Development of organic semiconducting materials for ophototherapy and photoactivation

Chemical Society Reviews 48, 38-71 DOI: 10.1039/c8cs00001h

Citation Report

#	Article	IF	CITATIONS
1	Highly Stable and Multifunctional Aza-BODIPY-Based Phototherapeutic Agent for Anticancer Treatment. ACS Applied Materials & Interfaces, 2018, 10, 44324-44335.	8.0	68
2	Bichromophoric Properties of Ruthenium(II) Polypyridyl Complexes Bridged by Boron Dipyrromethenes: Synthesis, Electrochemical, Spectroscopic, Computational Evaluation, and Plasmid DNA Photoreactions. European Journal of Inorganic Chemistry, 2019, 2019, 3690-3698.	2.0	5
3	A Novel Theranostic Nanoprobe for In Vivo Singlet Oxygen Detection and Realâ€Time Dose–Effect Relationship Monitoring in Photodynamic Therapy. Small, 2019, 15, e1902185.	10.0	25
4	Organic/polymer photothermal nanoagents for photoacoustic imaging and photothermal therapy in vivo. Science China Materials, 2019, 62, 1740-1758.	6.3	45
5	Multifunctional Cancer Phototherapy Using Fluorophore-Functionalized Nanodiamond Supraparticles. ACS Applied Bio Materials, 2019, 2, 3693-3705.	4.6	13
6	Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chemical Science, 2019, 10, 9091-9098.	7.4	81
7	Recent Advances on Activatable NIRâ€II Fluorescence Probes for Biomedical Imaging. Advanced Optical Materials, 2019, 7, 1900917.	7.3	111
8	Single NIR Laser-Activated Multifunctional Nanoparticles for Cascaded Photothermal and Oxygen-Independent Photodynamic Therapy. Nano-Micro Letters, 2019, 11, 68.	27.0	56
9	Nitric Oxide-Activated "Dual-Key–One-Lock―Nanoprobe for in Vivo Molecular Imaging and High-Specificity Cancer Therapy. Journal of the American Chemical Society, 2019, 141, 13572-13581.	13.7	126
10	A dual-targeted theranostic photosensitizer based on a TADF fluorescein derivative. Journal of Controlled Release, 2019, 310, 1-10.	9.9	29
11	Porphyrin Functionalized Gelatin Nanoparticle-Based Biodegradable Phototheranostics: Potential Tools for Antimicrobial Photodynamic Therapy. ACS Applied Bio Materials, 2019, 2, 4202-4212.	4.6	29
12	Mitochondria-targeted Ir@AuNRs as bifunctional therapeutic agents for hypoxia imaging and photothermal therapy. Chemical Communications, 2019, 55, 10273-10276.	4.1	23
13	PEGylated Tantalum Nanoparticles: A Metallic Photoacoustic Contrast Agent for Multiwavelength Imaging of Tumors. Small, 2019, 15, e1903596.	10.0	27
14	Single nanoparticles as versatile phototheranostics for tri-modal imaging-guided photothermal therapy. Biomaterials Science, 2019, 7, 3609-3613.	5.4	28
15	A new building block with intramolecular D-A character for conjugated polymers: ladder structure based on Bâ†N unit. Science China Chemistry, 2019, 62, 1387-1392.	8.2	21
16	Ultrabright Fluorescent Polymer Dots with Thermochromic Characteristics for Full-Color Security Marking. ACS Applied Materials & Interfaces, 2019, 11, 29341-29349.	8.0	55
17	MnFe ₂ O ₄ -decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O ₂ self-sufficient photodynamic therapy. Nanoscale, 2019, 11, 14654-14667.	5.6	41
18	Thermoresponsive Semiconducting Polymer Nanoparticles for Contrastâ€Enhanced Photoacoustic Imaging. Advanced Functional Materials, 2019, 29, 1903461.	14.9	53

#	Article	IF	CITATIONS
19	Semiconducting Nanocomposite with AlEgenâ€Triggered Enhanced Photoluminescence and Photodegradation for Dualâ€Modality Tumor Imaging and Therapy. Advanced Functional Materials, 2019, 29, 1903733.	14.9	22
20	Seed-Mediated Synthesis of Polypeptide-Engineered Stabilized Fluorescence-Enhanced Core/Shell Ag ₂ S Quantum Dots and Their Application in pH Sensing and Bacterial Imaging in Extreme Acidity. ACS Sustainable Chemistry and Engineering, 2019, 7, 13098-13104.	6.7	8
21	Synthesis and biological evaluation of an epidermal growth factor receptor-targeted peptide-conjugated phthalocyanine-based photosensitiser. RSC Advances, 2019, 9, 20652-20662.	3.6	20
22	Exploration of Fe ^{III} -Phenol Complexes for Photothermal Therapy and Photoacoustic Imaging. ACS Biomaterials Science and Engineering, 2019, 5, 4700-4707.	5.2	35
23	Spatiotemporally Coupled Photoactivity of Phthalocyanine–Peptide Conjugate Selfâ€Assemblies for Adaptive Tumor Theranostics. Chemistry - A European Journal, 2019, 25, 13429-13435.	3.3	38
24	Synthesis of Bi ₂ WO _{6â^'x} nanodots with oxygen vacancies as an all-in-one nanoagent for simultaneous CT/IR imaging and photothermal/photodynamic therapy of tumors. Nanoscale, 2019, 11, 15326-15338.	5.6	24
25	High-Aspect-Ratio Semiconducting Polymer Pillars for 3D Cell Cultures. ACS Applied Materials & Interfaces, 2019, 11, 28125-28137.	8.0	33
26	Stable supramolecular porphyrin@albumin nanoparticles for optimal photothermal activity. Materials Chemistry Frontiers, 2019, 3, 1892-1899.	5.9	12
27	Rational design of a multifunctional molecular dye for dual-modal NIR-II/photoacoustic imaging and photothermal therapy. Chemical Science, 2019, 10, 8348-8353.	7.4	137
28	å≌e,½eī物åŠç»"è£ä½"在癌症åç−«æ²»ç−—ä¸çš"应用. Science China Materials, 2019, 62, 1759-17	84.3	19
29	Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials, 2019, 218, 119330.	11.4	118
30	Photoacoustic Detection of Superoxide Using Oxoporphyrinogen and Porphyrin. ACS Sensors, 2019, 4, 2001-2008.	7.8	10
31	A champagne inspired dual chain-responsive thrombolytic drug release platform based on black phosphorus nanosheets for accelerated thrombolysis. Nanoscale Horizons, 2019, 4, 1277-1285.	8.0	19
32	Organic Semiconducting Proâ€nanostimulants for Nearâ€Infrared Photoactivatable Cancer Immunotherapy. Angewandte Chemie - International Edition, 2019, 58, 12680-12687.	13.8	263
33	Organic Semiconducting Proâ€nanostimulants for Nearâ€Infrared Photoactivatable Cancer Immunotherapy. Angewandte Chemie, 2019, 131, 12810-12817.	2.0	50
34	Recent Progress on Near-Infrared Photoacoustic Imaging: Imaging Modality and Organic Semiconducting Agents. Polymers, 2019, 11, 1693.	4.5	24
35	Quantum Yieldâ€Engineered Biocompatible Probes Illuminate Lung Tumor Based on Viscosity Confinementâ€Mediated Antiaggregation. Advanced Functional Materials, 2019, 29, 1905124.	14.9	42
36	Antigenâ€Inorganic Hybrid Flowersâ€Based Vaccines with Enhanced Room Temperature Stability and Effective Anticancer Immunity. Advanced Healthcare Materials, 2019, 8, e1900660.	7.6	10

#	Article	IF	CITATIONS
37	A Renalâ€Clearable Duplex Optical Reporter for Realâ€Time Imaging of Contrastâ€Induced Acute Kidney Injury. Angewandte Chemie, 2019, 131, 17960-17968.	2.0	30
38	A Photolabile Semiconducting Polymer Nanotransducer for Nearâ€Infrared Regulation of CRISPR/Cas9 Gene Editing. Angewandte Chemie - International Edition, 2019, 58, 18197-18201.	13.8	114
39	A Renalâ€Clearable Duplex Optical Reporter for Realâ€Time Imaging of Contrastâ€Induced Acute Kidney Injury. Angewandte Chemie - International Edition, 2019, 58, 17796-17804.	13.8	110
40	Second Nearâ€Infrared Absorbing Agents for Photoacoustic Imaging and Photothermal Therapy. Small Methods, 2019, 3, 1900553.	8.6	184
41	Intrinsically Cancer-Mitochondria-Targeted Thermally Activated Delayed Fluorescence Nanoparticles for Two-Photon-Activated Fluorescence Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 41051-41061.	8.0	73
42	Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications. Accounts of Chemical Research, 2019, 52, 3211-3222.	15.6	109
43	Differential Phagocytosis-Based Photothermal Ablation of Inflammatory Macrophages in Atherosclerotic Disease. ACS Applied Materials & amp; Interfaces, 2019, 11, 41009-41018.	8.0	33
44	Nearâ€Infrared Photoactivatable Semiconducting Polymer Nanoblockaders for Metastasisâ€Inhibited Combination Cancer Therapy. Advanced Materials, 2019, 31, e1905091.	21.0	157
45	TMTP1-modified Indocyanine Green-loaded Polymeric Micelles for Targeted Imaging of Cervical Cancer and Metastasis Sentinel Lymph Node <i> in vivo</i> . Theranostics, 2019, 9, 7325-7344.	10.0	31
46	Chemical Modulation of Bioengineered Exosomes for Tissueâ€Specific Biodistribution. Advanced Therapeutics, 2019, 2, 1900111.	3.2	26
47	Biodegradable ï€-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. ACS Nano, 2019, 13, 12901-12911.	14.6	191
48	Smart Aza-BODIPY Photosensitizer for Tumor Microenvironment-Enhanced Cancer Phototherapy. ACS Applied Bio Materials, 2019, 2, 5888-5897.	4.6	26
49	Budd-Chiari syndrome with short-length stenosis: still room for the angioplasty and wait-and-see strategy – Authors' reply. The Lancet Gastroenterology and Hepatology, 2019, 4, 823-824.	8.1	0
50	Polarization property of high harmonics generated from nitrogen molecule by bichromatic counter-rotating circularly polarized laser fields. Laser Physics, 2019, 29, 105301.	1.2	3
51	Advanced Nanotechnology Leading the Way to Multimodal Imagingâ€Guided Precision Surgical Therapy. Advanced Materials, 2019, 31, e1904329.	21.0	135
52	A Photolabile Semiconducting Polymer Nanotransducer for Nearâ€Infrared Regulation of CRISPR/Cas9 Gene Editing. Angewandte Chemie, 2019, 131, 18365-18369.	2.0	15
53	A Latticeâ€Oxygenâ€Involved Reaction Pathway to Boost Urea Oxidation. Angewandte Chemie - International Edition, 2019, 58, 16820-16825.	13.8	201
54	Renalâ€clearable Molecular Semiconductor for Second Nearâ€infrared Fluorescence Imaging of Kidney Dysfunction. Angewandte Chemie, 2019, 131, 15264-15271.	2.0	32

#	Article	IF	CITATIONS
55	Renalâ€clearable Molecular Semiconductor for Second Nearâ€Infrared Fluorescence Imaging of Kidney Dysfunction. Angewandte Chemie - International Edition, 2019, 58, 15120-15127.	13.8	202
56	Rational Design of a Multifunctional Molecular Dye with Single Dose and Laser for Efficiency NIR-II Fluorescence/Photoacoustic Imaging Guided Photothermal Therapy. Analytical Chemistry, 2019, 91, 12476-12483.	6.5	62
57	Manipulating Nonradiative Decay Channel by Intermolecular Charge Transfer for Exceptionally Improved Photothermal Conversion. ACS Nano, 2019, 13, 12006-12014.	14.6	84
58	Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. Coordination Chemistry Reviews, 2019, 400, 213041.	18.8	103
59	Metabolizable Semiconducting Polymer Nanoparticles for Second Nearâ€Infrared Photoacoustic Imaging. Advanced Materials, 2019, 31, e1808166.	21.0	288
60	Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chemical Society Reviews, 2019, 48, 38-71.	38.1	917
61	Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy. Chemical Science, 2019, 10, 2778-2784.	7.4	88
62	Nearâ€Infrared Afterglow Semiconducting Nanoâ€Polycomplexes for the Multiplex Differentiation of Cancer Exosomes. Angewandte Chemie - International Edition, 2019, 58, 4983-4987.	13.8	170
63	Biosensors and Bioimaging. ChemBioChem, 2019, 20, 420-421.	2.6	11
64	AlEgen functionalized inorganic–organic hybrid nanomaterials for cancer diagnosis and therapy. Inorganic Chemistry Frontiers, 2019, 6, 1613-1622.	6.0	12
65	Silicon nanowires decorated with gold nanoparticles <i>via in situ</i> reduction for photoacoustic imaging-guided photothermal cancer therapy. Journal of Materials Chemistry B, 2019, 7, 4393-4401.	5.8	15
66	<p>Novel nanosized AS1411–chitosan–BODIPY conjugate for molecular fluorescent imaging</p> . International Journal of Nanomedicine, 2019, Volume 14, 3543-3555.	6.7	11
67	An Organic Afterglow Protheranostic Nanoassembly. Advanced Materials, 2019, 31, e1902672.	21.0	97
68	A Magneto-Optical Nanoplatform for Multimodality Imaging of Tumors in Mice. ACS Nano, 2019, 13, 7750-7758.	14.6	78
69	Bactericidal activity-tunable conjugated polymers as a human-friendly bactericide for the treatment of wound infections. Biomaterials Science, 2019, 7, 3788-3794.	5.4	16
70	Tumor-Microenvironment-Induced All-in-One Nanoplatform for Multimodal Imaging-Guided Chemical and Photothermal Therapy of Cancer. ACS Applied Materials & Interfaces, 2019, 11, 25043-25053.	8.0	57
71	Water-soluble conjugated polymer with near-infrared absorption for synergistic tumor therapy using photothermal and photodynamic activity. Chemical Communications, 2019, 55, 8615-8618.	4.1	31
72	Amphiphilic semiconducting oligomer for single NIR laser induced photothermal/photodynamic combination therapy. Dyes and Pigments, 2019, 170, 107664.	3.7	23

#	Article	IF	CITATIONS
73	Lab-in-cell based on spontaneous amino-yne click polymerization. Science China Chemistry, 2019, 62, 1198-1203.	8.2	55
74	Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer. Biomaterials Science, 2019, 7, 3450-3459.	5.4	75
75	Activatable NIR Fluorescence/MRI Bimodal Probes for in Vivo Imaging by Enzyme-Mediated Fluorogenic Reaction and Self-Assembly. Journal of the American Chemical Society, 2019, 141, 10331-10341.	13.7	268
76	Mutualistic benefit in the self-sorted co-aggregates of peri-naphthoindigo and a 4-amino-1,8-naphthalimide derivative. Soft Matter, 2019, 15, 5282-5286.	2.7	1
77	Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics, 2019, 9, 3443-3458.	10.0	106
78	Highly Stable Core–Shell Structured Semiconducting Polymer Nanoparticles for FRETâ€Based Intracellular pH Imaging. Advanced Healthcare Materials, 2019, 8, 1900255.	7.6	8
79	Copper Sulfide Nanodisks and Nanoprisms for Photoacoustic Ovarian Tumor Imaging. Particle and Particle Systems Characterization, 2019, 36, 1900171.	2.3	12
80	A nano-cocktail of an NIR-II emissive fluorophore and organoplatinum(<scp>ii</scp>) metallacycle for efficient cancer imaging and therapy. Chemical Science, 2019, 10, 7023-7028.	7.4	98
81	Nanotransducers for Nearâ€Infrared Photoregulation in Biomedicine. Advanced Materials, 2019, 31, e1901607.	21.0	125
82	Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy. Theranostics, 2019, 9, 4168-4181.	10.0	103
83	Allâ€inâ€One Phototheranostics: Single Laser Triggers NIRâ€II Fluorescence/Photoacoustic Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy. Advanced Functional Materials, 2019, 29, 1901480.	14.9	278
84	Recent advances on small-molecule fluorophores with emission beyond 1000 nm for better molecular imaging in vivo. Chinese Chemical Letters, 2019, 30, 1731-1737.	9.0	73
85	In Vivo Near-Infrared Fluorescence and Photoacoustic Dual-Modal Imaging of Endogenous Alkaline Phosphatase. Analytical Chemistry, 2019, 91, 7112-7117.	6.5	58
86	Nearâ€Infrared Light Activated Thermosensitive Ion Channel to Remotely Control Transgene System for Thrombolysis Therapy. Small, 2019, 15, e1901176.	10.0	17
87	Viral capsid-like titania for selective enrichment of phosphorylated peptides. Chemical Communications, 2019, 55, 6759-6762.	4.1	4
88	Persistent Regulation of Tumor Microenvironment via Circulating Catalysis of MnFe ₂ O ₄ @Metal–Organic Frameworks for Enhanced Photodynamic Therapy. Advanced Functional Materials, 2019, 29, 1901417.	14.9	217
89	Triplet Tellurophene-Based Semiconducting Polymer Nanoparticles for Near-Infrared-Mediated Cancer Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 17884-17893.	8.0	27
90	Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. Angewandte Chemie, 2019, 131, 8245-8249.	2.0	20

