Allosteric Methods and Their Applications: Facilitating and the Investigation of Allosteric Mechanisms

Accounts of Chemical Research 52, 492-500

DOI: 10.1021/acs.accounts.8b00570

Citation Report

#	Article	IF	CITATIONS
1	How calcium ion binding induces the conformational transition of the calmodulin N-terminal domain—an atomic level characterization. Physical Chemistry Chemical Physics, 2019, 21, 19795-19804.	2.8	7
2	Deactivation Pathway of Ras GTPase Underlies Conformational Substates as Targets for Drug Design. ACS Catalysis, 2019, 9, 7188-7196.	11.2	77
3	The Observation of Ligand-Binding-Relevant Open States of Fatty Acid Binding Protein by Molecular Dynamics Simulations and a Markov State Model. International Journal of Molecular Sciences, 2019, 20, 3476.	4.1	18
4	Data-driven computational analysis of allosteric proteins by exploring protein dynamics, residue coevolution and residue interaction networks. Biochimica Et Biophysica Acta - General Subjects, 2019, ,	2.4	17
5	Key Factors in Conformation Transformation of an Important Neuronic Protein Glucose Transport 3 Revealed by Molecular Dynamics Simulation. ACS Chemical Neuroscience, 2019, 10, 4444-4448.	3.5	3
6	CTCF-dependent chromatin boundaries formed by asymmetric nucleosome arrays with decreased linker length. Nucleic Acids Research, 2019, 47, 11181-11196.	14.5	44
7	Unraveling allosteric landscapes of allosterome with ASD. Nucleic Acids Research, 2020, 48, D394-D401.	14.5	29
8	Drugging K-RasG12C through covalent inhibitors: Mission possible?. , 2019, 202, 1-17.		63
9	Chemical conversion of nicotinamide into type I positive allosteric modulator of α7 nAChRs. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1928-1933.	2.2	2
10	AlloDriver: a method for the identification and analysis of cancer driver targets. Nucleic Acids Research, 2019, 47, W315-W321.	14.5	31
11	The structural basis of the autoinhibition mechanism of glycogen synthase kinase 3β (GSK3β): molecular modeling and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1-10.	3.5	3
12	Emerging roles of allosteric modulators in the regulation of proteinâ€protein interactions (PPIs): A new paradigm for PPI drug discovery. Medicinal Research Reviews, 2019, 39, 2314-2342.	10.5	77
13	Computational investigation of a ternary model of SnoN-SMAD3-SMAD4 complex. Computational Biology and Chemistry, 2019, 83, 107159.	2.3	5
14	In Silico Discovery of JMJD6 Inhibitors for Cancer Treatment. ACS Medicinal Chemistry Letters, 2019, 10, 1609-1613.	2.8	12
15	Emergence of allosteric drug-resistance mutations: new challenges for allosteric drug discovery. Drug Discovery Today, 2020, 25, 177-184.	6.4	67
16	Role of protein-protein interactions in allosteric drug design for DNA methyltransferases. Advances in Protein Chemistry and Structural Biology, 2020, 121, 49-84.	2.3	5
17	Microsecond molecular dynamics simulations reveal the allosteric regulatory mechanism of p53 R249S mutation in p53-associated liver cancer. Computational Biology and Chemistry, 2020, 84, 107194.	2.3	13
18	Analysis of allosteric communication in a multienzyme complex by ancestral sequence reconstruction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 346-354.	7.1	26

