Effect of additives on thermal, rheological and tribologi chocolate

Food Research International 119, 161-169 DOI: 10.1016/j.foodres.2019.01.056

Citation Report

#	Article	IF	CITATIONS
1	3D food printing: a categorised review of inks and their development. Virtual and Physical Prototyping, 2019, 14, 203-218.	5.3	100
2	Printability and Physicochemical Properties of Microalgae-Enriched 3D-Printed Snacks. Food and Bioprocess Technology, 2020, 13, 2029-2042.	2.6	62
3	A rapid method to evaluate the chocolate smoothness based on the tribological measurement. Journal of Texture Studies, 2020, 51, 882-890.	1.1	5
4	Comparison of <scp>3D</scp> printed and molded carrots produced with gelatin, guar gum and xanthan gum. Journal of Texture Studies, 2020, 51, 852-860.	1.1	21
5	How to Formulate for Structure and Texture via Medium of Additive Manufacturing-A Review. Foods, 2020, 9, 497.	1.9	49
6	Food Oral Processing and Tribology: Instrumental Approaches and Emerging Applications. Food Reviews International, 2021, 37, 538-571.	4.3	25
7	Effect of polymer flow aids on LD iron ore flowability. Powder Technology, 2021, 377, 523-533.	2.1	0
8	A review on customizing edible food materials into 3D printable inks: Approaches and strategies. Trends in Food Science and Technology, 2021, 107, 68-77.	7.8	42
9	Novel evaluation technology for the demand characteristics of 3D food printing materials: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 4669-4683.	5.4	39
11	Consumer Assessment of 3D-Printed Food Shape, Taste, and Fidelity Using Chocolate and Marzipan Materials. 3D Printing and Additive Manufacturing, 2022, 9, 473-482.	1.4	10
12	3D food printing: Applications of plant-based materials in extrusion-based food printing. Critical Reviews in Food Science and Nutrition, 2022, 62, 7184-7198.	5.4	28
13	4D Printing of Sago Starch with Turmeric Blends: A Study on pH-Triggered Spontaneous Color Transformation. ACS Food Science & Technology, 2021, 1, 669-679.	1.3	29
14	Trends in functional food development with three-dimensional (3D) food printing technology: prospects for value-added traditionally processed food products. Critical Reviews in Food Science and Nutrition, 2022, 62, 7866-7904.	5.4	47
15	Protein-based hydrocolloids: Effect on the particle size distribution, tribo-rheological behaviour and mouthfeel characteristics of low-fat chocolate flavoured milk. Food Hydrocolloids, 2021, 115, 106628.	5.6	17
16	Drawing the scientific landscape of 3D Food Printing. Maps and interpretation of the global information in the first 13Âyears of detailed experiments, from 2007 to 2020. Innovative Food Science and Emerging Technologies, 2021, 70, 102689.	2.7	17
17	Extrusion-Based 3D Food Printing: Technological Approaches, Material Characteristics, Printing Stability, and Post-processing. Food Engineering Reviews, 2022, 14, 100-119.	3.1	38
18	Formulation engineering of food systems for 3D-printing applications – A review. Food Research International, 2021, 148, 110585.	2.9	38
19	The role of hydrocolloids on the 3D printability of meat products. Food Hydrocolloids, 2021, 119, 106879.	5.6	25

#	ARTICLE Formulation and evaluation of cold-extruded chocolate ganache for three-dimensional food	IF	CITATIONS
20	printing. Journal of Food Engineering, 2022, 314, 110785. Formulation of proteinâ€enriched 3D printable food matrix and evaluation of textural, rheological characteristics, and printing stability. Journal of Food Processing and Preservation, 2021, 45, e15182.	0.9	21
22	Measurement of molten chocolate friction under simulated tongue-palate kinematics: Effect of cocoa solids content and aeration. Current Research in Food Science, 2020, 3, 304-313.	2.7	21
23	Advances and prospective applications of 3D food printing for health improvement and personalized nutrition. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5722-5741.	5.9	37
24	Chocolate flow behavior: Composition and process effects. Critical Reviews in Food Science and Nutrition, 2023, 63, 3788-3802.	5.4	10
25	LF-NMR as a tool for predicting the 3D printability of surimi-starch systems. Food Chemistry, 2022, 374, 131727.	4.2	32
26	Restructuring cookie dough with 3D printing: Relationships between the mechanical properties, baking conditions, and structural changes. Journal of Food Engineering, 2022, 319, 110911.	2.7	24
27	The rheology and foamability of crystal-melt suspensions composed of triacylglycerols. Soft Matter, 2022, , .	1.2	1
32	3D food printing: Controlling characteristics and improving technological effect during food processing. Food Research International, 2022, 156, 111120.	2.9	35
33	3D food printing curing technology based on gellan gum. Journal of Food Engineering, 2022, 327, 111036.	2.7	16
34	Towards the Development of 3D-Printed Food: A Rheological and Mechanical Approach. Foods, 2022, 11, 1191.	1.9	29
35	3D Printing: Technologies, Fundamentals, and Applications in Food Industries. , 2022, , 197-234.		1
36	Correlating rheology with 3D printing performance based on thermo-responsive κ-carrageenan/Pleurotus ostreatus protein with regard to interaction mechanism. Food Hydrocolloids, 2022, 131, 107813.	5.6	29
37	3D Printing Technology : Food Tech Analysis. Jawon Gwahak Yeongu, 2022, 4, 1-11.	0.1	1
38	Evaluation of rheology and printability of 3D printing nutritious food with complex formulations. Additive Manufacturing, 2022, 58, 103030.	1.7	15
39	Effect of gums on the multi-scale characteristics and 3D printing performance of potato starch gel. Innovative Food Science and Emerging Technologies, 2022, 80, 103102.	2.7	16
40	Development of fat-reduced 3D printed chocolate by substituting cocoa butter with water-in-oil emulsions. Food Hydrocolloids, 2023, 135, 108114.	5.6	17
41	Influence of Test Parameters on the Evaluation of Chocolate Silkiness Using the Tribological Method. Lubricants, 2022, 10, 217.	1.2	0

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
42	Accurate Evaluation of the Flow Properties of Molten Chocolate: Circumventing Artefacts. Food Analytical Methods, 2023, 16, 190-205.	1.3	2
44	Preparation of Dashanzha Wan by three-dimensional printing. Journal of Traditional Chinese Medical Sciences, 2022, , .	0.1	0
45	Printability, texture, and sensory trade-offs for 3D printed potato with added proteins and lipids. Journal of Food Engineering, 2023, 351, 111517.	2.7	4
46	Effects of highâ€protein milk powder, linseed paste, and grape molasses levels on physiochemical, rheological, and sensory attributes of linseed spread. Food Science and Nutrition, 0, , .	1.5	0
47	A brief review on <scp>3D</scp> printing of chocolate. International Journal of Food Science and Technology, 2023, 58, 2811-2828.	1.3	0
53	Effect of movement speed and flow capacity on the printed chocolate in 3D printing machine. AIP Conference Proceedings, 2023, , .	0.3	0
56	Application of 3D printing in food industry. , 2024, , 127-142.		0