#	Article	IF	CITATIONS
91	Stable, Wavelengthâ€Tunable Fluorescent Dyes in the NIRâ€II Region for Inâ€Vivo Highâ€Contrast Bioimaging and Multiplexed Biosensing. Angewandte Chemie, 2019, 131, 8250-8255.	2.0	206
92	Stable, Wavelengthâ€Tunable Fluorescent Dyes in the NIRâ€II Region for Inâ€Vivo Highâ€Contrast Bioimaging and Multiplexed Biosensing. Angewandte Chemie - International Edition, 2019, 58, 8166-8171.	13.8	270
93	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie, 2019, 131, 8891-8895.	2.0	7
94	Porphyrin Nanocageâ€Embedded Singleâ€Molecular Nanoparticles for Cancer Nanotheranostics. Angewandte Chemie - International Edition, 2019, 58, 8799-8803.	13.8	62
95	Pheophytin Derived Nearâ€Infraredâ€Light Responsive Carbon Dot Assembly as a New Phototheranotic Agent for Bioimaging and Photodynamic Therapy. Chemistry - an Asian Journal, 2019, 14, 2162-2168.	3.3	47
96	Charge-transfer heptamethine dyes for NIR singlet oxygen generation. Chemical Communications, 2019, 55, 5511-5514.	4.1	10
97	Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 8161-8165.	13.8	183
98	Two-photon excited organic nanoparticles for chemo-photodynamic therapy. Dyes and Pigments, 2019, 167, 195-203.	3.7	10
99	Nearâ€Infraredâ€II Molecular Dyes for Cancer Imaging and Surgery. Advanced Materials, 2019, 31, e1900321.	21.0	631
100	Rational Design and Synthesis of a Metalloproteinase-Activatable Probe for Dual-Modality Imaging of Metastatic Lymph Nodes in Vivo. Journal of Organic Chemistry, 2019, 84, 6126-6133.	3.2	25
101	An Extendable Star-Like Nanoplatform for Functional and Anatomical Imaging-Guided Photothermal Oncotherapy. ACS Nano, 2019, 13, 4379-4391.	14.6	65
102	Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranostics, 2019, 9, 1550-1571.	10.0	123
103	A BODIPYâ€Based Donor/Donor–Acceptor System: Towards Highly Efficient Longâ€Wavelengthâ€Excitable Nearâ€IR Polymer Dots with Narrow and Strong Absorption Features. Angewandte Chemie, 2019, 131, 7082-7086.	2.0	4
104	Characterization and Biodistribution Analysis of Oxygen-Doped Single-Walled Carbon Nanotubes Used as <i>in Vivo</i> Fluorescence Imaging Probes. Bioconjugate Chemistry, 2019, 30, 1323-1330.	3.6	34
105	Tailoring the photoluminescence of atomically precise nanoclusters. Chemical Society Reviews, 2019, 48, 2422-2457.	38.1	655
106	Photoâ€Regulated Supramolecular Polymers: Shining Beyond Disassembly and Reassembly. Advanced Optical Materials, 2019, 7, 1900033.	7.3	60
107	A BODIPYâ€Based Donor/Donor–Acceptor System: Towards Highly Efficient Longâ€Wavelengthâ€Excitable Nearâ€IR Polymer Dots with Narrow and Strong Absorption Features. Angewandte Chemie - International Edition, 2019, 58, 7008-7012.	13.8	57
108	Cell Membrane Camouflaged Hydrophobic Drug Nanoflake Sandwiched with Photosensitizer for Orchestration of Chemoâ€Photothermal Combination Therapy. Small, 2019, 15, e1805544.	10.0	30

#	Article	IF	CITATIONS
109	Inherent multifunctional inorganic nanomaterials for imaging-guided cancer therapy. Nano Today, 2019, 26, 108-122.	11.9	67
110	Ultrafast synthesis of gold nanosphere cluster coated by graphene quantum dot for active targeting PA/CT imaging and near-infrared laser/pH-triggered chemo-photothermal synergistic tumor therapy. Chemical Engineering Journal, 2019, 369, 87-99.	12.7	45
111	Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. Journal of the American Chemical Society, 2019, 141, 5359-5368.	13.7	465
112	Radiofrequency-Sensitive Longitudinal Relaxation Tuning Strategy Enabling the Visualization of Radiofrequency Ablation Intensified by Magnetic Composite. ACS Applied Materials & Interfaces, 2019, 11, 11251-11261.	8.0	42
113	Two-Photon Supramolecular Nanoplatform for Ratiometric Bioimaging. Analytical Chemistry, 2019, 91, 6371-6377.	6.5	24
114	Biodegradable Antibacterial Polymeric Nanosystems: A New Hope to Cope with Multidrugâ€Resistant Bacteria. Small, 2019, 15, e1900999.	10.0	135
115	Photostable Iridium(III)–Cyanine Complex Nanoparticles for Photoacoustic Imaging Guided Near-Infrared Photodynamic Therapy in Vivo. ACS Applied Materials & Interfaces, 2019, 11, 15417-15425.	8.0	53
116	Unadulterated BODIPY nanoparticles for biomedical applications. Coordination Chemistry Reviews, 2019, 390, 76-85.	18.8	99
117	Semiconducting Perylene Diimide Nanostructure: Multifunctional Phototheranostic Nanoplatform. Accounts of Chemical Research, 2019, 52, 1245-1254.	15.6	138
118	Beyond 1000 nm Emission Wavelength: Recent Advances in Organic and Inorganic Emitters for Deepâ€Tissue Molecular Imaging. Advanced Healthcare Materials, 2019, 8, e1900260.	7.6	125
119	Enhancing singlet oxygen generation in semiconducting polymer nanoparticles through fluorescence resonance energy transfer for tumor treatment. Chemical Science, 2019, 10, 5085-5094.	7.4	66
120	Second near-infrared photodynamic therapy and chemotherapy of orthotopic malignant glioblastoma with ultra-small Cu _{2â"x} Se nanoparticles. Nanoscale, 2019, 11, 7600-7608.	5.6	100
121	Simultaneous Passivation and Encapsulation of Black Phosphorus Nanosheets (Phosphorene) by Optically Active Polypeptide Micelles for Biosensors. ACS Applied Nano Materials, 2019, 2, 2397-2404.	5.0	19
122	A polymer dots fluorescent sensor for detection of alkaline phosphatase activity and inhibitor evaluation. Journal of Materials Science, 2019, 54, 10055-10064.	3.7	12
123	Designing an Amino-Fullerene Derivative C ₇₀ –(EDA) ₈ to Fight Superbacteria. ACS Applied Materials & Interfaces, 2019, 11, 14597-14607.	8.0	38
124	A Semiconducting Polymer Nanoâ€prodrug for Hypoxiaâ€Activated Photodynamic Cancer Therapy. Angewandte Chemie, 2019, 131, 5981-5985.	2.0	43
125	Energy onverting Nanomedicine. Small, 2019, 15, e1805339.	10.0	82
126	Cooperative Blinking from Dye Ensemble Activated by Energy Transfer for Super-resolution Cellular Imaging. Analytical Chemistry, 2019, 91, 4179-4185.	6.5	14

#	Article	IF	CITATIONS
127	Synthesis of Soluble Silsesquioxane–Polythiophene Hybrid Copolymers with a Controlled Morphology. ACS Applied Polymer Materials, 2019, 1, 437-451.	4.4	4
128	Biocompatible small organic molecule phototheranostics for NIR-II fluorescence/photoacoustic imaging and simultaneous photodynamic/photothermal combination therapy. Materials Chemistry Frontiers, 2019, 3, 650-655.	5.9	109
129	Nearâ€Infrared Afterglow Semiconducting Nanoâ€Polycomplexes for the Multiplex Differentiation of Cancer Exosomes. Angewandte Chemie, 2019, 131, 5037-5041.	2.0	43
130	Photoactivatable Organic Semiconducting Pro-nanoenzymes. Journal of the American Chemical Society, 2019, 141, 4073-4079.	13.7	231
131	Microfluidics-Prepared Uniform Conjugated Polymer Nanoparticles for Photo-Triggered Immune Microenvironment Modulation and Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 11167-11176.	8.0	51
132	A near-infrared turn-on probe for in vivo chemoselective photoacoustic detection of fluoride ion. Dyes and Pigments, 2019, 165, 408-414.	3.7	19
133	A Semiconducting Polymer Nanoâ€prodrug for Hypoxiaâ€Activated Photodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 5920-5924.	13.8	289
134	Facile core–shell nanoparticles with controllable antibacterial activity assembled by chemical and biological molecules. Biomaterials Science, 2019, 7, 5528-5534.	5.4	4
135	A mitochondria-targeting dinuclear Ir–Ru complex as a synergistic photoactivated chemotherapy and photodynamic therapy agent against cisplatin-resistant tumour cells. Chemical Communications, 2019, 55, 12547-12550.	4.1	49
136	Robust organic nanoparticles for noninvasive long-term fluorescence imaging. Journal of Materials Chemistry B, 2019, 7, 6879-6889.	5.8	12
137	NIR-II Dye-Labeled Cylindrical Polymer Brushes for in Vivo Imaging. ACS Macro Letters, 2019, 8, 1623-1628.	4.8	13
138	Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Frontiers in Bioengineering and Biotechnology, 2019, 7, 320.	4.1	44
139	A photochromic upconversion nanoarchitecture: towards activatable bioimaging and dual NIR light-programmed singlet oxygen generation. Chemical Science, 2019, 10, 10231-10239.	7.4	45
140	Regulating the Photophysical Property of Organic/Polymer Optical Agents for Promoted Cancer Phototheranostics. Advanced Materials, 2020, 32, e1806331.	21.0	231
141	Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials, 2020, 228, 119553.	11.4	109
142	The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. Bioconjugate Chemistry, 2020, 31, 260-275.	3.6	75
143	Nucleus-targeting near-infrared nanoparticles based on TAT peptide-conjugated IR780 for photo-chemotherapy of breast cancer. Chemical Engineering Journal, 2020, 380, 122458.	12.7	80
144	Modification of fluorescent nanocrystals with 6-thioguanine: monitoring of drug delivery. Applied Nanoscience (Switzerland), 2020, 10, 83-93.	3.1	9

#	Article	IF	CITATIONS
145	Recent Advances and Sensing Applications of Carbon Dots. Small Methods, 2020, 4, 1900387.	8.6	145
146	New sight for old polymerization technique based on aggregation-induced emission: Mechanism analysis for conventional emulsion polymerization. Dyes and Pigments, 2020, 172, 107796.	3.7	7
147	Activatable Phototheranostic Materials for Imaging-Guided Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 5286-5299.	8.0	75
148	Promising Applications of AlEgens in Animal Models. Small Methods, 2020, 4, 1900583.	8.6	25
149	Photophysics and photoreactivity of cross-conjugated enediynyl aggregates: Applications to multi-parametric sensing of microheterogeneity and reversible fluorescence switching. Chemical Physics, 2020, 529, 110579.	1.9	3
150	NIR/ROSâ€Responsive Black Phosphorus QD Vesicles as Immunoadjuvant Carrier for Specific Cancer Photodynamic Immunotherapy. Advanced Functional Materials, 2020, 30, 1905758.	14.9	75
151	An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chemical Science, 2020, 11, 419-428.	7.4	42
152	Activatable molecular agents for cancer theranostics. Chemical Science, 2020, 11, 618-630.	7.4	116
153	Porphyrin–diketopyrrolopyrrole conjugates and related structures: Synthesis, properties and applications. Journal of Porphyrins and Phthalocyanines, 2020, 24, 43-66.	0.8	8
154	pH stimulus-disaggregated BODIPY: an activated photodynamic/photothermal sensitizer applicable to tumor ablation. Chemical Communications, 2020, 56, 1956-1959.	4.1	42
155	Engineering of a zero cross-talk fluorescent polymer nanoprobe for self-referenced ratiometric imaging of lysosomal hypochlorous acid in living cells. Materials Chemistry Frontiers, 2020, 4, 862-868.	5.9	26
156	Multimodal Nanocarrier Probes Reveal Superior Biodistribution Quantification by Isotopic Analysis over Fluorescence. ACS Nano, 2020, 14, 509-523.	14.6	23
157	Nanoelectrochemical biosensors for monitoring ROS in cancer cells. Analyst, The, 2020, 145, 1294-1301.	3.5	18
158	A facile strategy to realize a single/double photon excitation-dependent photosensitizer for imaging-guided phototherapy against HeLa cancer cells at separate irradiation channels. Chemical Communications, 2020, 56, 571-574.	4.1	12
159	Design, synthesis, and evaluation of azo D–π-A dyes as photothermal agents. Organic and Biomolecular Chemistry, 2020, 18, 93-101.	2.8	11
160	Recent advances and prospects of carbon dots in cancer nanotheranostics. Materials Chemistry Frontiers, 2020, 4, 449-471.	5.9	101
161	Efficient Construction of Near-Infrared Absorption Donor–Acceptor Copolymers with and without Pt(II)-Incorporation toward Broadband Nonlinear Optical Materials. ACS Applied Materials & Interfaces, 2020, 12, 2944-2951.	8.0	29
162	Near-Infrared Polymer Dots with Aggregation-Induced Emission for Tumor Imaging. ACS Applied Polymer Materials, 2020, 2, 74-79.	4.4	23

#	Article	IF	CITATIONS
163	Molecularly Engineered Macrophageâ€Đerived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. Angewandte Chemie, 2020, 132, 4097-4103.	2.0	14
164	A Renal learable Macromolecular Reporter for Nearâ€Infrared Fluorescence Imaging of Bladder Cancer. Angewandte Chemie - International Edition, 2020, 59, 4415-4420.	13.8	77
165	Constitutional Isomerization Enables Bright NIRâ€I AIEgen for Brainâ€Inflammation Imaging. Advanced Functional Materials, 2020, 30, 1908125.	14.9	175
166	Organic Small Molecule Based Photothermal Agents with Molecular Rotors for Malignant Breast Cancer Therapy. Advanced Functional Materials, 2020, 30, 1907093.	14.9	84
167	Hypocrellin Derivative‣oaded Calcium Phosphate Nanorods as NIR Lightâ€Triggered Phototheranostic Agents with Enhanced Tumor Accumulation for Cancer Therapy. ChemMedChem, 2020, 15, 177-181.	3.2	10
168	Responsive Exosome Nanoâ€bioconjugates for Synergistic Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 2018-2022.	13.8	226
169	Monodispersed plasmonic Prussian blue nanoparticles for zero-background SERS/MRI-guided phototherapy. Nanoscale, 2020, 12, 3292-3301.	5.6	45
170	Chemiluminescence resonance energy transfer: From mechanisms to analytical applications. TrAC - Trends in Analytical Chemistry, 2020, 123, 115755.	11.4	41
171	Semiconducting Polymer Nanoreporters for Nearâ€Infrared Chemiluminescence Imaging of Immunoactivation. Advanced Materials, 2020, 32, e1906314.	21.0	118
172	Molecularly Engineered Macrophageâ€Derived Exosomes with Inflammation Tropism and Intrinsic Heme Biosynthesis for Atherosclerosis Treatment. Angewandte Chemie - International Edition, 2020, 59, 4068-4074.	13.8	164
173	Organic semiconducting polymer amphiphile for near-infrared-II light-triggered phototheranostics. Biomaterials, 2020, 232, 119684.	11.4	96
174	Responsive Exosome Nanoâ€bioconjugates for Synergistic Cancer Therapy. Angewandte Chemie, 2020, 132, 2034-2038.	2.0	27
175	Reactive Oxygen Correlated Chemiluminescent Imaging of a Semiconducting Polymer Nanoplatform for Monitoring Chemodynamic Therapy. Nano Letters, 2020, 20, 176-183.	9.1	123
176	Biodegradable Inorganic Nanoparticles for Cancer Theranostics: Insights into the Degradation Behavior. Bioconjugate Chemistry, 2020, 31, 315-331.	3.6	82
177	Cellular fluorescence imaging based on resonance energy transfer. TrAC - Trends in Analytical Chemistry, 2020, 123, 115742.	11.4	24
178	Tailorâ€Made Polymer Nanoâ€Assembly with Switchable Function and Amplified Antiâ€Tumor Therapy. Advanced Healthcare Materials, 2020, 9, e1901492.	7.6	2
179	Biodegradable Nanoprodrugs: "Delivering―ROS to Cancer Cells for Molecular Dynamic Therapy. Advanced Materials, 2020, 32, e1904011.	21.0	115
180	High performance one-for-all phototheranostics: NIR-II fluorescence imaging guided mitochondria-targeting phototherapy with a single-dose injection and 808Anm laser irradiation. Biomaterials 2020 231 119671	11.4	87