#	Article	IF	CITATIONS
19	New Promise and Opportunities for Allosteric Kinase Inhibitors. Angewandte Chemie - International Edition, 2020, 59, 13764-13776.	13.8	109
20	Identification of potential platelet-derived growth factor receptor \hat{I}_{\pm} inhibitors by computational screening and binding simulations. Journal of Molecular Graphics and Modelling, 2020, 96, 107527.	2.4	2
21	Identify old drugs as selective bacterial βâ€GUS inhibitors by structuralâ€based virtual screening and bioâ€evaluations. Chemical Biology and Drug Design, 2020, 95, 368-379.	3.2	7
22	Autoinhibition can identify rare driver mutations and advise pharmacology. FASEB Journal, 2020, 34, 16-29.	0.5	23
23	Probing the Structural Dynamics of the Plasmodium falciparum Tunneling-Fold Enzyme 6-Pyruvoyl Tetrahydropterin Synthase to Reveal Allosteric Drug Targeting Sites. Frontiers in Molecular Biosciences, 2020, 7, 575196.	3.5	3
24	Wrangling Shape-Shifting Morpheeins to Tackle Disease and Approach Drug Discovery. Frontiers in Molecular Biosciences, 2020, 7, 582966.	3.5	9
25	Discovery of Evodiamine Derivatives as Highly Selective PDE5 Inhibitors Targeting a Unique Allosteric Pocket. Journal of Medicinal Chemistry, 2020, 63, 9828-9837.	6.4	27
26	Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal Transduction and Targeted Therapy, 2020, 5, 213.	17.1	387
27	Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules, 2020, 25, 4210.	3.8	13
28	Zinc-mediated conformational preselection mechanism in the allosteric control of DNA binding to the zinc transcriptional regulator (ZitR). Scientific Reports, 2020, 10, 13276.	3.3	6
29	How Parkinson's disease-related mutations disrupt the dimerization of WD40 domain in LRRK2: a comparative molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2020, 22, 20421-20433.	2.8	13
30	Allosteric inhibition explained through conformational ensembles sampling distinct "mixed―states. Computational and Structural Biotechnology Journal, 2020, 18, 3803-3818.	4.1	29
31	Identification of the New Covalent Allosteric Binding Site of Fructose-1,6-bisphosphatase with Disulfiram Derivatives toward Glucose Reduction. Journal of Medicinal Chemistry, 2020, 63, 6238-6247.	6.4	17
32	Protein-protein complexes as targets for drug discovery against infectious diseases. Advances in Protein Chemistry and Structural Biology, 2020, 121, 237-251.	2.3	2
33	In silico study reveals existing drugs as $\hat{l}\pm$ -glucosidase inhibitors: Structure-based virtual screening validated by experimental investigation. Journal of Molecular Structure, 2020, 1218, 128532.	3.6	7
34	Discovery of aryl-piperidine derivatives as potential antipsychotic agents using molecular hybridization strategy. European Journal of Medicinal Chemistry, 2020, 193, 112214.	5.5	16
35	Exploration of the selective binding mechanism of GSK3Î ² via molecular modeling and molecular dynamics simulation studies. Medicinal Chemistry Research, 2020, 29, 690-698.	2.4	3
36	Combining Allosteric and Orthosteric Drugs to Overcome Drug Resistance. Trends in Pharmacological Sciences, 2020, 41, 336-348.	8.7	60

#	Article	IF	CITATIONS
37	Binding Interactions of Ergotamine and Dihydroergotamine to 5-Hydroxytryptamine Receptor 1B (5-HT _{1b}) Using Molecular Dynamics Simulations and Dynamic Network Analysis. Journal of Chemical Information and Modeling, 2020, 60, 1749-1765.	5.4	8
38	Computational Insight into the Allosteric Activation Mechanism of Farnesoid X Receptor. Journal of Chemical Information and Modeling, 2020, 60, 1540-1550.	5.4	5
39	Revealing the binding and drug resistance mechanism of amprenavir, indinavir, ritonavir, and nelfinavir complexed with HIV-1 protease due to double mutations G48T/L89M by molecular dynamics simulations and free energy analyses. Physical Chemistry Chemical Physics, 2020, 22, 4464-4480.	2.8	20
40	Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angewandte Chemie, 2020, 132, 13868-13881.	2.0	2
41	Allostery of multidomain proteins with disordered linkers. Current Opinion in Structural Biology, 2020, 62, 175-182.	5.7	28
42	Recent advances suggest increased influence of selective pressure in allostery. Current Opinion in Structural Biology, 2020, 62, 183-188.	5.7	13
43	Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chemical Science, 2021, 12, 464-476.	7.4	84
44	Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators. Acta Pharmaceutica Sinica B, 2021, 11, 1355-1361.	12.0	57
45	Emerging roles of SIRT6 in human diseases and its modulators. Medicinal Research Reviews, 2021, 41, 1089-1137.	10.5	75
46	Deciphering the resistance mechanism of RET kinase mutant against vandetanib and nintedanib using molecular dynamics simulations. Journal of Experimental Nanoscience, 2021, 16, 278-293.	2.4	3
47	Mechanistic insights into the effect of phosphorylation on Ras conformational dynamics and its interactions with cell signaling proteins. Computational and Structural Biotechnology Journal, 2021, 19, 1184-1199.	4.1	51
48	Targeting RAS phosphorylation in cancer therapy: Mechanisms and modulators. Acta Pharmaceutica Sinica B, 2021, 11, 3433-3446.	12.0	20
49	Conformational Selection Mechanism Provides Structural Insights into the Optimization of APC-Asef Inhibitors. Molecules, 2021, 26, 962.	3.8	11
50	Untangling Dual-Targeting Therapeutic Mechanism of Epidermal Growth Factor Receptor (EGFR) Based on Reversed Allosteric Communication. Pharmaceutics, 2021, 13, 747.	4.5	42
51	Approach in Improving Potency and Selectivity of Kinase Inhibitors: Allosteric Kinase Inhibitors. Mini-Reviews in Medicinal Chemistry, 2021, 21, 991-1003.	2.4	4
52	Allosteric Type and Pathways Are Governed by the Forces of Protein–Ligand Binding. Journal of Physical Chemistry Letters, 2021, 12, 5404-5412.	4.6	20
53	Chemical and Biophysical Approaches to Allosteric Modulation. European Journal of Organic Chemistry, 2021, 2021, 4245-4259.	2.4	2
54	Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells. Acta Pharmaceutica Sinica B, 2022, 12, 876-889.	12.0	32

