revealing the impact of organic spacers and cavity cations on quasi-2D perovskites via computational simulations. Scientific Reports, 2023, 13, .	3.3	0
431	Role of a corrugated Dion–Jacobson 2D perovskite as an additive in 3D MAPbBr ₃ perovskite-based light emitting diodes. Nanoscale Advances, 2023, 5, 2508-2516.	4.6	1
432	Energy level alignments between organic and inorganic layers in 2D layered perovskites: conjugation <i>vs</i> . substituent. Nanoscale, 0, , .	5.6	0
433	Morphology-Controlled Vapor-Phase Nanowire Growth with Ruddlesden–Popper Lead Bromide Perovskite. Chemistry of Materials, 0, , .	6.7	0
434	Research Progress on Low-dimensional Direct Perovskite X-ray Detectors. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2023, , 16.	1.3	1

#	Article	IF	CITATIONS
435	Effect of Mn ²⁺ doping on exciton recombination and carrier trapping in the Cs ₂ CdCl ₄ metal halide. Journal of Materials Chemistry C, 2023, 11, 6220-6226.	5.5	3
436	Facile synthesis of Sb ³⁺ -doped (Bmim) ₂ InCl ₅ (H ₂ O) through a grinding method for light-emitting diodes. Dalton Transactions, 2023, 52, 6799-6803.	3.3	1
437	Controlling Phase Transitions in Two-Dimensional Perovskites through Organic Cation Alloying. Journal of the American Chemical Society, 2023, 145, 11773-11780.	13.7	5
438	Minimal Molecular Building Blocks for Screening in Quasi-Two-Dimensional Organic–Inorganic Lead Halide Perovskites. Nano Letters, 2023, 23, 3796-3802.	9.1	6
439	Ultrabright Light Emission Properties of All-Inorganic and Hybrid Organic–Inorganic Copper(I) Halides. Chemistry of Materials, 2023, 35, 3364-3385.	6.7	14
440	Fluorinated 2-Phenylethylammonium Spacer Cations for Improved Stability of Ruddlesden–Popper Pb/Sn Halide Perovskites: Insight from First-Principles Calculations. ACS Applied Energy Materials, 2023, 6, 5710-5719.	5.1	2
441	Mono―and Biâ€Đentate Chiral Ligands Lead to Efficient Circularly Polarized Luminescence in 0D and 3D Semiconducting Copper(I) lodides. Advanced Optical Materials, 2023, 11, .	7.3	6
442	Merger of Rotation Restriction and Symmetrical Pushâ€Pull to Synthesize Singleâ€Benzene Yellow Fluorophores. Chemistry - A European Journal, 2023, 29, .	3.3	2
443	Additive-Stabilized Emission Centers for Blue Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2023, 15, 26778-26786.	8.0	2
444	Cd ₂ Nb ₂ Te ₄ O ₁₅ : A Novel Pseudoâ€Aurivilliusâ€Type Tellurite with Unprecedented Nonlinear Optical Properties and Excellent Stability. Small, 2023, 19, .	10.0	9
445	Steric hindrance effects on the retention of pressure-induced emission toward scintillators. Cell Reports Physical Science, 2023, 4, 101445.	5.6	9
446	Light management using photonic structures towards high-index perovskite optoelectronics: fundamentals, designing, and applications. Energy and Environmental Science, 2023, 16, 4135-4163.	30.8	6
447	Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chemical Reviews, 2023, 123, 8154-8231.	47.7	17
448	Direct Fastâ€Neutron Detection by 2D Perovskite Semiconductor. Small, 2023, 19, .	10.0	3
449	Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chemical Reviews, 2023, 123, 7890-7952.	47.7	12
450	Recyclable photocatalyst perovskite as a single-electron redox mediator for visible-light-driven photocatalysis gram-scale synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones in air atmosphere. Scientific Reports, 2023, 13, .	3.3	4
451	Chiral electroluminescence from thin-film perovskite metacavities. Science Advances, 2023, 9, .	10.3	3
452	CsPbBr ₃ and Cs ₄ PbBr ₆ perovskite light-emitting diodes using a thermally evaporated host–dopant system. Nanoscale. 0	5.6	2

#	Article	IF	CITATIONS
453	Halogen Bond Induced Structural and Photophysical Properties Modification in Organic–Inorganic Hybrid Manganese Halides. Journal of Physical Chemistry Letters, 2023, 14, 4211-4218.	4.6	1