#	Article	IF	CITATIONS
181	Recent Advances in Nanomaterialâ€Assisted Combinational Sonodynamic Cancer Therapy. Advanced Materials, 2020, 32, e2003214.	21.0	333
182	Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy. Journal of Controlled Release, 2020, 328, 631-639.	9.9	56
183	Nearâ€Infrared Fluorescence/Photoacoustic Agent with an Intensifying Optical Performance for Imagingâ€Guided Effective Photothermal Therapy. Advanced Therapeutics, 2020, 3, 2000170.	3.2	25
184	Artificial Nanotargeted Cells with Stable Photothermal Performance for Multimodal Imaging-Guided Tumor-Specific Therapy. ACS Nano, 2020, 14, 12652-12667.	14.6	72
185	Bioapplications of small molecule Aza-BODIPY: from rational structural design to <i>in vivo</i> investigations. Chemical Society Reviews, 2020, 49, 7533-7567.	38.1	255
186	An NIRâ€IIâ€Emissive Photosensitizer for Hypoxiaâ€Tolerant Photodynamic Theranostics. Advanced Materials, 2020, 32, e2003471.	21.0	150
187	Polymers for Photothermal Applications in Biology. ACS Applied Polymer Materials, 2020, 2, 4160-4161.	4.4	9
188	Multi-responsive nanococktails with programmable targeting capacity for imaging-guided mitochondrial phototherapy combined with chemotherapy. Journal of Controlled Release, 2020, 327, 371-383.	9.9	36
189	Temperature Feedback ontrolled Photothermal/Photodynamic/Chemodynamic Combination Cancer Therapy Based on NaGdF ₄ :Er,Yb@NaGdF ₄ :Nd@Cuâ€BIF Nanoassemblies. Advanced Healthcare Materials, 2020, 9, e2001205.	7.6	16
190	Hierarchical integration of degradable mesoporous silica nanoreservoirs and supramolecular dendrimer complex as a general-purpose tumor-targeted biomimetic nanoplatform for gene/small-molecule anticancer drug co-delivery. Nanoscale, 2020, 12, 16102-16112.	5.6	27
191	Photoactivatable Protherapeutic Nanomedicine for Cancer. Advanced Materials, 2020, 32, e2002661.	21.0	157
192	Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Advances, 2020, 2, 3656-3733.	4.6	100
193	Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chemical Science, 2020, 11, 10553-10570.	7.4	55
194	Dual-targeted photothermal agents for enhanced cancer therapy. Chemical Science, 2020, 11, 8055-8072.	7.4	60
195	An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging. Science Advances, 2020, 6, eabb1421.	10.3	56
196	Light-induced liposomes for cancer therapeutics. Progress in Lipid Research, 2020, 79, 101052.	11.6	47
197	Indocyanine Green and Methyl-β-Cyclodextrin Complex for Enhanced Photothermal Cancer Therapy. Biomedicines, 2020, 8, 476.	3.2	13
198	Ratiometric fluorescent nanoprobe based on CdTe/SiO2/folic acid/silver nanoparticles core-shell-satellite assembly for determination of 6-mercaptopurine. Mikrochimica Acta, 2020, 187, 665.	5.0	4

#	Article	IF	CITATIONS
199	Induction of Immunogenic Cell Death in Breast Cancer by Conductive Polymer Nanoparticle-Mediated Photothermal Therapy. ACS Applied Polymer Materials, 2020, 2, 5602-5620.	4.4	16
200	Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nature Communications, 2020, 11, 6183.	12.8	176
201	Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS Nano, 2020, 14, 16840-16853.	14.6	72
202	A DFT study on the electronic and photophysical properties of biphenylyl/thiophene derivatives for organic light emitting transistors. Materials Today Communications, 2020, 25, 101509.	1.9	3
203	Exploiting molecular probes to perform nearâ€infrared fluorescenceâ€guided surgery. View, 2020, 1, 20200068.	5.3	29
204	Improving Cancer Immunotherapy by Cell Membraneâ€Camouflaged Nanoparticles. Advanced Functional Materials, 2020, 30, 2004397.	14.9	123
205	Intelligent Hybrid Hydrogels for Rapid <i>In Situ</i> Detection and Photothermal Therapy of Bacterial Infection. ACS Applied Materials & Interfaces, 2020, 12, 39685-39694.	8.0	74
206	PEGylated WS ₂ nanodrug system with erythrocyte membrane coating for chemo/photothermal therapy of cervical cancer. Biomaterials Science, 2020, 8, 5088-5105.	5.4	32
207	Recent Progress on Activatable Nanomedicines for Immunometabolic Combinational Cancer Therapy. Small Structures, 2020, 1, 2000026.	12.0	54
208	Conjugated Polymer Nanoparticles with Absorption beyond 1000 nm for NIR-II Fluorescence Imaging System Guided NIR-II Photothermal Therapy. ACS Applied Polymer Materials, 2020, 2, 4171-4179.	4.4	51
209	AIE based GSH activatable photosensitizer for imaging-guided photodynamic therapy. Chemical Communications, 2020, 56, 10317-10320.	4.1	71
210	Fluorescent Polymer Dot-Based Multicolor Stimulated Emission Depletion Nanoscopy with a Single Laser Beam Pair for Cellular Tracking. Analytical Chemistry, 2020, 92, 12088-12096.	6.5	25
211	Self-accelerating H ₂ O ₂ -responsive Plasmonic Nanovesicles for Synergistic Chemo/starving therapy of Tumors. Theranostics, 2020, 10, 8691-8704.	10.0	43
212	Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. Journal of Nanobiotechnology, 2020, 18, 108.	9.1	86
213	Polyaniline Nanovesicles for Photoacoustic Imagingâ€Guided Photothermalâ€Chemo Synergistic Therapy in the Second Nearâ€Infrared Window. Small, 2020, 16, e2001177.	10.0	25
214	Nearâ€Infrared Chemiluminescent Reporters for In Vivo Imaging of Reactive Oxygen and Nitrogen Species in Kidneys. Advanced Functional Materials, 2020, 30, 2003628.	14.9	82
215	Black Phosphorus Nanosheet with High Thermal Conversion Efficiency for Photodynamic/Photothermal/Immunotherapy. ACS Biomaterials Science and Engineering, 2020, 6, 4940-4948.	5.2	52
216	NIR-II emissive multifunctional AIEgen with single laser-activated synergistic photodynamic/photothermal therapy of cancers and pathogens. Biomaterials, 2020, 259, 120315.	11.4	103

#	Article	IF	CITATIONS
217	Fluorescent Materials for Cell Imaging. , 2020, , .		1
218	Nanoplatform-based cascade engineering for cancer therapy. Chemical Society Reviews, 2020, 49, 9057-9094.	38.1	109
219	Design of superior phototheranostic agents guided by Jablonski diagrams. Chemical Society Reviews, 2020, 49, 8179-8234.	38.1	397
220	Carbonaceous nanomaterials for phototherapy: a review. Emergent Materials, 2020, 3, 479-502.	5.7	12
221	Conjugated-Polymer-Based Nanomaterials for Photothermal Therapy. ACS Applied Polymer Materials, 2020, 2, 4258-4272.	4.4	65
222	An Ester‣ubstituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIRâ€H Photoacoustic Performance for Monitoring of Tumor Growth. Angewandte Chemie - International Edition, 2020, 59, 23268-23276.	13.8	76
223	A near-infrared turn-on fluorescence probe for glutathione detection based on nanocomposites of semiconducting polymer dots and MnO2 nanosheets. Analytical and Bioanalytical Chemistry, 2020, 412, 8167-8176.	3.7	13
224	Ultrastable Nearâ€Infrared Nonlinear Organic Chromophore Nanoparticles with Intramolecular Charge Transfer for Dually Photoinduced Tumor Ablation. Advanced Healthcare Materials, 2020, 9, e2001042.	7.6	12
225	An Esterâ€ S ubstituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIRâ€ I Photoacoustic Performance for Monitoring of Tumor Growth. Angewandte Chemie, 2020, 132, 23468-23476.	2.0	7
226	Smart Acidâ€Activatable Selfâ€Assembly of Black Phosphorous as Photosensitizer to Overcome Poor Tumor Retention in Photothermal Therapy. Advanced Functional Materials, 2020, 30, 2003338.	14.9	25
227	Recent Advances in Crosslinked Nanogel for Multimodal Imaging and Cancer Therapy. Polymers, 2020, 12, 1902.	4.5	14
228	Inhibiting Radiative Transition-Mediated Multifunctional Polymeric Nanoplatforms for Highly Efficient Tumor Phototherapeutics. ACS Applied Materials & Interfaces, 2020, 12, 44523-44533.	8.0	15
229	A thieno-isoindigo derivative-based conjugated polymer nanoparticle for photothermal therapy in the NIR-II bio-window. Nanoscale, 2020, 12, 19665-19672.	5.6	34
230	Photothermal Conjugated Polymers and Their Biological Applications in Imaging and Therapy. ACS Applied Polymer Materials, 2020, 2, 4222-4240.	4.4	31
231	NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nature Communications, 2020, 11, 4192.	12.8	163
232	CuGeO3 Nanoparticles: An Efficient Photothermal Theragnosis Agent for CT Imaging-Guided Photothermal Therapy of Cancers. Frontiers in Bioengineering and Biotechnology, 2020, 8, 590518.	4.1	6
233	Interfacial nanoarchitectonics for responsive cellular biosystems. Materials Today Bio, 2020, 8, 100075.	5.5	13
234	Cubic POSS engineering of photosensitizer-doped semiconducting polymer nanoparticles for enhanced fluorescence imaging and amplified photodynamic therapy. Polymer Chemistry, 2020, 11, 2025, 2041	3.9	11

#	Article	IF	CITATIONS
235	Roomâ€Temperature Phosphorescence Resonance Energy Transfer for Construction of Nearâ€Infrared Afterglow Imaging Agents. Advanced Materials, 2020, 32, e2006752.	21.0	265
236	Photobiomodulation of the Visual System and Human Health. International Journal of Molecular Sciences, 2020, 21, 8020.	4.1	8
237	A Photoinduced Nonadiabatic Decayâ€Guided Molecular Motor Triggers Effective Photothermal Conversion for Cancer Therapy. Angewandte Chemie, 2020, 132, 11394-11398.	2.0	15
238	Precisely Tuning Photothermal and Photodynamic Effects of Polymeric Nanoparticles by Controlled Copolymerization. Angewandte Chemie, 2020, 132, 12856-12861.	2.0	7
239	Recent development of small-molecule organic fluorophores for multifunctional bioimaging in the second near-infrared window. Journal of Luminescence, 2020, 225, 117338.	3.1	39
240	Recent advances in synthesis and application of organic near-infrared fluorescence polymers. Journal of Materials Science, 2020, 55, 9918-9947.	3.7	23
241	A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Fieldâ€Effect Transistors Optically Tunable by Near Infraâ€Red Light. Angewandte Chemie - International Edition, 2020, 59, 13844-13851.	13.8	21
242	A General Strategy to Encapsulate Semiconducting Polymers within PEGylated Mesoporous Silica Nanoparticles for Optical Imaging and Drug Delivery. Particle and Particle Systems Characterization, 2020, 37, 1900483.	2.3	6
243	Selfâ€assembled organic/metal ion nanohybrids for theranostics. View, 2020, 1, e17.	5.3	27
244	Bile acid-terpyridine conjugates: Steroidal skeleton controlled AIE effect and metal-tunable fluorescence and supramolecular assembly properties. Tetrahedron, 2020, 76, 131283.	1.9	3
245	Construction of a novel bispecific fusion protein to enhance targeting for pancreatic cancer imaging. Biomaterials, 2020, 255, 120161.	11.4	11
246	Ultra-stable tellurium-doped carbon quantum dots for cell protection and near-infrared photodynamic application. Science Bulletin, 2020, 65, 1580-1586.	9.0	17
247	Cyanine-Based Polymer Dots with Long-Wavelength Excitation and Near-Infrared Fluorescence beyond 900 nm for <i>In Vivo</i> Biological Imaging. ACS Applied Bio Materials, 2020, 3, 3846-3858.	4.6	8
248	Polymerization-induced photothermy: A non-donor-acceptor approach to highly effective near-infrared photothermal conversion nanoparticles. Biomaterials, 2020, 255, 120179.	11.4	25
249	Green and Kilogram-Scale Synthesis of Fe Hydrogel for Photothermal Therapy of Tumors in Vivo. ACS Biomaterials Science and Engineering, 2020, 6, 4276-4284.	5.2	6
250	High brightness NIR-II nanofluorophores based on fused-ring acceptor molecules. Nano Research, 2020, 13, 2570-2575.	10.4	23
251	Rational Design of Near-Infrared-II Organic Molecular Dyes for Bioimaging and Biosensing. , 2020, 2, 905-917.		123
252	Emerging combination strategies with phototherapy in cancer nanomedicine. Chemical Society Reviews, 2020, 49, 8065-8087.	38.1	427

#	Article	IF	CITATIONS
253	Polyethylenimine-Assisted Generation of Optical Nanoprobes for Biosensing Applications. ACS Applied Bio Materials, 2020, 3, 3935-3955.	4.6	16
254	Protein-assisted synthesis of nanoscale covalent organic frameworks for phototherapy of cancer. Materials Chemistry Frontiers, 2020, 4, 2346-2356.	5.9	34
255	Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chemical Engineering Journal, 2020, 400, 126009.	12.7	144
256	Diketopyrrolopyrrole: An emerging phototherapy agent in fighting cancer. Dyes and Pigments, 2020, 181, 108599.	3.7	30
257	Light-Triggered Electron Transfer between a Conjugated Polymer and Cytochrome C for Optical Modulation of Redox Signaling. IScience, 2020, 23, 101091.	4.1	23
258	A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Fieldâ€Effect Transistors Optically Tunable by Near Infraâ€Red Light. Angewandte Chemie, 2020, 132, 13948-13955.	2.0	6
259	Nucleolusâ€Targeted Photodynamic Anticancer Therapy Using Renalâ€Clearable Carbon Dots. Advanced Healthcare Materials, 2020, 9, e2000607.	7.6	61
260	Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nature Communications, 2020, 11, 3102.	12.8	226
261	A smart DNA nanodevice for ATP-activatable bioimaging and photodynamic therapy. Science China Chemistry, 2020, 63, 1490-1497.	8.2	18
262	Photothermal Fenton Nanocatalysts for Synergetic Cancer Therapy in the Second Near-Infrared Window. ACS Applied Materials & Interfaces, 2020, 12, 30145-30154.	8.0	72
263	Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chemical Society Reviews, 2020, 49, 2481-2503.	38.1	138
264	2D Nanoarchitectonics: Soft Interfacial Media as Playgrounds for Microobjects, Molecular Machines, and Living Cells. Chemistry - A European Journal, 2020, 26, 6461-6472.	3.3	24
265	Tumor-targeted near-infrared fluorophore for fluorescence-guided phototherapy. Chemical Communications, 2020, 56, 4180-4183.	4.1	13
266	Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie, 2020, 132, 8686-8693.	2.0	6
267	An Activatable Polymeric Reporter for Nearâ€Infrared Fluorescent and Photoacoustic Imaging of Invasive Cancer. Angewandte Chemie, 2020, 132, 7084-7089.	2.0	41
268	Design of AlEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nature Communications, 2020, 11, 1255.	12.8	283
269	Near-Infrared Fluorescent Macromolecular Reporters for Real-Time Imaging and Urinalysis of Cancer Immunotherapy. Journal of the American Chemical Society, 2020, 142, 7075-7082.	13.7	208
270	NIR-emitting semiconducting polymer nanoparticles for <i>in vivo</i> two-photon vascular imaging. Biomaterials Science, 2020, 8, 2666-2672.	5.4	6

#	Article	IF	CITATIONS
271	NIRF Nanoprobes for Cancer Molecular Imaging: Approaching Clinic. Trends in Molecular Medicine, 2020, 26, 469-482.	6.7	63
272	Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. Angewandte Chemie - International Edition, 2020, 59, 10633-10638.	13.8	234
273	Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. Angewandte Chemie, 2020, 132, 10720-10725.	2.0	37
274	Visual monitoring of trace water in organic solvents based on ecofriendly b/r-CDs ratiometric fluorescence test paper. Talanta, 2020, 216, 120958.	5.5	20
275	Activatable Molecular Probes for Second Nearâ€Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angewandte Chemie, 2020, 132, 11813-11827.	2.0	86
276	Cu ₂ MoS ₄ /Au Heterostructures with Enhanced Catalaseâ€Like Activity and Photoconversion Efficiency for Primary/Metastatic Tumors Eradication by Phototherapyâ€Induced Immunotherapy. Small, 2020, 16, e1907146.	10.0	96
277	Tailoring nanoparticles based on boron dipyrromethene for cancer imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1627.	6.1	11
278	Pyridiniumâ€Substituted Tetraphenylethylenes Functionalized with Alkyl Chains as Autophagy Modulators for Cancer Therapy. Angewandte Chemie, 2020, 132, 10128-10137.	2.0	13
279	Activatable Molecular Probes for Second Nearâ€Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging. Angewandte Chemie - International Edition, 2020, 59, 11717-11731.	13.8	353
280	Fluoroâ€Photoacoustic Polymeric Renal Reporter for Realâ€Time Dual Imaging of Acute Kidney Injury. Advanced Materials, 2020, 32, e1908530.	21.0	118
281	Near-infrared photothermal liposomal nanoantagonists for amplified cancer photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 7149-7159.	5.8	26
282	Rational design of near-infrared platinum(<scp>ii</scp>)-acetylide conjugated polymers for photoacoustic imaging-guided synergistic phototherapy under 808 nm irradiation. Journal of Materials Chemistry B, 2020, 8, 7356-7364.	5.8	14
283	Regioisomer-manipulating thio-perylenediimide nanoagents for photothermal/photodynamic theranostics. Journal of Materials Chemistry B, 2020, 8, 5535-5544.	5.8	16
284	Effective Phototheranostics of Brain Tumor Assisted by Near-Infrared-II Light-Responsive Semiconducting Polymer Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 33492-33499.	8.0	100
285	Cucurbit[7]uril-Capped Hybrid Conjugated Oligomer-Gold Nanoparticles for Combined Photodynamic-Photothermal Therapy and Cellular Imaging. ACS Applied Polymer Materials, 2020, 2, 3840-3849.	4.4	9
286	Multimodal Stimuli-Responsive Fluorophore-Functionalized Heterotelechelic Poly(2-isopropyl-2-oxazoline). ACS Applied Polymer Materials, 2020, 2, 3535-3542.	4.4	7
287	Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers, 2020, 12, 1397.	4.5	281
288	The role of CT excitations in PDI aggregates. Physical Chemistry Chemical Physics, 2020, 22, 15908-15918.	2.8	14