"			<u> </u>
# 55	From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angewandte Chemie, 2021, 133, 20095-20101.	1r 2.0	4
56	Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends in Pharmacological Sciences, 2021, 42, 551-565.	8.7	22
57	From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angewandte Chemie - International Edition, 2021, 60, 19942-19948.	13.8	18
58	Structure-Activity Studies of Novel Di-substituted [1,2,5]oxadiazolo [3,4-b]pyrazine Analogs Targeting the A-loop Regulatory Site of p38 MAP Kinase. Current Medicinal Chemistry, 2022, 29, 1640-1653.	2.4	1
59	Allosteric Mechanism of Human Mitochondrial Phenylalanyl-tRNA Synthetase: An Atomistic MD Simulation and a Mutual Information-Based Network Study. Journal of Physical Chemistry B, 2021, 125, 7651-7661.	2.6	5
60	Molecular Insights into the Recruiting Between UCP2 and DDX5/UBAP2L in the Metabolic Plasticity of Non-Small-Cell Lung Cancer. Journal of Chemical Information and Modeling, 2021, 61, 3978-3987.	5.4	8
61	Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nature Communications, 2021, 12, 4721.	12.8	124
62	Recent advances in the design and discovery of synthetic tyrosinase inhibitors. European Journal of Medicinal Chemistry, 2021, 224, 113744.	5.5	57
63	Computational identification of potential chemoprophylactic agents according to dynamic behavior of peroxisome proliferator-activated receptor gamma. RSC Advances, 2021, 11, 147-159.	3.6	5
64	Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1585.	14.6	23
65	How does nintedanib overcome cancer drug-resistant mutation of RET protein-tyrosine kinase: insights from molecular dynamics simulations. Journal of Molecular Modeling, 2021, 27, 337.	1.8	9
66	Assessment of the Contribution of a Thermodynamic and Mechanical Destabilization of Myosin-Binding Protein C Domain C2 to the Pathomechanism of Hypertrophic Cardiomyopathy-Causing Double Mutation MYBPC31"25bp/D389V. International Journal of Molecular Sciences, 2021, 22, 11949.	4.1	2
67	Wandering beyond small molecules: peptides as allosteric protein modulators. Trends in Pharmacological Sciences, 2021, , .	8.7	9
68	Multiple Molecular Dynamics Simulations and Free-Energy Predictions Uncover the Susceptibility of Variants of HIV-1 Protease against Inhibitors Darunavir and KNI-1657. Langmuir, 2021, 37, 14407-14418.	3.5	7
69	Drug discovery is an eternal challenge for the biomedical sciences. , 2022, 1, .		48
70	Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. Environment International, 2022, 159, 107009.	10.0	7
71	Atomic-scale insights into allosteric inhibition and evolutional rescue mechanism of Streptococcus thermophilus Cas9 by the anti-CRISPR protein AcrIIA6. Computational and Structural Biotechnology Journal, 2021, 19, 6108-6124.	4.1	35
72	Challenges in Discovering Drugs That Target the Protein–Protein Interactions of Disordered Proteins. International Journal of Molecular Sciences, 2022, 23, 1550.	4.1	16