454	Toward Understanding the Composition–Structure Relationship of Hybrid Organic Lead Iodide Compounds: Impact from Secondary Structures of Organic Cations. Journal of Physical Chemistry C, 2023, 127, 8880-8886.	3.1	Ο
455	Codoped 2D All-Inorganic Halide Perovskite Cs ₃ Cd ₂ Cl ₇ :Sb ³⁺ :Mn ²⁺ with Ultralong Afterglow. Inorganic Chemistry, 2023, 62, 7906-7913.	4.0	10
456	Optoelectronic Devices of Large-Scale Transferred All-Inorganic Lead Halide Perovskite Thin Films. ACS Applied Materials & Interfaces, 2023, 15, 24606-24613.	8.0	3
457	Stable Sn-Based Hybrid Perovskite-Related Structures with Tunable Color Coordinates via Organic Cations in Low-Temperature Synthesis. ACS Energy Letters, 2023, 8, 2630-2640.	17.4	7
458	Cyclic versus Linear Alkylammonium Cations: Preventing Phase Transitions at Operational Temperatures in 2D Perovskites. Journal of the American Chemical Society, 2023, 145, 11710-11716.	13.7	8
459	Interface modelling for (CH3)3SPbI3 and (NH2)2CHPbI3 perovskite layers. Journal of Physics and Chemistry of Solids, 2023, 180, 111383.	4.0	1
460	Advances in the Application of Perovskite Materials. Nano-Micro Letters, 2023, 15, .	27.0	40
461	Impact of the organic cation on the band-edge emission of two-dimensional lead–bromide perovskites. Nanoscale, 2023, 15, 12880-12888.	5.6	3
462	Controllably modulated asymmetrical photoresponse with a nonvolatile memory effect in a single CH ₃ NH ₃ Pbl ₃ micro/nanowire for photorectifiers and photomemory. Nanoscale, 2023, 15, 13359-13370.	5.6	2
463	Zero-dimensional organic–inorganic hybrid manganese bromide with coexistence of dielectric–thermal double switches and efficient photoluminescence. Dalton Transactions, 2023, 52, 11558-11564.	3.3	0
464	Toward first-principles approaches for mechanistic study of self-trapped exciton luminescence. Chemical Physics Reviews, 2023, 4, .	5.7	2
465	Boosting the Self-Trapped Exciton Emission in Cs4SnBr6 Zero-Dimensional Perovskite via Rapid Heat Treatment. Nanomaterials, 2023, 13, 2259.	4.1	1
466	Broadband emission originating from the stereochemical expression of 6s ² lone pairs in two-dimensional lead bromide perovskites. Dalton Transactions, 0, , .	3.3	0
467	Discovery of enhanced lattice dynamics in a single-layered hybrid perovskite. Science Advances, 2023, 9,	10.3	3
468	Chiral Substitution on Spaced Cations Lead to Improved Properties and Reversible Phase Transition, Broadband Emission in Parent Compound (3APr)PbBr ₄ . European Journal of Inorganic Chemistry, 2023, 26, .	2.0	4
469	Improving the light stability of perovskite solar cell with new hole transport material based on spiro[fluorene-9,9′-xanthene]. , 2023, 2, .		1
470	Reversible Triple-Mode Photo- and Radioluminescence and Nonlinear Optical Switching in Highly Efficient 0D Hybrid Cuprous Halides. Chemistry of Materials, 2023, 35, 6598-6611.	6.7	7

#	Article	IF	CITATIONS
471	Origin of Broad Emission Induced by Rigid Aromatic Ditopic Cations in Low-Dimensional Metal Halide Perovskites. Journal of Physical Chemistry Letters, 2023, 14, 7860-7868.	4.6	5
472	Variable halide perovskites: diversification of anti-counterfeiting applications. Materials Chemistry Frontiers, 2023, 7, 6085-6106.	5.9	5
473	Developing TADF polymer as semiconductor additive for high performance perovskite light emitting diodes with dual recombination channel and small efficiency roll-off. Chemical Engineering Journal, 2023, 474, 145749.	12.7	3
474	First-principles calculations to investigate structural, electronic, optical and thermoelectric properties of novel double perovskite Cs2CeAgX6 (XÂ=ÂCl, Br) for optoelectronic and thermoelectric applications. Chemical Physics, 2023, 575, 112065.	1.9	0
475	Understanding the evolution of double perovskite band structure upon dimensional reduction. Chemical Science, 2023, 14, 11858-11871.	7.4	2