#	Article	IF	CITATIONS
289	NIR-II probe modified by poly(L-lysine) with efficient ovalbumin delivery for dendritic cell tracking. Science China Chemistry, 2020, 63, 1272-1280.	8.2	9
290	Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer. Accounts of Chemical Research, 2020, 53, 752-762.	15.6	319
291	Near-Infrared Light-Triggered Synergistic Phototherapy for Antimicrobial Therapy. ACS Applied Bio Materials, 2020, 3, 1730-1737.	4.6	24
292	Near-Infrared-Light-Assisted in Situ Reduction of Antimicrobial Peptide-Protected Gold Nanoclusters for Stepwise Killing of Bacteria and Cancer Cells. ACS Applied Materials & Interfaces, 2020, 12, 11063-11071.	8.0	50
293	Advanced Nearâ€Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems. Advanced Science, 2020, 7, 1903783.	11.2	79
294	New Advances in Fabrication of Graphene Glyconanomaterials for Application in Therapy and Diagnosis. ACS Omega, 2020, 5, 4362-4369.	3.5	13
295	Peculiarities of crystal structures and photophysical properties of Ga ^{III} /Ln ^{III} metallacrowns with a non-planar [12-MC-4] core. Inorganic Chemistry Frontiers, 2020, 7, 1553-1563.	6.0	11
296	Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 3772-3788.	5.8	41
297	Perylene Diimide Oligomer Nanoparticles with Ultrahigh Photothermal Conversion Efficiency for Cancer Theranostics. ACS Applied Bio Materials, 2020, 3, 1607-1615.	4.6	24
298	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	3.2	75
299	An Acceptor–Donor–Acceptor Structured Small Molecule for Effective NIR Triggered Dual Phototherapy of Cancer. Advanced Functional Materials, 2020, 30, 1910301.	14.9	82
300	Charge Transport and Gradient Doping in Nanostructured Polypyrrole Films for Applications in Photocurrent Generation. ACS Applied Nano Materials, 2020, 3, 3060-3070.	5.0	15
301	Nearâ€Infrared Light Triggeredâ€Release in Deep Brain Regions Using Ultraâ€photosensitive Nanovesicles. Angewandte Chemie - International Edition, 2020, 59, 8608-8615.	13.8	36
302	An Activatable Polymeric Reporter for Nearâ€Infrared Fluorescent and Photoacoustic Imaging of Invasive Cancer. Angewandte Chemie - International Edition, 2020, 59, 7018-7023.	13.8	103
303	Pyridiniumâ€ s ubstituted Tetraphenylethylenes Functionalized with Alkyl Chains as Autophagy Modulators for Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 10042-10051.	13.8	66
304	Rational design of semiconducting polymer brushes as cancer theranostics. Materials Horizons, 2020, 7, 1474-1494.	12.2	40
305	Terminal modulation of asymmetrical Dâ^'Aâ^'Dâ^'Ï€ furan-containing diketopyrrolopyrrole chromophores for intramolecular charge transfer properties. Dyes and Pigments, 2020, 177, 108277.	3.7	4
306	Solution-Processable Porous Nanoparticles of a Conjugated Ladder Polymer Network. Macromolecules, 2020, 53, 922-928.	4.8	11

#	Article	IF	CITATIONS
307	Highly Stable and Bright NIR-II AIE Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Interfaces, 2020, 12, 8040-8049.	8.0	50
308	A Renal learable Macromolecular Reporter for Nearâ€Infrared Fluorescence Imaging of Bladder Cancer. Angewandte Chemie, 2020, 132, 4445-4450.	2.0	16
309	Dinuclear metal complexes: multifunctional properties and applications. Chemical Society Reviews, 2020, 49, 765-838.	38.1	148
310	Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. Nano-Micro Letters, 2020, 12, 38.	27.0	55
311	Nanococktail Based on AlEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy. Theranostics, 2020, 10, 2260-2272.	10.0	32
312	Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Advanced Drug Delivery Reviews, 2020, 163-164, 40-64.	13.7	78
313	Multivalent Sorbitol Probes for Nearâ€Infrared Photothermal Cancer Therapy. Particle and Particle Systems Characterization, 2020, 37, 1900490.	2.3	5
314	Improving Quantum Yield of a NIRâ€II Dye by Phenylazo Group. Advanced Healthcare Materials, 2020, 9, e1901470.	7.6	34
315	In Situ Fluorescent and Photoacoustic Imaging of Golgi pH to Elucidate the Function of Transmembrane Protein 165. Analytical Chemistry, 2020, 92, 3103-3110.	6.5	31
316	Upconversion Nanoparticles–Based Multiplex Protein Activation to Neuron Ablation for Locomotion Regulation. Small, 2020, 16, e1906797.	10.0	16
317	Roomâ€Temperature Phosphorescenceâ€active Boronate Particles: Characterization and Ratiometric Afterglowâ€sensing Behavior by Surface Grafting of Rhodamine B. Chemistry - an Asian Journal, 2020, 15, 787-795.	3.3	14
318	Multiplexed NIRâ€I Probes for Lymph Nodeâ€Invaded Cancer Detection and Imagingâ€Guided Surgery. Advanced Materials, 2020, 32, e1907365.	21.0	163
319	Propylenedioxy Thiophene Donor to Achieve NIR-II Molecular Fluorophores with Enhanced Brightness. Chemistry of Materials, 2020, 32, 2061-2069.	6.7	72
320	Photoacoustic Imaging Probes Based on Tetrapyrroles and Related Compounds. International Journal of Molecular Sciences, 2020, 21, 3082.	4.1	17
321	Tuning Optical Properties of BODIPY Dyes by Pyrrole Conjugation for Photoacoustic Imaging. Advanced Optical Materials, 2020, 8, 1902115.	7.3	20
322	A dual-modal probe for NIR fluorogenic and ratiometric photoacoustic imaging of Cys/Hcy in vivo. Science China Chemistry, 2020, 63, 699-706.	8.2	32
323	Recent advances in the development of NIR-II organic emitters for biomedicine. Coordination Chemistry Reviews, 2020, 415, 213318.	18.8	122
324	Different Strategies for Organic Nanoparticle Preparation in Biomedicine. , 2020, 2, 531-549.		60

#	Article	IF	CITATIONS
325	Nanoparticles from Ancient Ink Endowing a Green and Effective Strategy for Cancer Photothermal Therapy in the Second Near-Infrared Window. ACS Omega, 2020, 5, 6177-6186.	3.5	7
326	Fixed-point "blasting―triggered by second near-infrared window light for augmented interventional photothermal therapy. Biomaterials Science, 2020, 8, 2955-2965.	5.4	5
327	Amphiphilic BODIPY dye aggregates in polymeric micelles for wavelength-dependent photo-induced cancer therapy. Journal of Materials Chemistry B, 2020, 8, 6886-6897.	5.8	24
328	Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. International Journal of Molecular Sciences, 2020, 21, 2323.	4.1	31
329	Effective Renal Clearance and Photothermal Therapy of a Cyclodextrin-Modified Quaterrylene Derivative. ACS Applied Bio Materials, 2020, 3, 3390-3400.	4.6	10
330	Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Nearâ€Infrared Photoacoustic Imaging and Photothermal Cancer Therapy. Advanced Functional Materials, 2020, 30, 1909673.	14.9	107
331	Precisely Tuning Photothermal and Photodynamic Effects of Polymeric Nanoparticles by Controlled Copolymerization. Angewandte Chemie - International Edition, 2020, 59, 12756-12761.	13.8	50
332	<p>Paclitaxel/IR1061-Co-Loaded Protein Nanoparticle for Tumor-Targeted and pH/NIR-II-Triggered Synergistic Photothermal-Chemotherapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 2337-2349.	6.7	19
333	Gold nanocluster grafted conjugated polymer nanoparticles for cancer cell imaging and photothermal killing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124764.	4.7	22
334	Rigid π-Extended Boron Difluoride Complex with Mega-Stokes Shift for Bioimaging. Organic Letters, 2020, 22, 3356-3360.	4.6	37
335	Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nature Communications, 2020, 11, 1857.	12.8	294
336	A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. Nanoscale, 2020, 12, 10265-10276.	5.6	47
337	Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics, 2020, 10, 4809-4821.	10.0	58
338	A Photoinduced Nonadiabatic Decayâ€Guided Molecular Motor Triggers Effective Photothermal Conversion for Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 11298-11302.	13.8	73
339	Oligomer/Polymer Blend Phase Diagram and Surface Concentration Profiles for Squalane/Polybutadiene: Experimental Measurements and Predictions from SAFT-γ Mie and Molecular Dynamics Simulations. Macromolecules, 2020, 53, 2299-2309.	4.8	9
340	A mitochondria-targeting NIR fluorescent potassium ion sensor: real-time investigation of the mitochondrial K ⁺ regulation of apoptosis <i>in situ</i> . Chemical Communications, 2020, 56, 5405-5408.	4.1	20
341	Rational Design of Near-Infrared Cyanine-Based Fluorescent Probes for Rapid In Vivo Sensing Cysteine. ACS Applied Bio Materials, 2021, 4, 2001-2008.	4.6	27
342	Near-infrared fluorescent molecular probes for imaging and diagnosis of nephro-urological diseases. Chemical Science, 2021, 12, 3379-3392.	7.4	82

#	Article	IF	CITATIONS
343	Nearâ€Infrared Boron Difluoride Formazanate Dyes. Chemistry - A European Journal, 2021, 27, 2854-2860.	3.3	11
344	Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angewandte Chemie, 2021, 133, 12792-12815.	2.0	14
345	The development of phosphorescent probes for <i>in vitro</i> and <i>in vivo</i> bioimaging. Biomaterials Science, 2021, 9, 285-300.	5.4	74
346	Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 12682-12705.	13.8	151
347	Organic semiconducting nanomaterialsâ€assisted phototheranostics in nearâ€infraredâ€il biological window. View, 2021, 2, 20200070.	5.3	28
348	Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy. Advanced Healthcare Materials, 2021, 10, e2001207.	7.6	53
349	Polymethineâ€Based Semiconducting Polymer Dots with Narrowâ€Band Emission and Absorption/Emission Maxima at NIRâ€II for Bioimaging. Angewandte Chemie, 2021, 133, 996-1002.	2.0	7
350	Structural optimization of organic fluorophores for highly efficient photothermal therapy. Materials Chemistry Frontiers, 2021, 5, 284-292.	5.9	11
351	Recent progress of Acenaphthylene-imide-fused polycyclic aromatic hydrocarbons: Synthesis and application. Dyes and Pigments, 2021, 185, 108877.	3.7	15
352	Polymethineâ€Based Semiconducting Polymer Dots with Narrowâ€Band Emission and Absorption/Emission Maxima at NIRâ€II for Bioimaging. Angewandte Chemie - International Edition, 2021, 60, 983-989.	13.8	69
353	Zwitterionic AlEgens: Rational Molecular Design for NIRâ€II Fluorescence Imagingâ€Guided Synergistic Phototherapy. Advanced Functional Materials, 2021, 31, 2007026.	14.9	87
354	Quantum dots-based hydrogels for sensing applications. Chemical Engineering Journal, 2021, 408, 127351.	12.7	47
355	Dyeâ€Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Advanced Healthcare Materials, 2021, 10, e2001289.	7.6	54
356	A tandem near-infrared fluorescence complementation system with enhanced fluorescence for imaging protein–protein interactions in vivo. Biomaterials, 2021, 268, 120544.	11.4	15
357	Activatable Polymer Nanoenzymes for Photodynamic Immunometabolic Cancer Therapy. Advanced Materials, 2021, 33, e2007247.	21.0	194
358	Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging. ACS Applied Bio Materials, 2021, 4, 2142-2159.	4.6	25
359	Activatable fluorescence sensors for <i>in vivo</i> bio-detection in the second near-infrared window. Chemical Science, 2021, 12, 3448-3459.	7.4	101
360	Near-infrared-responsive functional nanomaterials: the first domino of combined tumor therapy. Nano Today, 2021, 36, 100963.	11.9	30

ARTICLE IF CITATIONS # Recent Advances in Renal Clearable Inorganic Nanoparticles for Cancer Diagnosis. Particle and 361 2.3 8 Particle Systems Characterization, 2021, 38, 2000270. Recent development of nanomedicine for the treatment of bacterial biofilm infections. View, 2021, 2, 5.3 20200065. Activatable Polymeric Nanoprobe for Nearâ€Infrared Fluorescence and Photoacoustic Imaging of 363 13.8 140 Tâ€...Lymphocytes. Angewandte Chemie - International Edition, 2021, 60, 5921-5927. Injectable muscle-adhesive antioxidant conductive photothermal bioactive nanomatrix for efficiently 364 promoting full-thickness skeletal muscle regeneration. Bioactive Materials, 2021, 6, 1605-1617. Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics. 365 15.6 67 Accounts of Chemical Research, 2021, 54, 697-706. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chemical Society 38.1 Reviews, 2021, 50, 1219-1250. Coordination polymers nanoparticles for bioimaging. Coordination Chemistry Reviews, 2021, 432, 367 18.8 41 213716. Second Nearâ€Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer 21.0 Immunotherapy. Advanced Materials, 2021, 33, e2003458. Mechanistic Investigation on Chemiluminescent Formaldehyde Probes. Chemistry - A European Journal, 369 3.3 7 2021, 27, 5712-5720. Fluorescent Imidazo[1,2―a]pyrimidine Compounds as Biocompatible Organic Photosensitizers that 370 Generate Singlet Oxygen: A Potential Tool for Phototheranostics. Chemistry - A European Journal, 3.3 2021, 27, 6213-6222 Stimuliâ€Responsive Nanomaterials for Smart Tumorâ€Specific Phototherapeutics. ChemMedChem, 2021, 16, 371 3.2 3 919-931. Tumor Receptor-Mediated In Vivo Modulation of the Morphology, Phototherapeutic Properties, and 14.6 Pharmacokinetics of Smart Nanomaterials. ACS Nano, 2021, 15, 468-479. Activatable Polymeric Nanoprobe for Nearâ€Infrared Fluorescence and Photoacoustic Imaging of 373 2.0 43 Tâ€...Lymphocytes. Angewandte Chemie, 2021, 133, 5986-5992. An Iridium (III) Complex Bearing a Donor–Acceptor–Donor Type Ligand for NIRâ€Triggered Dual Phototherapy. Advanced Functional Materials, 2021, 31, 2008325. 374 14.9 Near-infrared small molecule coupled with rigidness and flexibility for high-performance multimodal imaging-guided photodynamic and photothermal synergistic therapy. Nanoscale Horizons, 2021, 6, 375 8.0 71 177-185. Synthesis, characterization, and biological applications of semiconducting polythiopheneâ€based nanoparticles. View, 2021, 2, 20200086. Molecularly Engineered Hierarchical Nanodisc from Antiparallel Jâ€stacked BODIPY Conjugates: Application to Theranostics with Mutually Beneficial Properties. Advanced Functional Materials, 2021, 377 14.9 20 31, 2008406. Effective Eradication of Tumors by Enhancing Photoacousticâ€Imagingâ€Guided Combined Photothermal 378 14.9 Therapy and Ultrasonic Therapy. Ádvanced Functional Materials, 2021, 31, 2009314.