#	Article	IF	CITATIONS
73	Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. Journal of Molecular Biology, 2022, 434, 167481.	4.2	10
74	Elucidation of the conformational dynamics and assembly of Argonaute–RNA complexes by distinct yet coordinated actions of the supplementary microRNA. Computational and Structural Biotechnology Journal, 2022, 20, 1352-1365.	4.1	13
75	Structure and chemistry of enzymatic active sites that play a role in the switch and conformation mechanism. Advances in Protein Chemistry and Structural Biology, 2022, 130, 59-83.	2.3	5
76	Mechanistic Insights Into Co-Administration of Allosteric and Orthosteric Drugs to Overcome Drug-Resistance in T315I BCR-ABL1. Frontiers in Pharmacology, 2022, 13, 862504.	3.5	11
77	From Data to Knowledge: Systematic Review of Tools for Automatic Analysis of Molecular Dynamics Output. Frontiers in Pharmacology, 2022, 13, 844293.	3.5	1
78	Computational elucidation of allosteric communication in proteins for allosteric drug design. Drug Discovery Today, 2022, 27, 2226-2234.	6.4	14
79	A molecular perspective for the use of type IV tyrosine kinase inhibitors as anticancer therapeutics. Drug Discovery Today, 2022, 27, 808-821.	6.4	3
80	Harnessing Reversed Allosteric Communication: A Novel Strategy for Allosteric Drug Discovery. Journal of Medicinal Chemistry, 2021, 64, 17728-17743.	6.4	29
81	An overview of kinase downregulators and recent advances in discovery approaches. Signal Transduction and Targeted Therapy, 2021, 6, 423.	17.1	21
82	Deciphering the Mechanism of Gilteritinib Overcoming Lorlatinib Resistance to the Double Mutant I1171N/F1174I in Anaplastic Lymphoma Kinase. Frontiers in Cell and Developmental Biology, 2021, 9, 808864.	3.7	14
83	CDK9 inhibitors in cancer research. RSC Medicinal Chemistry, 2022, 13, 688-710.	3.9	10
84	Allosteric pluripotency: challenges and opportunities. Biochemical Journal, 2022, 479, 825-838.	3.7	5
94	Allostery and Missense Mutations as Intermittently Linked Promising Aspects of Modern Computational Drug Discovery. Journal of Molecular Biology, 2022, 434, 167610.	4.2	8
95	Computational Design of Inhibitors Targeting the Catalytic Î ² Subunit of Escherichia coli FOF1-ATP Synthase. Antibiotics, 2022, 11, 557.	3.7	3
96	Delineating the conformational landscape and intrinsic properties of the angiotensin II type 2 receptor using a computational study. Computational and Structural Biotechnology Journal, 2022, 20, 2268-2279.	4.1	4
97	Understanding the P-Loop Conformation in the Determination of Inhibitor Selectivity Toward the Hepatocellular Carcinoma-Associated Dark Kinase STK17B. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	6
98	Medicinal Chemistry Strategies for the Development of Bruton's Tyrosine Kinase Inhibitors against Resistance. Journal of Medicinal Chemistry, 2022, 65, 7415-7437.	6.4	18
99	Therapeutic Targeting the Allosteric Cysteinome of RAS and Kinase Families. Journal of Molecular Biology, 2022, 434, 167626.	4.2	4