476	Introducing a Structural Phase Transition in a 1D Perovskite via Cation's Terminal Group Lengthening. Crystal Growth and Design, 2023, 23, 6805-6811.	3.0	2
477	Formamidine Engineering the Lattice Distortion of Chiral Halide Perovskites for Efficient Blue Circularly Polarized Emission. Advanced Optical Materials, 2023, 11, .	7.3	0
478	Bluish-white Light-emitting 2D Sheets of Lead-free Perovskite Cesium Titanium Bromide (CsTiBr3) by a Two-stage Deposition Technique. Journal of Fluorescence, 0, , .	2.5	0
479	Establishing a Relationship between the Bandgap and the Structure in 2D Lead Halide Perovskite Semiconductors. Chemistry of Materials, 2023, 35, 5854-5863.	6.7	4
480	Chemistry in the Molten State: Opportunities for Designing and Tuning the Emission Properties of Halide Perovskites. Inorganic Chemistry, 2023, 62, 14252-14260.	4.0	1
481	Rare Earth Nitrate Hybrid Double Perovskites [Me ₄ N] ₂ [MLn(NO ₃) ₆] (M = Na–Cs; Ln = La–Gd, ex. Pm). Inorganic Chemistry, 2023, 62, 16770-16781.	4.0	0
482	Metal Halide Single Crystals RbCdCl ₃ :Sn ²⁺ and Rb ₃ SnCl ₇ with Blue and White Emission Obtained via a Hydrothermal Process. Inorganic Chemistry, 2023, 62, 15943-15951.	4.0	0
483	Nature of Self-Trapped Exciton Emission in Zero-Dimensional Cs ₂ ZrCl ₆ Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2023, 14, 7665-7671.	4.6	3
484	Extremely Broad Electroluminescence from a Two-Dimensional Hybrid Perovskite Light-Emitting Diode. ACS Applied Electronic Materials, 2023, 5, 5412-5416.	4.3	0
485	Exploring Aâ€Site Cation Variations in Dion–Jacobson Twoâ€Dimensional Halide Perovskites for Enhanced Solar Cell Applications: A Density Functional Theory Study. Advanced Energy and Sustainability Research, 0, , .	5.8	0
486	Energetic Stability and Band-Edge Orbitals of Layered Inorganic Perovskite Compounds for Solar Energy Applications. Journal of Physical Chemistry C, 2023, 127, 20217-20225.	3.1	0
487	Chiral Cation Doping for Modulating Structural Symmetry of 2D Perovskites. Journal of the American Chemical Society, 2023, 145, 17831-17844.	13.7	5
488	Thermochromic Printable and Multicolor Polymeric Composite Based on Hybrid Organic–Inorganic Perovskite. Advanced Materials, 2024, 36, .	21.0	0

#	Article	IF	CITATIONS
489	Scintillation properties of (Ph ₄ P) ₂ ZnX ₄ (X = Cl, Br). Japanese Journal of Applied Physics, 2024, 63, 01SP17.	1.5	1
490	Mononuclear copper(<scp>i</scp>) complexes bearing a 3-phenyl-5-(pyridin-4-yl)-1,2,4-triazole ligand: synthesis, crystal structure, TADF-luminescence, and mechanochromic effects. Dalton Transactions, 2023, 52, 14995-15008.	3.3	1
491	Engineering and Controlling Perovskite Emissions via Optical Quasiâ€Boundâ€Statesâ€inâ€theâ€Continuum. Advanced Functional Materials, 2024, 34, .	14.9	1
492	High Layer Number (<i>n</i> = 1–6) 2D Ruddlesden–Popper Lead Bromide Perovskites: Nanosheets, Crystal Structure, and Optoelectronic Properties. , 2023, 5, 2913-2921.		1
493	Atomically thin two-dimensional hybrid perovskites using hydrophobic superalkali cations with tunable electron transition type. Physical Chemistry Chemical Physics, 2023, 25, 27409-27416.	2.8	1
494	Critical review on transition metal selenides/graphene composite as futuristic electrode material for high performance supercapacitors. Journal of Energy Storage, 2023, 74, 109214.	8.1	0
495	Pressure-Modulated Anomalous Organic–Inorganic Interactions Enhance Structural Distortion and Second-Harmonic Generation in MHyPbBr ₃ Perovskite. Journal of the American Chemical Society, 2023, 145, 23842-23848.	13.7	3
496	Unveiling the Structure-Luminescence-Stability relationship in 5s2-Based Antimony halides toward High-Performance emitters. Chemical Engineering Journal, 2023, 477, 146935.	12.7	1