#	Article	IF	CITATIONS
379	Molecular Chemiluminescent Probes with a Very Long Nearâ€Infrared Emission Wavelength for inâ€Vivo Imaging. Angewandte Chemie, 2021, 133, 4045-4049.	2.0	23
380	Molecular Chemiluminescent Probes with a Very Long Nearâ€Infrared Emission Wavelength for inâ€Vivo Imaging. Angewandte Chemie - International Edition, 2021, 60, 3999-4003.	13.8	113
381	Enhanced photodynamic therapy for overcoming tumor hypoxia: From microenvironment regulation to photosensitizer innovation. Coordination Chemistry Reviews, 2021, 427, 213604.	18.8	104
382	Life science nanoarchitectonics at interfaces. Materials Chemistry Frontiers, 2021, 5, 1018-1032.	5.9	11
383	Nanoprobes with aggregation-induced emission for theranostics. Materials Chemistry Frontiers, 2021, 5, 603-626.	5.9	53
384	Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate, 2021, 2, 114-132.	9.9	133
385	Synergistic non-bonding interactions based on diketopyrrolo-pyrrole for elevated photoacoustic imaging-guided photothermal therapy. Biomaterials Science, 2021, 9, 908-916.	5.4	10
386	Surgical Navigation for Malignancies Guided by Nearâ€Infraredâ€II Fluorescence Imaging. Small Methods, 2021, 5, e2001066.	8.6	81
387	ROS-responsive probes for low-background optical imaging: a review. Biomedical Materials (Bristol), 2021, 16, 022002.	3.3	13
388	Two-Dimensional and Subnanometer-Thin Quasi-Copper-Sulfide Semiconductor Formed upon Copper–Copper Bonding. ACS Nano, 2021, 15, 873-883.	14.6	12
389	A review of functional linear carbon chains (oligoynes, polyynes, cumulenes) and their applications as molecular wires in molecular electronics and optoelectronics. Journal of Materials Chemistry C, 2021, 9, 10524-10546.	5.5	63
390	A ratiometric photoelectrochemical microsensor based on a small-molecule organic semiconductor for reliable <i>in vivo</i> analysis. Chemical Science, 2021, 12, 12977-12984.	7.4	22
391	Graphene nanoribbon-based supramolecular ensembles with dual-receptor targeting function for targeted photothermal tumor therapy. Chemical Science, 2021, 12, 11089-11097.	7.4	16
392	Structural effect of NIR-II absorbing charge transfer complexes and its application on cysteine-depletion mediated ferroptosis and phototherapy. Journal of Materials Chemistry B, 2021, 9, 8300-8307.	5.8	10
393	Recent Progress in Boosted PDT Induced Immunogenic Cell Death for Tumor Immunotherapy. Chemical Research in Chinese Universities, 2021, 37, 83-89.	2.6	18
394	Near-Infrared II Optical Imaging. , 2021, , 397-420.		0
395	Chemistry for the Identification of Therapeutic Targets: Recent Advances and Future Directions. European Journal of Organic Chemistry, 2021, 2021, 1307-1320.	2.4	5
396	Cuttingâ€edge advancements of nanomaterials for mediâ€ŧranslatable noninvasive theranostic modalities. View, 2021, 2, 20200144.	5.3	8

#	Article	IF	CITATIONS
397	Self-assembly of peptide nanofibers for imaging applications. Nanoscale, 2021, 13, 15142-15150.	5.6	21
398	Excited state mechanisms in crystalline carbazole: the role of aggregation and isomeric defects. Journal of Materials Chemistry C, 2021, 9, 11882-11892.	5.5	10
399	A dentin hypersensitivity treatment using highly stable photothermal conversion nanoparticles. Materials Chemistry Frontiers, 2021, 5, 3388-3395.	5.9	10
400	A cationic conjugated polymer with high 808 nm NIR-triggered photothermal conversion for antibacterial treatment. Journal of Materials Chemistry C, 2022, 10, 2600-2607.	5.5	22
401	Grand Challenges in Photonics: Route to Light. Frontiers in Photonics, 2021, 1, .	2.4	1
402	Activation and Monitoring of mtDNA Damage in Cancer Cells via the "Proton-Triggered― Decomposition of an Ultrathin Nanosheet. ACS Applied Materials & Interfaces, 2021, 13, 3669-3678.	8.0	8
403	A Polymer Multicellular Nanoengager for Synergistic NIRâ€II Photothermal Immunotherapy. Advanced Materials, 2021, 33, e2008061.	21.0	124
404	Most recent advances on enzymeâ€activatable optical probes for bioimaging. Aggregate, 2021, 2, e32.	9.9	39
405	Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. Innovation(China), 2021, 2, 100082.	9.1	69
406	A Supramolecular Strategy to Engineering a Non-photobleaching and Near-Infrared Absorbing Nano-J-Aggregate for Efficient Photothermal Therapy. ACS Nano, 2021, 15, 5032-5042.	14.6	71
407	Rational Design of High Brightness NIR-II Organic Dyes with S-D-A-D-S Structure. Accounts of Materials Research, 2021, 2, 170-183.	11.7	84
408	Diketopyrrolopyrrole Fluorescent Probes, Photophysical and Biological Applications. Chemosensors, 2021, 9, 44.	3.6	16
409	Polydopamine-Coated Laponite Nanoplatforms for Photoacoustic Imaging-Guided Chemo-Phototherapy of Breast Cancer. Nanomaterials, 2021, 11, 394.	4.1	18
410	Immune Cell Membraneâ€Coated Biomimetic Nanoparticles for Targeted Cancer Therapy. Small, 2021, 17, e2006484.	10.0	216
411	Renalâ€Clearable Ultrasmall Polypyrrole Nanoparticles with Sizeâ€Regulated Property for Second Nearâ€Infrared Lightâ€Mediated Photothermal Therapy. Advanced Functional Materials, 2021, 31, 2008362.	14.9	72
412	Single molecular-based nanoparticles with aggregation-induced emission characteristics for fluorescence imaging and efficient cancer phototherapy. Dyes and Pigments, 2021, 187, 109130.	3.7	17
413	Noninvasive <i>In Vivo</i> Imaging and Monitoring of 3D-Printed Polycaprolactone Scaffolds Labeled with an NIR Region II Fluorescent Dye. ACS Applied Bio Materials, 2021, 4, 3189-3202.	4.6	11
414	Photothermal Modulation of Depressionâ€Related Ion Channel Function through Conjugated Polymer Nanoparticles. Advanced Functional Materials, 2021, 31, 2010757.	14.9	22

#	Article	IF	CITATIONS
415	Semiconducting Polymers Based on Isoindigo and Its Derivatives: Synthetic Tactics, Structural Modifications, and Applications. Advanced Functional Materials, 2021, 31, 2010979.	14.9	58
416	Supramolecular Selfâ€Assemblyâ€Facilitated Aggregation of Tumorâ€Specific Transmembrane Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. Advanced Materials, 2021, 33, e2008518.	21.0	66
417	Photosensitizer Functionalized Nanodiamonds for Raman Imaging and Photodynamic Therapy of Cancer Cells. Langmuir, 2021, 37, 4308-4315.	3.5	10
418	Biodegradable Chargeâ€Transfer Complexes for Glutathione Depletion Induced Ferroptosis and NIRâ€I Photoacoustic Imaging Guided Cancer Photothermal Therapy. Angewandte Chemie - International Edition, 2021, 60, 8157-8163.	13.8	135
419	Biodegradable Chargeâ€Transfer Complexes for Glutathione Depletion Induced Ferroptosis and NIRâ€I Photoacoustic Imaging Guided Cancer Photothermal Therapy. Angewandte Chemie, 2021, 133, 8238-8244.	2.0	18
420	880 nm NIR-Triggered Organic Small Molecular-Based Nanoparticles for Photothermal Therapy of Tumor. Nanomaterials, 2021, 11, 773.	4.1	14
421	Recent Progress of Alkyl Radicals Generationâ€Based Agents for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2100055.	7.6	21
422	Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. Angewandte Chemie, 2021, 133, 8531-8535.	2.0	9
423	Synthesis and Photothermal Application of D-A-D Conjugated Small Molecular Nanoparticles. Integrated Ferroelectrics, 2021, 215, 47-52.	0.7	3
424	Organic Nanoparticles with Persistent Luminescence for In Vivo Afterglow Imagingâ€Guided Photodynamic Therapy. Chemistry - A European Journal, 2021, 27, 6911-6916.	3.3	20
425	Probing the Intracellular Dynamics of Nitric Oxide and Hydrogen Sulfide Using an Activatable NIR II Fluorescence Reporter. Angewandte Chemie - International Edition, 2021, 60, 8450-8454.	13.8	63
426	D-A-D structured selenadiazolesbenzothiadiazole-based near-infrared dye for enhanced photoacoustic imaging and photothermal cancer therapy. Chinese Chemical Letters, 2021, 32, 1580-1585.	9.0	58
427	Instant Ultrasound-Evoked Precise Nanobubble Explosion and Deep Photodynamic Therapy for Tumors Guided by Molecular Imaging. ACS Applied Materials & Interfaces, 2021, 13, 21097-21107.	8.0	26
428	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie, 2021, 133, 12114-12119.	2.0	8
429	Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today, 2021, 37, 101073.	11.9	182
430	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2021, 60, 12007-12012.	13.8	37
431	Recent Advances in Polymeric Nanoparticles for Enhanced Fluorescence and Photoacoustic Imaging. Angewandte Chemie, 2021, 133, 17941-17953.	2.0	1
432	Recent Advances in Polymeric Nanoparticles for Enhanced Fluorescence and Photoacoustic Imaging. Angewandte Chemie - International Edition, 2021, 60, 17797-17809.	13.8	61

#	Article	IF	CITATIONS
433	Activatable NIRâ€ I I Fluorescent Probes Applied in Biomedicine: Progress and Perspectives. ChemMedChem, 2021, 16, 2426-2440.	3.2	21
434	3-Amino-1,2,4-triazole-derived graphitic carbon nitride for photodynamic therapy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119363.	3.9	13
435	Simultaneous Deep Tracking of Stem Cells by Surface Enhanced Raman Imaging Combined with Singleâ€Cell Tracking by NIRâ€II Imaging in Myocardial Infarction. Advanced Functional Materials, 2021, 31, 2100468.	14.9	24
436	Wavelengthâ€Tunable, Long Lifetime, and Biocompatible Luminescent Nanoparticles Based on a Vitamin Eâ€Derived Material for Inflammation and Tumor Imaging. Small, 2021, 17, e2100045.	10.0	13
437	Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomedicine and Pharmacotherapy, 2021, 137, 111333.	5.6	35
438	Biocompatible PLNP-GNR composite nanoplatforms for monitoring deep-tissue photothermal therapy process. Applied Surface Science, 2021, 562, 150189.	6.1	8
439	Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy. Nature Communications, 2021, 12, 2934.	12.8	231
440	Controlled Aggregation of a Perylene-Derived Probe for Near-Infrared Fluorescence Imaging and Phototherapy. ACS Applied Bio Materials, 2021, 4, 5008-5015.	4.6	3
441	Aniline pentamer-modified reduced graphene oxide/epoxy composites as anticorrosion coatings. Materials Chemistry and Physics, 2021, 264, 124446.	4.0	14
442	Synergistic Effect of Photothermally Targeted NIR-Responsive Nanomedicine-Induced Immunogenic Cell Death for Effective Triple Negative Breast Cancer Therapy. Biomacromolecules, 2021, 22, 2472-2490.	5.4	29
443	Enlarging the Reservoir: High Absorption Coefficient Dyes Enable Synergetic Near Infraredâ€II Fluorescence Imaging and Near Infraredâ€I Photothermal Therapy. Advanced Functional Materials, 2021, 31, 2102213.	14.9	47
444	Synthesis of chemically bound conjugated polymer on TiO2 for a visible-light-driven photocatalyst: Changeable surface wettability. Materials and Design, 2021, 203, 109630.	7.0	13
445	Conjugated Organic Photothermal Films for Spatiotemporal Thermal Engineering. Advanced Materials, 2021, 33, e2005940.	21.0	26
446	Trigonal Nitrogen Activates High-Brightness Chemiluminescent Carbon Nanodots. , 2021, 3, 826-837.		17
447	Near-infrared organic chromophores with pH-sensitive, non-radiative emission for intelligent disease treatment. Cell Reports Physical Science, 2021, 2, 100433.	5.6	12
448	Near-Infrared Photoactivatable Immunomodulatory Nanoparticles for Combinational Immunotherapy of Cancer. Frontiers in Chemistry, 2021, 9, 701427.	3.6	7
449	A Near-Infrared Organoplatinum(II) Metallacycle Conjugated with Heptamethine Cyanine for Trimodal Cancer Therapy. CCS Chemistry, 2022, 4, 2090-2101.	7.8	44
450	Rigidity Bridging Flexibility to Harmonize Three Excitedâ€State Deactivation Pathways for NIRâ€IIâ€Fluorescentâ€Imagingâ€Guided Phototherapy. Advanced Healthcare Materials, 2021, 10, e2101003.	7.6	31

#	Article	IF	CITATIONS
451	Antibody Self-Assembly Maximizes Cytoplasmic Immunostaining Accuracy of Compact Quantum Dots. Chemistry of Materials, 2021, 33, 4877-4889.	6.7	2
452	Orthogonal Nanoprobes Enabling Two-Color Optical Super-Resolution Microscopy Imaging of the Two Domains of Diblock Copolymer Thin Film Nanocomposites. Chemistry of Materials, 2021, 33, 5156-5167.	6.7	3
453	Biodegradable and Peroxidaseâ€Mimetic Boron Oxynitride Nanozyme for Breast Cancer Therapy. Advanced Science, 2021, 8, e2101184.	11.2	27
454	Metabolizable Near-Infrared-II Nanoprobes for Dynamic Imaging of Deep-Seated Tumor-Associated Macrophages in Pancreatic Cancer. ACS Nano, 2021, 15, 10010-10024.	14.6	40
455	Spherical Nucleic Acids for Near-Infrared Light-Responsive Self-Delivery of Small-Interfering RNA and Antisense Oligonucleotide. ACS Nano, 2021, 15, 11929-11939.	14.6	54
456	Molecular Engineering of High-Performance Aggregation-Induced Emission Photosensitizers to Boost Cancer Theranostics Mediated by Acid-Triggered Nucleus-Targeted Nanovectors. ACS Nano, 2021, 15, 10689-10699.	14.6	50
457	Molecular imaging and disease theranostics with renal-clearable optical agents. Nature Reviews Materials, 2021, 6, 1095-1113.	48.7	223
458	Responsive optical probes for deep-tissue imaging: Photoacoustics and second near-infrared fluorescence. Advanced Drug Delivery Reviews, 2021, 173, 141-163.	13.7	49
459	Aptamer-Targeted Photodynamic Platforms for Tumor Therapy. ACS Applied Materials & Interfaces, 2021, 13, 27749-27773.	8.0	52
460	Thiophene donor for NIR-II fluorescence imaging-guided photothermal/photodynamic/chemo combination therapy. Acta Biomaterialia, 2021, 127, 287-297.	8.3	21
461	A Robust Narrow Bandgap Vanadium Tetrasulfide Sonosensitizer Optimized by Charge Separation Engineering for Enhanced Sonodynamic Cancer Therapy. Advanced Materials, 2021, 33, e2101467.	21.0	107
462	Aggregation Induced Emissive Luminogens for Sensing of Toxic Elements. ChemistryOpen, 2021, 10, 681-696.	1.9	9
463	Folate-targeted Pluronic-chitosan nanocapsules loaded with IR780 for near-infrared fluorescence imaging and photothermal-photodynamic therapy of ovarian cancer. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111755.	5.0	31
464	Human Serum Albumin–Oligothiophene Bioconjugate: A Phototheranostic Platform for Localized Killing of Cancer Cells by Precise Light Activation. Jacs Au, 2021, 1, 925-935.	7.9	19
465	Coordination-based molecular nanomaterials for biomedically relevant applications. Coordination Chemistry Reviews, 2021, 438, 213752.	18.8	17
466	Enzyme-Loaded pH-Sensitive Photothermal Hydrogels for Mild-temperature-mediated Combinational Cancer Therapy. Frontiers in Chemistry, 2021, 9, 736468.	3.6	10
467	Chargeâ€Reversal Polymer Nanoâ€modulators for Photodynamic Immunotherapy of Cancer. Angewandte Chemie, 2021, 133, 19504-19512.	2.0	11
468	Type I AIE photosensitizers: Mechanism and application. View, 2022, 3, 20200121.	5.3	72

#	Article	IF	CITATIONS
469	Reversible Photothermal Modulation of Electrical Activity of Excitable Cells using Polydopamine Nanoparticles. Advanced Materials, 2021, 33, e2008809.	21.0	52
470	The Application of Inorganic Optical Nanoprobes in Bacterial Infection. Journal of Innovative Optical Health Sciences, 0, , 2130004.	1.0	5
471	Organic photostimulated luminescence associated with persistent spin-correlated radical pairs. Communications Materials, 2021, 2, .	6.9	6
472	Chargeâ€Reversal Polymer Nanoâ€modulators for Photodynamic Immunotherapy of Cancer. Angewandte Chemie - International Edition, 2021, 60, 19355-19363.	13.8	90
473	A State-of-the-Art Review on Integral Transform Technique in Laser–Material Interaction: Fourier and Non-Fourier Heat Equations. Materials, 2021, 14, 4733.	2.9	12
474	Organic Semiconducting Luminophores for Nearâ€Infrared Afterglow, Chemiluminescence, and Bioluminescence Imaging. Advanced Functional Materials, 2021, 31, 2106154.	14.9	47
475	Recent progress in the development of sensing systems for in vivo detection of biological hydrogen sulfide. Dyes and Pigments, 2021, 192, 109451.	3.7	14
476	Deep NIR-I Emissive Iridium(III) Complex Bearing D-A Ligand: Synthesis, Photophysical Properties and DFT/TDDFT Calculation. Crystals, 2021, 11, 1038.	2.2	0
477	Cyclic Amplification of the Afterglow Luminescent Nanoreporter Enables the Prediction of Anti ancer Efficiency. Angewandte Chemie - International Edition, 2021, 60, 19779-19789.	13.8	42
478	NIRâ€II Organic Nanotheranostics for Precision Oncotherapy. Small, 2021, 17, e2102646.	10.0	63
479	A Borondifluoride omplexâ€Based Photothermal Agent with an 80 % Photothermal Conversion Efficiency for Photothermal Therapy in the NIRâ€II Window. Angewandte Chemie, 2021, 133, 22550-22558.	2.0	24
480	Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermalâ€ŧoâ€Acoustic Conversion Efficiency for Adaptive Imageâ€Guided Cancer Surgery. Angewandte Chemie - International Edition, 2021, 60, 21047-21055.	13.8	44
481	General Strategy to Achieve Color-Tunable Ratiometric Two-Photon Integrated Single Semiconducting Polymer Dot for Imaging Hypochlorous Acid. ACS Nano, 2021, 15, 13633-13645.	14.6	21
482	Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews, 2021, 441, 213978.	18.8	15
483	Remarkable Suppression of Vibrational Relaxation in Organic Semiconducting Polymers by Introducing a Weak Electron Donor for Improved NIRâ€I Phototheranostics. Advanced Functional Materials, 2021, 31, 2106575.	14.9	26
484	A Borondifluoride omplexâ€Based Photothermal Agent with an 80 % Photothermal Conversion Efficiency for Photothermal Therapy in the NIRâ€II Window. Angewandte Chemie - International Edition, 2021, 60, 22376-22384.	13.8	128
485	Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. Rare Metals, 2022, 41, 56-66.	7.1	29
486	Strategies for maximizing photothermal conversion efficiency based on organic dyes. Drug Discovery Today, 2021, 26, 2045-2052.	6.4	37