#	Article	IF	CITATIONS
100	Unmasking allosteric-binding sites: novel targets for GPCR drug discovery. Expert Opinion on Drug Discovery, 2022, 17, 897-923.	5.0	7
101	Insights into the Allosteric Effect of SENP1 Q597A Mutation on the Hydrolytic Reaction of SUMO1 via an Integrated Computational Study. Molecules, 2022, 27, 4149.	3.8	4
102	Allosteric modulation of GPCRs: From structural insights to in silico drug discovery. , 2022, 237, 108242.		15
103	The Role of Conformational Dynamics and Allostery in the Control of Distinct Efficacies of Agonists to the Glucocorticoid Receptor. Frontiers in Molecular Biosciences, 0, 9, .	3.5	7
104	Mechanistic insights into the clinical Y96D mutation with acquired resistance to AMG510 in the KRASG12C. Frontiers in Oncology, 0, 12, .	2.8	5
105	Mechanistic Insights into the Long-range Allosteric Regulation of KRAS Via Neurofibromatosis Type 1 (NF1) Scaffold Upon SPRED1 Loading. Journal of Molecular Biology, 2022, 434, 167730.	4.2	17
106	Design, synthesis and biological evaluation of 2-aminopyridine derivatives as USP7 inhibitors. Bioorganic Chemistry, 2022, 129, 106128.	4.1	3
108	Probing Mechanisms of Binding and Allostery in the SARS-CoV-2 Spike Omicron Variant Complexes with the Host Receptor: Revealing Functional Roles of the Binding Hotspots in Mediating Epistatic Effects and Communication with Allosteric Pockets. International Journal of Molecular Sciences, 2022, 23, 11542	4.1	15
109	Halide ion directed templation effect of quadruple-stranded helicates. Cell Reports Physical Science, 2022, 3, 101056.	5.6	3
110	Computer-Aided Drug Design Boosts RAS Inhibitor Discovery. Molecules, 2022, 27, 5710.	3.8	6
111	Exploring the druggability of the binding site of aurovertin, an exogenous allosteric inhibitor of FOF1-ATP synthase. Frontiers in Pharmacology, 0, 13, .	3.5	2
112	Molecular Insights into the Heterotropic Allosteric Mechanism in Cytochrome P450 3A4-Mediated Midazolam Metabolism. Journal of Chemical Information and Modeling, 2022, 62, 5762-5770.	5.4	3
113	Intrinsic disorder and allosteric regulation. , 2023, , 327-352.		0
114	Machine learning and protein allostery. Trends in Biochemical Sciences, 2023, 48, 375-390.	7.5	7
115	Recent applications of computational methods to allosteric drug discovery. Frontiers in Molecular Biosciences, 0, 9, .	3.5	2
116	Fragment-based drug discovery supports drugging â€~undruggable' protein–protein interactions. Trends in Biochemical Sciences, 2023, 48, 539-552.	7.5	7
117	Research progress of indole-fused derivatives as allosteric modulators: Opportunities for drug development. Biomedicine and Pharmacotherapy, 2023, 162, 114574.	5.6	3
118	From Deep Mutational Mapping of Allosteric Protein Landscapes to Deep Learning of Allostery and Hidden Allosteric Sites: Zooming in on "Allosteric Intersection―of Biochemical and Big Data Approaches. International Journal of Molecular Sciences, 2023, 24, 7747.	4.1	6

#	Article	IF	CITATIONS
120	Decoupling the dynamic mechanism revealed by FGFR2 mutation-induced population shift. Journal of Biomolecular Structure and Dynamics, 2024, 42, 1940-1951.	3.5	1
121	Glycomimetics for the inhibition and modulation of lectins. Chemical Society Reviews, 2023, 52, 3663-3740.	38.1	13
122	Markov State Models and Perturbation-Based Approaches Reveal Distinct Dynamic Signatures and Hidden Allosteric Pockets in the Emerging SARS-Cov-2 Spike Omicron Variant Complexes with the Host Receptor: The Interplay of Dynamics and Convergent Evolution Modulates Allostery and Functional Mechanisms. Journal of Chemical Information and Modeling, 2023, 63, 5272-5296.	5.4	6
123	PASSerRank: Prediction of allosteric sites with learning to rank. Journal of Computational Chemistry, 2023, 44, 2223-2229.	3.3	8
124	Designing drugs and chemical probes with the dualsteric approach. Chemical Society Reviews, 2023, 52, 8651-8677.	38.1	1
125	Advances of Predicting Allosteric Mechanisms Through Protein Contact in New Technologies and Their Application. Molecular Biotechnology, 0, , .	2.4	1
126	Characterisation of a phosphatase-like nanozyme developed by baking cysteine and its application in reviving mung bean sprouts damaged by ash. Environmental Science: Nano, 0, , .	4.3	0
127	Protein–Protein Interaction for Drug Discovery. Engineering Materials, 2024, , 255-269.	0.6	0
128	Prospects for the use of allosteric drugs in real-world clinical practice. , 2023, 3, 15-21.		0
129	Biophysical Insights into Drug Discovery: Leveraging Phase Transitions and Protein Behavior for Therapeutic Innovation. Biophysical Reviews and Letters, 0, , 1-6.	0.8	0
130	Allo-targeting of the kinase domain: Insights from in silico studies and comparison with experiments. Current Opinion in Structural Biology, 2024, 84, 102770.	5.7	0
131	Allosteric Sites and Allosteric Regulators of G Protein-Coupled Receptors: Gray Cardinals of Signal Transduction. Journal of Evolutionary Biochemistry and Physiology, 2023, 59, S1-S106.	0.6	0
132	Allosteric Activation of α7 Nicotinic Acetylcholine Receptors by Novel 2-Arylamino-thiazole-5-carboxylic Acid Amide Derivatives for the Improvement of Cognitive Deficits in Mice. Journal of Medicinal Chemistry, 2024, 67, 6344-6364.	6.4	0