497	Leadâ€Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospective. Advanced Functional Materials, 2024, 34, .	14.9	6
498	Zero-dimensional mixed-cation hybrid lead halides with broadband emissions. Inorganic Chemistry Frontiers, 2023, 10, 7222-7230.	6.0	2
499	Accommodative Organoammonium Cations in Aâ€Sites of Sb─In Halide Perovskite Derivatives for Tailoring BroadBand Photoluminescence with Xâ€Ray Scintillation and Whiteâ€Light Emission. Advanced Functional Materials, 2024, 34, .	14.9	1
500	Dimensionality Engineering of Lead Organic Chalcogenide Semiconductors. Journal of the American Chemical Society, 2023, 145, 23963-23971.	13.7	2
501	The Scale Effects of Organometal Halide Perovskites. Nanomaterials, 2023, 13, 2935.	4.1	1
502	Solid-State Synthesis and Optical Studies of Water-Stable Pb ²⁺ -Doped Mn ²⁺ Complexes. Inorganic Chemistry, 2023, 62, 19025-19032.	4.0	0
503	Pressureâ€Induced Free Exciton Emission in a Quasiâ€Zeroâ€Dimensional Hybrid Lead Halide. Angewandte Chemie - International Edition, 0, , .	13.8	0
504	Spectroscopic Evidence of Localized Small Polarons in Low-Dimensional Ionic Liquid Lead-Free Hybrid Perovskites. ACS Applied Materials & amp; Interfaces, 2023, 15, 54677-54691.	8.0	1
505	Phase Transitions, Dielectric Response, and Nonlinear Optical Properties of Aziridinium Lead Halide Perovskites. Chemistry of Materials, 2023, 35, 9725-9738.	6.7	1
506	Organic hybrid tetranuclear clusteroluminogens: Blue-light-excitable LED with ultrahigh luminous efficacy. Chemical Engineering Journal, 2024, 479, 147523.	12.7	5

#	Article	IF	CITATIONS
507	Distinct Excitonic Emissions in 2D (C ₇ H ₇ N ₂) ₂ PbX ₄ (XÂ=ÂCl, Br) under Compression. Advanced Science, 2024, 11, .	11.2	0
508	Lead Halide Hybrids Templated by Two Coordinating Ligands for Enhanced and Stable Self-Trapped Emission. Inorganic Chemistry, 2023, 62, 19804-19811.	4.0	0
509	Pressureâ€Induced Free Exciton Emission in a Quasiâ€Zeroâ€Dimensional Hybrid Lead Halide. Angewandte Chemie, 0, , .	2.0	0
510	Tellurium-Doped 0D Organic–Inorganic Hybrid Lead-Free Perovskite for X-ray Imaging. Inorganic Chemistry, 2023, 62, 19006-19014.	4.0	0
511	Multiple Anchor Sites of CaFe-LDH Enhanced the Capture Capacity to Cadmium, Arsenite, and Lead Simultaneously in Contaminated Water/Soil: Scalable Synthesis, Mechanism, and Validation. ACS ES&T Engineering, 2024, 4, 550-561.	7.6	1
512	Cluster approach for the density functional theory study of organic cation vibrations in hybrid halide postâ€perovskite 3â€cyanopyridinium lead tribromide. Journal of Raman Spectroscopy, 0, , .	2.5	1
513	Halogen Substitution Regulates High Temperature Dielectric Switch in Leadâ€Free Chiral Hybrid Perovskites. Chemistry - A European Journal, 2024, 30, .	3.3	0
514	A new eco-friendly and highly emitting Mn-based hybrid perovskite toward high-performance green down-converted LEDs. Journal of Materials Chemistry C, 2023, 12, 286-295.	5.5	1
515	Insights into the Growth Orientation and Phase Stability of Chemical-Vapor-Deposited Two-Dimensional Hybrid Halide Perovskite Films. ACS Applied Materials & Interfaces, 2023, 15, 59055-59065.	8.0	1
516	2D Hybrid Perovskites Employing an Organic Cation Paired with a Neutral Molecule. Journal of the American Chemical Society, 2023, 145, 27242-27247.	13.7	0
517	Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab. Nanoscale, 2024, 16, 580-591.	5.6	2
518	Investigating the Structureâ€property Relationships of Two Cdâ€based Hybrid Multifunctional Compounds with High Tc, Bright Fluorescence and Wide Bandâ€gap. Chemistry - A European Journal, 2024, 30, .	3.3	0
519	Tuning Structure and Excitonic Properties of 2D Ruddlesden–Popper Germanium, Tin, and Lead Iodide Perovskites via Interplay between Cations. Journal of the American Chemical Society, 2023, 145, 28111-28123.	13.7	3