#	Article	IF	CITATIONS
487	Cyclic Amplification of the Afterglow Luminescent Nanoreporter Enables the Prediction of Antiâ€cancer Efficiency. Angewandte Chemie, 2021, 133, 19932-19942.	2.0	6
488	Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermalâ€ŧoâ€Acoustic Conversion Efficiency for Adaptive Imageâ€Guided Cancer Surgery. Angewandte Chemie, 2021, 133, 21215-21223.	2.0	28
489	Semiconducting Polymer Nanoparticles as Activatable Nanomedicines for Combinational Phototherapy. ACS Applied Polymer Materials, 2021, 3, 4375-4389.	4.4	28
490	Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. Reviews in the Neurosciences, 2022, 33, 467-490.	2.9	7
491	Diketopyrrolopyrrole derivatives-based NIR-II fluorophores for theranostics. Dyes and Pigments, 2021, 193, 109480.	3.7	18
492	Role of Different Peptides for Cancer Immunotherapy. International Journal of Peptide Research and Therapeutics, 2021, 27, 2777-2793.	1.9	7
493	Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. Small, 2021, 17, e2103127.	10.0	31
494	Nanosonosensitizers With Ultrasound-Induced Reactive Oxygen Species Generation for Cancer Sonodynamic Immunotherapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 761218.	4.1	16
495	An Active Catalyst System Based on Pd (0) and a Phosphine-Based Bulky Ligand for the Synthesis of Thiophene-Containing Conjugated Polymers. Frontiers in Chemistry, 2021, 9, 743091.	3.6	1
496	Tetraphenylethylene based amphiphilic derivatives: The self-assembly, photo-responsiveness and their application for erasable fluorescent ink. Dyes and Pigments, 2021, 193, 109479.	3.7	11
497	Recent advances in assembled AlEgens for image-guided anticancer therapy. Nanotechnology, 2021, 32, .	2.6	5
498	Co-delivery of nanoparticle and molecular drug by hollow mesoporous organosilica for tumor-activated and photothermal-augmented chemotherapy of breast cancer. Journal of Nanobiotechnology, 2021, 19, 290.	9.1	18
499	Jâ€Aggregationâ€Driven Supramolecular Assembly of Dyeâ€Conjugated Block Polymers: From Morphological Tailoring to Anticancer Applications. Advanced Functional Materials, 2021, 31, 2105189.	14.9	10
500	Biomedical applications of Pt(II) metallacycle/metallacage-based agents: From mono-chemotherapy to versatile imaging contrasts and theranostic platforms. Coordination Chemistry Reviews, 2021, 443, 214017.	18.8	57
501	Unraveling the defect-induced photoluminescence of a donor-acceptor AIE luminogen. Dyes and Pigments, 2021, 193, 109566.	3.7	8
502	Mitoâ€Bomb: Targeting Mitochondria for Cancer Therapy. Advanced Materials, 2021, 33, e2007778.	21.0	168
503	Cancer nanomedicine based on polyethylenimine-mediated multifunctional nanosystems. Progress in Materials Science, 2022, 124, 100871.	32.8	22
504	Fluorescent Chemosensors for Ion and Molecule Recognition: The Next Chapter. Frontiers in Sensors, 2021, 2, .	3.3	15

#	Article	IF	CITATIONS
505	Shielding Unit Engineering of NIR-II Molecular Fluorophores for Improved Fluorescence Performance and Renal Excretion Ability. Frontiers in Chemistry, 2021, 9, 739802.	3.6	10
506	Photosensitizer with High Efficiency Generated in Cells via Lightâ€Induced Selfâ€Oligomerization of 4,6â€Dibromothieno[3,4â€ <i>b</i>]thiophene Compound Entailing a Triphenyl Phosphonium Group. Advanced Healthcare Materials, 2021, 10, e2100896.	7.6	3
507	A near-infrared bioprobe with aggregation-induced emission feature for in vitro photodynamic therapy. Dyes and Pigments, 2021, 194, 109521.	3.7	9
508	Dual-locking nanoprobe based on hemicyanine for orthogonal stimuli-triggered precise cancer imaging and therapy. Journal of Controlled Release, 2021, 338, 307-315.	9.9	7
509	Water soluble near infrared dyes based on PEGylated-Tetrapyrrolic macrocycles. Dyes and Pigments, 2021, 195, 109677.	3.7	9
510	An activatable water-soluble photoacoustic probe for real–time imaging of endogenous cysteine in the mouse tumor model. Sensors and Actuators B: Chemical, 2021, 347, 130616.	7.8	13
511	NIR-activated self-sensitized polymeric micelles for enhanced cancer chemo-photothermal therapy. Journal of Controlled Release, 2021, 339, 114-129.	9.9	27
512	Recent progress in near-infrared photoacoustic imaging. Biosensors and Bioelectronics, 2021, 191, 113478.	10.1	41
513	Design strategies to rhodamine analogue fluorophores for near-infrared II biological imaging applications. Dyes and Pigments, 2021, 196, 109792.	3.7	19
514	Bioconjugates of versatile β-diketonate–lanthanide complexes as probes for time-gated luminescence and magnetic resonance imaging of cancer cells <i>in vitro</i> and <i>in vivo</i> . Journal of Materials Chemistry B, 2021, 9, 3161-3167.	5.8	3
515	Covalent organic frameworks for optical applications. Aggregate, 2021, 2, e24.	9.9	41
516	Intravital NIR-II three-dimensional photoacoustic imaging of biomineralized copper sulfide nanoprobes. Journal of Materials Chemistry B, 2021, 9, 3005-3014.	5.8	10
517	Targeted NIR-II emissive nanoprobes for tumor detection in mice and rabbits. Chemical Communications, 2021, 57, 6420-6423.	4.1	13
518	A multifunctional targeted nanoprobe with high NIR-II PAI/MRI performance for precise theranostics of orthotopic early-stage hepatocellular carcinoma. Journal of Materials Chemistry B, 2021, 9, 8779-8792.	5.8	15
519	Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chemical Society Reviews, 2021, 50, 4185-4219.	38.1	576
520	Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Nearâ€Infrared Construction. Small, 2021, 17, e2004723.	10.0	168
521	Orientation effects on C2(5)-C2ʹ(5ʹ) linked bioxazole isomers synthesized via regioselective and sequential C H arylation. Chinese Chemical Letters, 2021, 32, 425-428.	9.0	3
522	Development of a tumor-targetable heteropolymetallic lanthanide-complex-based magnetoluminescent probe for dual-modal time-gated luminescence/magnetic resonance imaging of cancer cells <i>in vitro</i> and <i>in vivo</i> . New Journal of Chemistry, 2021, 45, 9181-9188.	2.8	4

#	Article	IF	CITATIONS
523	Designing organic room temperature phosphorescence with ultralong lifetime by substituent modification. Journal of Materials Chemistry C, 2021, 9, 11172-11179.	5.5	17
524	High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. Journal of Materials Chemistry C, 2021, 9, 13557-13583.	5.5	20
525	Monitoring tumor growth with a novel NIR-II photoacoustic probe. Methods in Enzymology, 2021, 657, 181-222.	1.0	0
526	Rational design of a HA-AuNPs@AIED nanoassembly for activatable fluorescence detection of HAase and imaging in tumor cells. Analytical Methods, 2021, 13, 2030-2036.	2.7	8
527	A thermally activated delayed fluorescence photosensitizer for photodynamic therapy of oral squamous cell carcinoma under low laser intensity. Journal of Materials Chemistry B, 2021, 9, 5645-5655.	5.8	11
528	Nanoparticles weaponized with builtâ€in functions for imagingâ€guided cancer therapy. View, 2020, 1, e19.	5.3	35
529	Nano-architectonics for coordination assemblies at interfacial media. Advances in Inorganic Chemistry, 2020, 76, 199-228.	1.0	4
530	Activatable NIR-II photoacoustic imaging and photochemical synergistic therapy of MRSA infections using miniature Au/Ag nanorods. Biomaterials, 2020, 251, 120092.	11.4	72
531	Highly-stable red-emissive photochromic nanoparticles based on a diarylethene-perylenebisimide dyad. Dyes and Pigments, 2020, 180, 108490.	3.7	8
532	Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today, 2020, 35, 100954.	11.9	138
533	Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chemical Society Reviews, 2020, 49, 4234-4253.	38.1	228
534	Hydrogen Sulfide-Specific and NIR-Light-Controllable Synergistic Activation of Fluorescent Theranostic Prodrugs for Imaging-Guided Chemo-Photothermal Cancer Therapy. CCS Chemistry, 2020, 2, 527-538.	7.8	27
535	Cu3BiS3 Nanocrystals as Efficient Nanoplatforms for CT Imaging Guided Photothermal Therapy of Arterial Inflammation. Frontiers in Bioengineering and Biotechnology, 2020, 8, 981.	4.1	13
536	Nanoparticle-based Cell Trackers for Biomedical Applications. Theranostics, 2020, 10, 1923-1947.	10.0	61
537	Cooperation therapy between anti-growth by photodynamic-AlEgens and anti-metastasis by small molecule inhibitors in ovarian cancer. Theranostics, 2020, 10, 2385-2398.	10.0	16
538	A–DA′D–A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer. Chemical Communications, 2021, 57, 12020-12023.	4.1	23
539	Double pH-sensitive nanotheranostics of polypeptide nanoparticle encapsulated BODIPY with both NIR activated fluorescence and enhanced photodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 8871-8881.	5.8	5
540	¹³¹ I-Labeled gold nanoframeworks for radiotherapy-combined second near-infrared photothermal therapy of cancer. Journal of Materials Chemistry B, 2021, 9, 9316-9323.	5.8	7

#	Article	IF	CITATIONS
541	3,4,5â€Trimethoxy Substitution on an Nâ€DMBI Dopant with New Nâ€Type Polymers: Polymerâ€Dopant Matchir for Improved Conductivityâ€Seebeck Coefficient Relationship. Angewandte Chemie, 2021, 133, 27418-27425.	^{1g} 2.0	1
542	Plantâ€Based Structures as an Opportunity to Engineer Optical Functions in Nextâ€Generation Light Management. Advanced Materials, 2022, 34, e2104473.	21.0	48
543	Tumor Diagnosis and Therapy Mediated by Metal Phosphorusâ€Based Nanomaterials. Advanced Materials, 2021, 33, e2103936.	21.0	31
544	Diketopyrrolopyrroleâ€derived organic small molecular dyes for tumor phototheranostics. Chinese Chemical Letters, 2022, 33, 1681-1692.	9.0	77
545	Porphyrin crossâ€linked conjugated polymer nanoparticlesâ€based photosensitizer for antimicrobial and anticancer photodynamic therapies. Journal of Applied Polymer Science, 2022, 139, 51777.	2.6	3
546	Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chemical Reviews, 2022, 122, 209-268.	47.7	232
547	Co-delivery of NIR-II semiconducting polymer and pH-sensitive doxorubicin-conjugated prodrug for photothermal/chemotherapy. Acta Biomaterialia, 2022, 137, 238-251.	8.3	18
548	Recent Advances in Second Near-Infrared Region (NIR-II) Fluorophores and Biomedical Applications. Frontiers in Chemistry, 2021, 9, 750404.	3.6	31
549	Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. Advanced Materials, 2022, 34, e2107434.	21.0	57
550	3,4,5â€Trimethoxy Substitution on an Nâ€ÐMBI Dopant with New Nâ€Type Polymers: Polymerâ€Ðopant Matchir for Improved Conductivityâ€5eebeck Coefficient Relationship. Angewandte Chemie - International Edition, 2021, 60, 27212-27219.	ng 13.8	20
551	Magnetic-Optical Imaging for Monitoring Chemodynamic Therapy. Chemical Research in Chinese Universities, 0, , 1.	2.6	1
552	Phosphorescent Carbon-Nanodots-Assisted Förster Resonant Energy Transfer for Achieving Red Afterglow in an Aqueous Solution. ACS Nano, 2021, 15, 16242-16254.	14.6	94
553	Selenium Vacancy Engineering Using Bi ₂ Se ₃ Nanodots for Boosting Highly Efficient Photonic Hyperthermia. ACS Applied Materials & Interfaces, 2021, 13, 48378-48385.	8.0	5
554	Hydrogen-bonded silicene nanosheets of engineered bandgap and selective degradability for photodynamic therapy. Biomaterials, 2021, 278, 121172.	11.4	21
555	Thermally Activated Delayed Fluorescence Material: An Emerging Class of Metalâ€Free Luminophores for Biomedical Applications. Advanced Science, 2021, 8, e2102970.	11.2	104
556	Brainâ€Targeted Aggregationâ€Inducedâ€Emission Nanoparticles with Nearâ€Infrared Imaging at 1550Ânm Boosts Orthotopic Glioblastoma Theranostics. Advanced Materials, 2022, 34, e2106082.	21.0	75
557	Luminescent Coordination Compounds for Cell Imaging. , 2020, , 217-247.		1
558	Ultrabright NIRâ€II Emissive Polymer Dots for Metastatic Ovarian Cancer Detection. Advanced Science, 2021, 8, 2000441.	11.2	39

#	Article	IF	CITATIONS
559	Recent Advances in Biomaterial Scaffolds for Integrative Tumor Therapy and Bone Regeneration. Advanced Therapeutics, 2021, 4, 2000212.	3.2	15
560	Near-infrared probes for luminescence lifetime imaging. Nanotheranostics, 2022, 6, 91-102.	5.2	10
561	Fluorescent Organic Dyes and Conjugated Polymers in Nanoscale Ensembles. , 2020, , 307-355.		0
562	Conjugated Polymers and Polymer Dots for Cell Imaging. , 2020, , 155-180.		3
563	Non-conventional Generation and Transformation of Sensor Response. , 2020, , 531-566.		0
564	Large π-extended donor-acceptor polymers for highly efficient in vivo near-infrared photoacoustic imaging and photothermal tumor therapy. Science China Chemistry, 2021, 64, 2180-2192.	8.2	17
565	Thiadiazoloquinoxaline-Based Semiconducting Polymer Nanoparticles for NIR-II Fluorescence Imaging-Guided Photothermal Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780993.	4.1	6
566	NIR-II Fluorescent Molecular Bottlebrush Prepared by Ring-Opening Polymerization for Programmed Cell Death Ligand-1 Checkpoint Imaging. ACS Applied Polymer Materials, 2021, 3, 5950-5958.	4.4	6
567	Ultrasound-propelled Janus Au NR-mSiO2 nanomotor for NIR-II photoacoustic imaging guided sonodynamic-gas therapy of large tumors. Science China Chemistry, 2021, 64, 2218-2229.	8.2	34
568	Aggregation induced emission materials for tissue imaging. Progress in Molecular Biology and Translational Science, 2021, 185, 1-18.	1.7	0
569	Nanomaterials targeting tumor associated macrophages for cancer immunotherapy. Journal of Controlled Release, 2022, 341, 272-284.	9.9	41
570	Counterion-insulated near-infrared dyes in biodegradable polymer nanoparticles for <i>in vivo</i> imaging. Nanoscale Advances, 2021, 4, 39-48.	4.6	10
571	Highly Efficient Multifunctional Organic Photosensitizer with Aggregation-Induced Emission for <i>In Vivo</i> Bioimaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 54783-54793.	8.0	20
572	Design of a Metallacycleâ€Based Supramolecular Photosensitizer for In Vivo Imageâ€Guided Photodynamic Inactivation of Bacteria. Angewandte Chemie, 0, , .	2.0	11
573	Gold Nanorod-Decorated Metallic MoS2 Nanosheets for Synergistic Photothermal and Photodynamic Antibacterial Therapy. Nanomaterials, 2021, 11, 3064.	4.1	26
574	Design of a Metallacycleâ€Based Supramolecular Photosensitizer for In Vivo Imageâ€Guided Photodynamic Inactivation of Bacteria. Angewandte Chemie - International Edition, 2022, 61, e202110048.	13.8	59
575	Organic Fluorophores for 1064Ânm Excited NIR-II Fluorescence Imaging. Frontiers in Chemistry, 2021, 9, 769655.	3.6	6
576	In vivo photodynamic therapy based on Near-Infrared AIE cationic polymers. Chemical Engineering Journal, 2022, 431, 133748.	12.7	14

#	Article	IF	CITATIONS
577	Aggregationâ€Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2101169.	7.6	19
578	An electromagnetically actuated magneto-nanozyme mediated synergistic therapy for destruction and eradication of biofilm. Chemical Engineering Journal, 2022, 431, 133971.	12.7	14
579	Biologically excretable AIE nanoparticles wear tumor cell-derived "exosome caps―for efficient NIR-II fluorescence imaging-guided photothermal therapy. Nano Today, 2021, 41, 101333.	11.9	19
580	Mitochondriaâ€Targeting Phototheranostics by Aggregationâ€Induced NIRâ€II Emission Luminogens: Modulating Intramolecular Motion by Electron Acceptor Engineering for Multiâ€Modal Synergistic Therapy. Advanced Functional Materials, 2022, 32, .	14.9	51
581	Semiconducting polymer nanoparticles for NIR-II fluorescence imaging-guided photothermal/thermodynamic combination therapy. Biomaterials Science, 2022, 10, 846-853.	5.4	24
582	Facile synthesis of poly(BODIPY)s via solid state polymerization and application in temperature sensor. Polymer, 2022, 241, 124514.	3.8	2
583	Optimization and decision-making of novel laser-induced thermal therapy for deep-lying tumor based on multi-objective genetic algorithm and three-way decisions method. Applied Mathematical Modelling, 2022, 104, 682-700.	4.2	5
584	Advances in Imaging Modalities and Contrast Agents for the Early Diagnosis of Colorectal Cancer. Journal of Biomedical Nanotechnology, 2021, 17, 558-581.	1.1	4
585	Se-sensitized NIR hot band absorption photosensitizer for anti-Stokes excitation deep photodynamic therapy. Science China Chemistry, 2022, 65, 563-573.	8.2	19
586	A Dualâ€Color Fluorescent Probe Allows Simultaneous Imaging of Main and Papainâ€like Proteases of SARSâ€CoVâ€2â€Infected Cells for Accurate Detection and Rapid Inhibitor Screening. Angewandte Chemie, 2022, 134, .	2.0	6
587	A coumarin-based fluorescent probe for NIR imaging-guided photodynamic therapy against <i>S. aureus</i> -induced infection in mouse models. Journal of Materials Chemistry B, 2022, 10, 1427-1433.	5.8	13
588	A Chargeâ€Switchable Zwitterionic Peptide for Rapid Detection of SARS oVâ€2 Main Protease. Angewandte Chemie, 2022, 134, .	2.0	1
589	New near-infrared absorbing conjugated electron donor–acceptor molecules with a fused tetrathiafulvalene–naphthalene diimide framework. Journal of Materials Chemistry C, 2022, 10, 2814-2820.	5.5	4
590	The light of carbon dots: From mechanism to applications. Matter, 2022, 5, 110-149.	10.0	374
591	Accuracy of retrieving optical properties from liquid tissue phantoms using a single integrating sphere. Applied Optics, 2022, 61, 375.	1.8	2
592	Tumorâ€Associated Immuneâ€Cellâ€Mediated Tumorâ€Targeting Mechanism with NIRâ€II Fluorescence Imaging. Advanced Materials, 2022, 34, e2106500.	21.0	36
593	Achieving Efficient NIRâ€II Typeâ€I Photosensitizers for Photodynamic/Photothermal Therapy upon Regulating Chalcogen Elements. Advanced Materials, 2022, 34, e2108146.	21.0	116
594	A Chargeâ€6witchable Zwitterionic Peptide for Rapid Detection of SARS oVâ€2 Main Protease. Angewandte Chemie - International Edition, 2022, 61, .	13.8	54

#	Article	IF	CITATIONS
595	Cyanineâ€Doped Lanthanide Metal–Organic Frameworks for Nearâ€Infrared II Bioimaging. Advanced Science, 2022, 9, e2104561.	11.2	28
596	A Dualâ€Color Fluorescent Probe Allows Simultaneous Imaging of Main and Papainâ€like Proteases of SARSâ€CoVâ€2â€Infected Cells for Accurate Detection and Rapid Inhibitor Screening. Angewandte Chemie - International Edition, 2022, 61, .	13.8	29
597	Highly Bright AIE Nanoparticles by Regulating the Substituent of Rhodanine for Precise Early Detection of Atherosclerosis and Drug Screening. Advanced Materials, 2022, 34, e2106994.	21.0	40
598	Facile one-step synthesis of NIR-Responsive siRNA-Inorganic hybrid nanoplatform for imaging-guided photothermal and gene synergistic therapy. Biomaterials, 2022, 282, 121404.	11.4	13
599	Construction of heteroaryl-bridged NIR AlEgens for specific imaging of lipid droplets and its application in photodynamic therapy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 272, 120946.	3.9	6
600	Dextran-Mimetic Quantum Dots for Multimodal Macrophage Imaging <i>In Vivo, Ex Vivo</i> , and <i>In Situ</i> . ACS Nano, 2022, 16, 1999-2012.	14.6	17
601	Biodegradable two-dimensional nanomaterials for cancer theranostics. Coordination Chemistry Reviews, 2022, 458, 214415.	18.8	31
602	Engineering Molecular Probes for <i>In Vivo</i> Near-Infrared Fluorescence/Photoacoustic Duplex Imaging of Human Neutrophil Elastase. Analytical Chemistry, 2022, 94, 3227-3234.	6.5	22
603	Synthesis of Near-Infrared Light-responsive Dyes Based on N-Confused Porphyrinoids. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 139-148.	0.1	0
604	Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coordination Chemistry Reviews, 2022, 458, 214427.	18.8	30
605	Carbon-Based Materials in Photodynamic and Photothermal Therapies Applied to Tumor Destruction. International Journal of Molecular Sciences, 2022, 23, 22.	4.1	115
606	Semiconductor polymer nanoparticles for biological application. , 2022, , .		0
607	Recent advances in the development and applications of conjugated polymer dots. Journal of Materials Chemistry B, 2022, 10, 2995-3015.	5.8	15
608	A ratiometric fluorescent probe based on peptide modified MnFe ₂ O ₄ nanoparticles for matrix metalloproteinase-7 activity detection <i>in vitro</i> and <i>in vivo</i> . Analyst, The, 2022, 147, 1581-1588.	3.5	6
609	Multifunctional co-transport carriers based on cyclodextrin assembly for cancer synergistic therapy. Theranostics, 2022, 12, 2560-2579.	10.0	12
610	The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chemical Society Reviews, 2022, 51, 1983-2030.	38.1	168
611	Recent progress of carbon dots in targeted bioimaging and cancer therapy. Theranostics, 2022, 12, 2860-2893.	10.0	44
612	The literature of heterocyclic chemistry, Part XIX, 2019. Advances in Heterocyclic Chemistry, 2022, , 225-295.	1.7	6

#	Article	IF	CITATIONS
613	A "Selfâ€Checking―pH/Viscosityâ€Activatable NIRâ€I Molecule for Realâ€Time Evaluation of Photothermal Therapy Efficacy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
614	A "Selfâ€Checking―pH/Viscosityâ€Activatable NIRâ€I Molecule for Realâ€Time Evaluation of Photothermal Therapy Efficacy. Angewandte Chemie, 2022, 134, .	2.0	2
615	Molecular Crystal Engineering of Organic Chromophores for NIR-II Fluorescence Quantification of Cerebrovascular Function. ACS Nano, 2022, 16, 3323-3331.	14.6	12
616	Light/electric modulated approach for logic functions and artificial synapse behaviors by flexible IGZO TFTs with low power consumption. Journal Physics D: Applied Physics, 2022, 55, 195108.	2.8	8
617	Activable Targeted Protein Degradation Platform Based on Light-triggered Singlet Oxygen. Journal of Medicinal Chemistry, 2022, 65, 3632-3643.	6.4	23
618	Bioactive Composite Nanoparticles for Effective Microenvironment Regulation, Neuroprotection, and Cell Differentiation. ACS Applied Materials & amp; Interfaces, 2022, 14, 15623-15631.	8.0	6
619	Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation. Biomacromolecules, 2022, 23, 1490-1504.	5.4	16
620	Hybrid Halide Perovskiteâ€Based Nearâ€Infrared Photodetectors and Imaging Arrays. Advanced Optical Materials, 2022, 10, .	7.3	35
621	Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chemical Reviews, 2022, 122, 6850-6918.	47.7	94
622	Ultrabright Pdots with a Large Absorbance Cross Section and High Quantum Yield. ACS Applied Materials & Interfaces, 2022, 14, 13631-13637.	8.0	7
623	Recent advances in aggregation-induced emission luminogens in photoacoustic imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 2560-2583.	6.4	7
624	lron oxide nanoparticles for theranostic applications - Recent advances. Journal of Drug Delivery Science and Technology, 2022, 70, 103196.	3.0	12
625	Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-II window. Biomaterials, 2022, 283, 121476.	11.4	48
626	Inorganic Nanomaterial for Biomedical Imaging of Brain Diseases. Molecules, 2021, 26, 7340.	3.8	8
627	The Advance of CRISPR-Cas9-Based and NIR/CRISPR-Cas9-Based Imaging System. Frontiers in Chemistry, 2021, 9, 786354.	3.6	9
628	Visualization of Acute Inflammation through a Macrophage-Camouflaged Afterglow Nanocomplex. ACS Applied Materials & Interfaces, 2022, 14, 259-267.	8.0	13
629	Pulsed Laser Excited Photoacoustic Effect for Disease Diagnosis and Therapy. Chemistry - A European Journal, 2022, 28, .	3.3	18
631	Series of the Largest Dish-Shaped Dysprosium Nanoclusters Formed by <i>In Situ</i> Reactions. Inorganic Chemistry, 2022, 61, 6094-6100.	4.0	13

#	Article	IF	CITATIONS
632	Nature-inspired nanothylakoids for multimodal cancer therapeutics. Science China Materials, 2022, 65, 1971-1979.	6.3	5
635	Smart PROTACs Enable Controllable Protein Degradation for Precision Cancer Therapy. Molecular Diagnosis and Therapy, 2022, 26, 283-291.	3.8	3
636	Facile Preparation of a Thienoisoindigo-Based Nanoscale Covalent Organic Framework with Robust Photothermal Activity for Cancer Therapy. ACS Applied Materials & Interfaces, 2022, 14, 19129-19138.	8.0	19
637	Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nature Communications, 2022, 13, 2216.	12.8	49
638	High-performance, low-voltage organic field-effect transistors using thieno[3,2- <i>b</i>]thiophene and benzothiadiazole co-polymers. Journal of Materials Chemistry C, 2022, 10, 8254-8265.	5.5	17
639	Ultrathinâ€FeOOH oated MnO ₂ Sonosensitizers with Boosted Reactive Oxygen Species Yield and Remodeled Tumor Microenvironment for Efficient Cancer Therapy. Advanced Science, 2022, 9, e2200005.	11.2	39
640	Icing on the cake: combining a dual PEG-functionalized pillararene and an A-D-A small molecule photosensitizer for multimodal phototherapy. Science China Chemistry, 2022, 65, 1134-1141.	8.2	24
641	Recent Advances in Engineering Nanomedicines for Second Near-Infrared Photothermal-Combinational Immunotherapy. Nanomaterials, 2022, 12, 1656.	4.1	9
642	Boosting phototherapy efficacy of NIR-absorbing ruthenium (II) complex via supramolecular engineering. Materials Today Nano, 2022, 18, 100220.	4.6	5
643	Recent Research on Hybrid Hydrogels for Infection Treatment and Bone Repair. Gels, 2022, 8, 306.	4.5	3
644	Research progress in AIE-based crystalline porous materials for biomedical applications. Biomaterials, 2022, 286, 121583.	11.4	9
645	Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. Nanoscale Horizons, 2022, 7, 682-714.	8.0	37
646	Conjugated polymers for biomedical applications. Chemical Communications, 2022, 58, 7232-7244.	4.1	35
647	A "donor–acceptor―structured semiconductor polymer for near infrared fluorescence imaging guided photodynamic therapy. Journal of Innovative Optical Health Sciences, 2022, 15, .	1.0	3
648	A genetic engineering strategy for editing near-infrared-II fluorophores. Nature Communications, 2022, 13, .	12.8	33
649	Activatable Fluorescent-Photoacoustic Integrated Probes with Deep Tissue Penetration for Pathological Diagnosis and Therapeutic Evaluation of Acute Inflammation in Mice. Analytical Chemistry, 2022, 94, 7996-8004.	6.5	11
650	Semiconductor Nanocrystals Emitting in the Second Nearâ€Infrared Window: Optical Properties and Application in Biomedical Imaging. Advanced Optical Materials, 2022, 10, .	7.3	16
651	A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nature Communications, 2022, 13, .	12.8	58

ARTICLE IF CITATIONS Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in 652 9.1 9 energy and biomedicine. Journal of Nanobiotechnology, 2022, 20, . Supramolecular assembly confined purely organic room temperature phosphorescence and its 7.4 biological imaging. Chemical Science, 2022, 13, 7976-7989. An acid-triggered BODIPY-based photosensitizer for enhanced photodynamic antibacterial efficacy. 654 9 5.4Biomaterials Science, 2022, 10, 4235-4242. Semiconducting Polymer Nanoparticles with Surfaceâ€Mimicking Protein Secondary Structure as Lysosomeâ€Targeting Chimaeras for Selfâ€Synergistic Cancer Immunotherapy. Advanced Materials, 2022, Engineering Metal–Organic Framework Hybrid AlEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS Applied Materials & amp; Interfaces, 2022, 656 8.0 18 14, 29599-29612. Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III 12.8 photodynamic cancer therapy. Nature Communications, 2022, 13, . Exogenously Triggered Nanozyme for Real-Time Magnetic Resonance Imaging-Guided Synergistic 658 8.0 8 Cascade Tumor Therapy. ACS Applied Materials & amp; Interfaces, 2022, 14, 29650-29658. A Renalâ€Clearable Activatable Molecular Probe for Fluoroâ€Photacoustic and Radioactive Imaging of 10.0 Cancer Biomarkers. Small, 2022, 18, . Giant excitonic upconverted emission from two-dimensional semiconductor in doubly resonant 660 16.6 14 plasmonic nanocavity. Light: Science and Applications, 2022, 11, . Catalytical nano-immunocomplexes for remote-controlled sono-metabolic checkpoint trimodal 12.8 cancer therapy. Nature Communications, 2022, 13, . Intramolecular energy transfer dyes as temperature- and polarity-sensitive fluorescence probes. Dyes 662 4 3.7 and Pigments, 2022, 205, 110492. Organic nanomaterials for near-infrared light-triggered photothermal/thermodynamic combination therapy. Dyes and Pigments, 2022, 205, 110499. Imine bond orientation manipulates AIEgen derived Schiff base isomers through the intramolecular 664 hydrogen bond effect for different fluorescence properties and applications. Journal of Materials 5.5 9 Chemistry C, 2022, 10, 11016-11026. Luminescence-enhanced conjugated polymer dots through thermal treatment for cell imaging. 5.4 Biomaterials Science, 0, , . An Activatable <scp>Nearâ€Infrared</scp> Molecular Chemiluminescence Probe for Visualization of 666 <scp>NQO1</scp> Activity <i>In Vivo</i>^{â€}. Chinese Journal of Chemistry, 2022, 40, 4.9 8 2400-2406. Nanostructured self-assemblies of photosensitive dyes: green and efficient theranostic approaches. Green Chemical Engineering, 2023, 4, 399-416. Molecular engineering of AIE luminogens for NIR-II/IIb bioimaging and surgical navigation of lymph 668 10.0 47 nodes. Matter, 2022, 5, 2847-2863. Nearâ€Infrared OLEDs Based on Functional Pyrazinyl Azolate Os(II) Phosphors and Deuteration. Advanced Optical Materials, 2022, 10, .

#	Article	IF	CITATIONS
670	Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Materials Today Bio, 2022, 16, 100364.	5.5	12
671	Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles. Nature Communications, 2022, 13, .	12.8	70
672	High dynamic range imaging with short- and long-exposures based on artificial remapping using multiscale exposure fusion. Journal of Visual Communication and Image Representation, 2022, 87, 103585.	2.8	4
673	Organic conjugated small molecules with donor–acceptor structures: design and application in the phototherapy of tumors. Materials Chemistry Frontiers, 2022, 6, 2968-2993.	5.9	21
674	Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chemical Society Reviews, 2022, 51, 7692-7714.	38.1	41
675	TADF-based NIR-II semiconducting polymer dots for <i>in vivo</i> 3D bone imaging. Chemical Science, 2022, 13, 10074-10081.	7.4	8
676	Dual H ₂ O ₂ â€Amplified Nanofactory for Simultaneous Selfâ€Enhanced NIRâ€I Fluorescence Activation Imaging and Synergistic Tumor Therapy. Small, 2022, 18, .	10.0	16
677	Fusion of Aza―and Oxadiborepins with Furans in a Reversible Ringâ€Opening Process Furnishes Versatile Building Blocks for Extended Ï€â€Conjugated Materials. Chemistry - A European Journal, 2022, 28, .	3.3	10
678	Innovative probes with aggregation-induced emission characteristics for sensing gaseous signaling molecules. Biomaterials, 2022, 289, 121753.	11.4	9
679	Phototheranostics for multifunctional treatment of cancer with fluorescence imaging. Advanced Drug Delivery Reviews, 2022, 189, 114483.	13.7	30
680	Research progress of bone-targeted drug delivery system on metastatic bone tumors. Journal of Controlled Release, 2022, 350, 377-388.	9.9	10
681	Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coordination Chemistry Reviews, 2022, 471, 214745.	18.8	12
682	Advancing biomedical applications via manipulating intersystem crossing. Coordination Chemistry Reviews, 2022, 471, 214754.	18.8	18
683	Lanthanide nanoparticles for near-infrared II theranostics. Coordination Chemistry Reviews, 2022, 471, 214724.	18.8	24
684	Phototheranostic nanoparticles with aggregation-induced emission as a four-modal imaging platform for image-guided photothermal therapy and ferroptosis of tumor cells. Biomaterials, 2022, 289, 121779.	11.4	11
685	Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Advanced Drug Delivery Reviews, 2022, 190, 114536.	13.7	48
686	Skin optical clearing enabled by dissolving hyaluronic acid microneedle patches. International Journal of Biological Macromolecules, 2022, 220, 1188-1196.	7.5	7
687	Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Materials Today Chemistry, 2022, 26, 101144.	3.5	8