520	Photoluminescent Layered Crystal Consisting of Anderson-Type Polyoxometalate and Surfactant toward a Potential Inorganic–Organic Hybrid Laser. International Journal of Molecular Sciences, 2024, 25, 345.	4.1	0
521	Ferroelectricity and Thermochromism in a 2D Dionâ€Jacobson Organic–Inorganic Hybrid Perovskite. Small, 0, , .	10.0	0
523	Dynamics of self-hybridized exciton–polaritons in 2D halide perovskites. Light: Science and Applications, 2024, 13, .	16.6	0
524	Optical Characterizations for Broadening Emissions from Doping of the Two-Dimensional Tin–Lead Perovskite Films. Journal of Physical Chemistry C, 2024, 128, 1207-1215.	3.1	0
525	Design, synthesis, structure analysis and photophysical characterization of robust and solution-processable one-dimensional copper(I) iodide-based inorganic-organic hybrid semiconductors. Journal of Luminescence, 2024, 269, 120435.	3.1	0

#	Article	IF	CITATIONS
526	Giant Apparent Optical Circular Dichroism in Thin Films of Bismuthâ€Based Hybrid Organic–Inorganic Metal Halide Semiconductor Through Preferred Orientation. Advanced Optical Materials, 2024, 12, .	7.3	0
527	Efficient Deepâ€Blue Lightâ€Emitting 2D (100)â€Oriented Perovskites and Spectral Broadening by Exciton Selfâ€Trapping for Whiteâ€light Emissions. Advanced Optical Materials, 2024, 12, .	7.3	0
528	Tuning Energy Transfer Pathways in Halide Perovskite–Dye Hybrids through Bandgap Engineering. Journal of the American Chemical Society, 2024, 146, 3352-3362.	13.7	1
529	An Air-Stable and Exfoliable Ferromagnetic Two-Dimensional Perovskite, (Phenethylammonium) ₂ CrCl ₄ . Chemistry of Materials, 2024, 36, 1571-1578.	6.7	0
530	Influence of arylalkyl amines on the formation of hybrid CsPbBr ₃ nanocrystals <i>via</i> a modified LARP method. Nanoscale Advances, 2024, 6, 1704-1719.	4.6	0
531	Synthesis, crystal structure and luminescence of [(CH ₃) ₃ S] ₂ ZrCl ₆ . Journal of Coordination Chemistry, 2024, 77, 286-294.	2.2	0
532	Multisite Fineâ€Tuning in Hybrid Cadmium Halides Enables Wide Range Emissions for Antiâ€Counterfeiting. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
533	Two-Dimensional Hybrid Perovskite with High-Sensitivity Optical Thermometry Sensors. Inorganic Chemistry, 2024, 63, 3835-3842.	4.0	0
534	Multisite Fineâ€Tuning in Hybrid Cadmium Halides Enables Wide Range Emissions for Anti ounterfeiting. Angewandte Chemie, 2024, 136, .	2.0	0
535	Broad-Band Emission Switch in Room Temperature Stable Hybrid Perovskite Polymorphs. Crystal Growth and Design, 2024, 24, 1880-1887.	3.0	0
536	The correlation between structural factors and Stokes shifts in zero-dimensional Antimony(III) halides. Journal of Luminescence, 2024, 269, 120509.	3.1	0
537	Leveraging Bromine-Induced Large Stokes Shift in Pyrrolidinium Perovskite Nanoparticles for Improved Organic Photovoltaic Performance. ACS Applied Nano Materials, 2024, 7, 5405-5413.	5.0	0
538	Blueâ€Lightâ€Excitable Redâ€toâ€Near Infrared Photoluminescence in OD Antimony(III) Bromide Hybrids for Supplemental Lighting. Advanced Optical Materials, 0, , .	7.3	0
539	Improving Photoelectron Localization to Significantly Enhanced Broadband Orange‣ight Emission in Hybrid Antimony Halides with Sb─Cl Secondary Bonding. Laser and Photonics Reviews, 0, , .	8.7	0
540	Data driven high quantum yield halide perovskite phosphors design and fabrication. Materials Today, 2024, , .	14.2	0
541	Advances in Perovskite Nanocrystals and Nanocomposites for Scintillation Applications. ACS Energy Letters, 2024, 9, 1261-1287.	17.4	0
542	Unlocking the potential of perovskite-based nanomaterials for revolutionary smartphone-based sensor applications. Journal of Materials Chemistry C, 2024, 12, 4544-4561.	5.5	0
543	Unveiling dual emission phenomena in NdCl3 doped Cs2SnCl6 perovskite: A comprehensive luminescence investigation. Solar Energy, 2024, 271, 112418.	6.1	0