#	Article	IF	CITATIONS
688	Infrared emitting and absorbing conjugated polymer nanoparticles as biological imaging probes. Journal of Materials Chemistry C, 2023, 11, 7860-7871.	5.5	4
689	A novel furo[3,2- <i>c</i>]pyridine-based AIE photosensitizer for specific imaging and photodynamic ablation of Gram-positive bacteria. Chemical Communications, 2022, 58, 10392-10395.	4.1	5
690	Semiconducting polymer dots as fluorescent probes for <i>in vitro</i> biosensing. Journal of Materials Chemistry B, 2022, 10, 6248-6262.	5.8	18
691	A radical photochromic metal–organic framework for boosting NIR-II photothermal conversion and therapy. Chemical Communications, 2022, 58, 11095-11098.	4.1	2
692	Amino group induced structural diversity and near-infrared emission of yttrium-tetracarboxylate frameworks. Chemical Science, 2022, 13, 9321-9328.	7.4	16
693	A nanoplatform for mild-temperature photothermal and type I & II photodynamic therapy in the NIR-II biowindow. Chemical Communications, 2022, 58, 10353-10356.	4.1	15
694	Recent advances on organelle specific Ru(II)/Ir(III)/Re(I) based complexes for photodynamic therapy. Coordination Chemistry Reviews, 2023, 474, 214860.	18.8	20
695	Nanogels as target drug delivery systems in cancer therapy: A review of the last decade. Frontiers in Pharmacology, 0, 13, .	3.5	26
696	Recent advances in small molecule dye-based nanotheranostics for NIR-II photoacoustic imaging-guided cancer therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	7
697	Near-Infrared Luciferase Complementation Assay with Enhanced Bioluminescence for Studying Protein–Protein Interactions and Drug Evaluation Under Physiological Conditions. Analytical Chemistry, 2022, 94, 13700-13709.	6.5	0
698	Nearâ€Infrared Carbonized Polymer Dots for NIRâ€II Bioimaging. Advanced Science, 2022, 9, .	11.2	27
700	A Renal-Clearable PEGylated Semiconducting Oligomer for the NIR-II Fluorescence Imaging of Tumor. ACS Applied Bio Materials, 2022, 5, 4965-4971.	4.6	5
701	Fluorescent Imaging Probe Targeting Mitochondria Based on Supramolecular Host–Guest Assembly and Disassembly. ACS Omega, 2022, 7, 34268-34277.	3.5	2
702	Trichloroisocyanuric Acid (TCCA): A Suitable Reagent for the Synthesis of Selanylâ€benzo[<i>b</i>]chalcogenophenes. European Journal of Organic Chemistry, 2022, 2022, .	2.4	12
703	Highly efficient and non-doped red conjugated polymer dot for photostable cell imaging. Chinese Chemical Letters, 2023, 34, 107867.	9.0	4
704	Airy beam assisted NIR-II light-sheet microscopy. Nano Today, 2022, 47, 101628.	11.9	8
705	Surfactant-chaperoned donor–acceptor–donor NIR-II dye strategy efficiently circumvents intermolecular aggregation to afford enhanced bioimaging contrast. Chemical Science, 2022, 13, 13201-13211.	7.4	8
706	A vinyl-decorated covalent organic framework for ferroptotic cancer therapy <i>via</i> viavisible-light-triggered cysteine depletion. Journal of Materials Chemistry B, 2022, 10, 8894-8909.	5.8	10

#	Article	IF	CITATIONS
707	Precisely controlling the cellular internalization of DNA-decorated semiconductor polymer nanoparticles for drug delivery. RSC Advances, 2022, 12, 31173-31179.	3.6	0
708	Chemiluminescence in Combination with Organic Photosensitizers: Beyond the Light Penetration Depth Limit of Photodynamic Therapy. International Journal of Molecular Sciences, 2022, 23, 12556.	4.1	13
709	Activating Nanomedicines with Electromagnetic Energy for Deepâ€Tissue Induction of Immunogenic Cell Death in Cancer Immunotherapy. Small Methods, 2023, 7, .	8.6	11
710	Enhancement approaches for photothermal conversion of donor–acceptor conjugated polymer for photothermal therapy: a review. Science and Technology of Advanced Materials, 2022, 23, 707-734.	6.1	12
711	Bandgap Modulation and Lipid Intercalation Generates Ultrabright D–A–Dâ€Based Zwitterionic Smallâ€Molecule Nanoagent for Precise NIRâ€I Excitation Phototheranostic Applications. Advanced Functional Materials, 2022, 32, .	14.9	20
712	Nearâ€infrared absorbing semiconducting polymer nanomedicines for cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	3
713	Synthesis and Biological Evaluation of PEGylated MWO4 Nanoparticles as Sonodynamic AID Inhibitors in Treating Diffuse Large B-Cell Lymphoma. Molecules, 2022, 27, 7143.	3.8	0
714	All-in-one phototheranostics based on BTP-4F-DMO nanoparticles for NIR-II fluorescence/photoacoustic dual-mode imaging and combinational therapy. Chinese Chemical Letters, 2023, 34, 107889.	9.0	3
715	Multifunctional organic nanomaterials with ultra-high photothermal conversion efficiency for photothermal therapy and inhibition of cancer metastasis. Bioorganic Chemistry, 2023, 130, 106220.	4.1	11
716	Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Current Opinion in Colloid and Interface Science, 2023, 63, 101657.	7.4	7
717	Engineering of BODIPY-based theranostics for cancer therapy. Coordination Chemistry Reviews, 2023, 476, 214908.	18.8	48
718	An NIR-II-absorbing photothermal agent containing multiple rotors with enhanced photothermal conversion capacity for multimodal-imaging-guided photothermal therapy. Dyes and Pigments, 2023, 210, 110932.	3.7	9
719	Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg ₃ Si ₂ Te ₆ . Chinese Physics B, 0, , .	1.4	1
720	NIR-II fluorescence imaging-guided hepatocellular carcinoma treatment via IR-1061-acridine and lenvatinib co-loaded thermal-sensitive micelles and anti-PD-1 combinational therapy. Chemical Engineering Journal, 2023, 454, 140437.	12.7	6
721	A mitochondria-targeted molecular phototheranostic platform for NIR-II imaging-guided synergistic photothermal/photodynamic/immune therapy. Journal of Nanobiotechnology, 2022, 20, .	9.1	15
722	Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting. Biosensors, 2022, 12, 1027.	4.7	1
723	Multifunctional Mesoporous Hollow Cobalt Sulfide Nanoreactors for Synergistic Chemodynamic/Photodynamic/Photothermal Therapy with Enhanced Efficacy. ACS Applied Materials & Interfaces, 2022, 14, 50601-50615.	8.0	8
724	Modulation of tumor hypoxia and redox microenvironment using nanomedicines for enhanced cancer photodynamic therapy. Applied Materials Today, 2022, 29, 101687.	4.3	3

#	Article	IF	CITATIONS
725	Engineered extracellular vesicles as drug delivery systems for the next generation of nanomedicine. , 2023, , 105-128.		0
726	Modulated Ultrasmall γâ€Fe ₂ O ₃ Nanocrystal Assemblies for Switchable Magnetic Resonance Imaging and Photothermalâ€Ferroptoticâ€Chemical Synergistic Cancer Therapy. Advanced Functional Materials, 2023, 33, .	14.9	11
727	Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases. Journal of Controlled Release, 2023, 353, 1050-1067.	9.9	5
728	Design strategies and applications of smart optical probes in the second near-infrared window. Advanced Drug Delivery Reviews, 2023, 192, 114637.	13.7	13
729	Photoacoustic/fluorescence dual-modality cyanine-based probe for real-time imaging of endogenous cysteine and in situ diagnosis of cervical cancer in vivo. Analytica Chimica Acta, 2023, 1239, 340713.	5.4	1
730	Carbon dots as potential greener and sustainable fluorescent nanomaterials in service of pollutants sensing. TrAC - Trends in Analytical Chemistry, 2023, 158, 116841.	11.4	21
731	Recent progress in the development of singlet oxygen carriers for enhanced photodynamic therapy. Coordination Chemistry Reviews, 2023, 478, 214979.	18.8	11
732	pH-responsive, magnetic-luminescent core/shell carriers for co-delivery of anticancer drugs (MTX) Tj ETQq1 1 0.78	4314 rgBT	LOverlock
733	Insights into the organic semiconducting photosensitizers for hypoxia-tolerant type I photodynamic therapy. , 2022, 1, e9130010.		5
734	In Response to Precision Medicine: Current Subcellular Targeting Strategies for Cancer Therapy. Advanced Materials, 2023, 35, .	21.0	21
735	Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics. Accounts of Chemical Research, 2023, 56, 37-51.	15.6	25
736	A Review of Perovskite-Based Photodetectors and Their Applications. Nanomaterials, 2022, 12, 4390.	4.1	19
737	Repurposing organic semiconducting nanomaterials to accelerate clinical translation of NIR-II fluorescence imaging. Nano Research, 2023, 16, 5140-5154.	10.4	7
738	Advances in imaging and treatment of atherosclerosis based on organic nanoparticles. APL Bioengineering, 2022, 6, 041501.	6.2	6
739	NIR―and Protonâ€Driven Perylene Reactive Oxygen Species Superâ€Generator for Trimodal Therapy Against Hypoxic Tumors. Angewandte Chemie, 0, , .	2.0	0
740	Photoactive Oligomer with an Acceptor–Donor–Acceptor-Conjugated Structure for Single Near-Infrared Light-Triggered Photothermal/Photodynamic Synergistic Therapy of Tumors. ACS Applied Polymer Materials, 2023, 5, 1530-1538.	4.4	5
741	Emerging Nanoagents for Medical X-ray Imaging. Analytical Chemistry, 2023, 95, 33-48.	6.5	5
742	Rational Design of Polymethine Dyes with NIRâ€II Emission and High Photothermal Conversion Efficiency for Multimodalâ€Imagingâ€Guided Photoâ€Immunotherapy. Advanced Materials, 2023, 35, .	21.0	23

#	Article	IF	CITATIONS
743	Chemiluminescent polymeric nanoprobes for tumor diagnosis: A mini review. Frontiers in Chemistry, 0, 10, .	3.6	0
744	Peryleneâ€Based Reactive Oxygen Species Supergenerator for Immunogenic Photochemotherapy against Hypoxic Tumors. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
745	Recent Progress in Type I Aggregation-Induced Emission Photosensitizers for Photodynamic Therapy. Molecules, 2023, 28, 332.	3.8	12
746	De Novo Design of Reversibly pH-Switchable NIR-II Aggregation-Induced Emission Luminogens for Efficient Phototheranostics of Patient-Derived Tumor Xenografts. Journal of the American Chemical Society, 2023, 145, 334-344.	13.7	46
747	Construction of a 980 nm laser-activated Pt(II) metallacycle nanosystem for efficient and safe photo-induced bacteria sterilization. Science China Chemistry, 2023, 66, 155-163.	8.2	57
748	Fluorescent "AND―logic gates for simultaneous detection of thiols and protons: photophysical properties, mechanism and bioimaging of living cells. Analytical Methods, 2023, 15, 818-828.	2.7	0
749	Highly Bright Nearâ€Infrared Chemiluminescent Probes for Cancer Imaging and Laparotomy. Angewandte Chemie - International Edition, 2023, 62, .	13.8	17
750	Highly Bright Nearâ€Infrared Chemiluminescent Probes for Cancer Imaging and Laparotomy. Angewandte Chemie, 2023, 135, .	2.0	0
751	Fluorescent-Based Nanoplatform with Real-Time Quantification of Drug Release. ACS Applied Polymer Materials, 2023, 5, 1539-1544.	4.4	3
752	Second near-infrared photoactivatable nanomedicines for enhanced photothermal–chemodynamic therapy of cancer. Journal of Materials Chemistry B, 2023, 11, 2455-2465.	5.8	2
753	Photoswitchable semiconducting polymer dots for pattern encoding and superresolution imaging. Chemical Communications, 0, , .	4.1	1
754	A tumor-targetable NIR probe with photoaffinity crosslinking characteristics for enhanced imaging-guided cancer phototherapy. Chemical Science, 2023, 14, 2369-2378.	7.4	4
755	Redâ€ŧoâ€Nearâ€Infrared Emitting PyrrolylBODIPY Dyes: Synthesis, Photophysical Properties and Bioimaging Application. Chemistry - A European Journal, 2023, 29, .	3.3	10
756	Afterglow nanoparticles with 2,5,8,11-tetra-tert-butylperylene as blue emitter for background-free lateral flow immunoassay. Sensors and Actuators B: Chemical, 2023, 382, 133460.	7.8	1
757	ROS-responsive ADPH nanoparticles for image-guided surgery. Frontiers in Chemistry, 0, 11, .	3.6	0
758	A biophotonic device based on a conjugated polymer and a macrophage-laden hydrogel for triggering immunotherapy. Materials Horizons, 2023, 10, 2226-2236.	12.2	3
759	Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules, 2023, 28, 1506.	3.8	2
760	Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. Journal of Translational Medicine, 2023, 21, .	4.4	13

#	Article	IF	CITATIONS
761	Near-Infrared Photoresponsive Nanotransducers for Precise Regulation of Gene Expression. Bioconjugate Chemistry, 0, , .	3.6	1
762	A Polymeric Extracellular Matrix Nanoremodeler for Activatable Cancer Photoâ€Immunotherapy. Angewandte Chemie, 2023, 135, .	2.0	0
763	A Polymeric Extracellular Matrix Nanoremodeler for Activatable Cancer Photoâ€immunotherapy. Angewandte Chemie - International Edition, 2023, 62, .	13.8	18
764	Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges. Pharmaceuticals, 2023, 16, 249.	3.8	3
765	Biotinylated Fluorescent Polymeric Nanoparticles for Enhanced Immunostaining. Small Methods, 2023, 7, .	8.6	2
766	NIR-II fluorescence lymphatic imaging and intraoperative navigation based on the "isolated cage― monodisperse strategy. Nano Today, 2023, 49, 101795.	11.9	8
767	Lysosomes Targeting pH Activable Imagingâ \in Guided Photodynamic Agents. ChemBioChem, 2023, 24, .	2.6	4
768	"Four-In-One―Design of a Hemicyanine-Based Modular Scaffold for High-Contrast Activatable Molecular Afterglow Imaging. Journal of the American Chemical Society, 2023, 145, 5134-5144.	13.7	30
769	Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnology, 2023, 14, .	3.7	18
770	Phototheranostic Nanoagents for <scp>Imagingâ€Guided</scp> Treatment of Oral Cancer ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1624-1636.	4.9	1
771	Lead free perovskite based heterojunction photodetectors: A mini review. Applied Surface Science Advances, 2023, 14, 100393.	6.8	2
772	Antiâ€Quenching NIRâ€II Jâ€Aggregates of Benzo[c]thiophene Fluorophore for Highly Efficient Bioimaging and Phototheranostics. Advanced Materials, 2023, 35, .	21.0	28
773	The Promises and Future Directions of Wireless Stimulation in Biomedical Applications. , 0, 2, .		0
774	End Group Nonplanarization Enhances Phototherapy Efficacy of A–D–A Fused-Ring Photosensitizer for Tumor Phototherapy. Nano Letters, 2023, 23, 2831-2838.	9.1	10
775	Synchronously Manipulating Absorption and Extinction Coefficient of Semiconducting Polymers via Precise Dualâ€Acceptor Engineering for NIRâ€II Excited Photothermal Theranostics. Angewandte Chemie - International Edition, 2023, 62, .	13.8	23
776	Synchronously Manipulating Absorption and Extinction Coefficient of Semiconducting Polymers via Precise Dualâ€Acceptor Engineering for NIRâ€II Excited Photothermal Theranostics. Angewandte Chemie, 2023, 135, .	2.0	2
777	Single-atom thermoelectric materials: a new opportunity. , 0, 2, .		0
778	Ligation to Scavenging Strategy Enables On-Demand Termination of Targeted Protein Degradation. Journal of the American Chemical Society, 2023, 145, 7218-7229.	13.7	8

#	Article	IF	CITATIONS
779	Recent Advances in Applications of Fluorescent Perylenediimide and Perylenemonoimide Dyes in Bioimaging, Photothermal and Photodynamic Therapy. International Journal of Molecular Sciences, 2023, 24, 6308.	4.1	11
780	Functional chromopeptide nanoarchitectonics: molecular design, self-assembly and biological applications. Chemical Society Reviews, 2023, 52, 2688-2712.	38.1	39
781	Universal nanosonosensitizer for ROS-mediated reduction of various cancer cells. Journal of Materials Chemistry B, 2023, 11, 3703-3712.	5.8	1
782	NIR-II-absorbing diimmonium polymer agent achieves excellent photothermal therapy with induction of tumor immunogenic cell death. Journal of Nanobiotechnology, 2023, 21, .	9.1	3
783	Chlorinationâ€Mediated Ï€â€Ï€ Stacking Enhances the Photodynamic Properties of a NIRâ€II Emitting Photosensitizer with Extended Conjugation. Angewandte Chemie, 0, , .	2.0	0
784	Chlorinationâ€Mediated π–π Stacking Enhances the Photodynamic Properties of a NIRâ€I Emitting Photosensitizer with Extended Conjugation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	14
785	Conjugated Polymer Nanoparticles for Tumor Theranostics. Biomacromolecules, 2023, 24, 1943-1979.	5.4	5
786	Controlling AIE and ACQ properties of conjugated carbazole-tetraphenylethene copolymers by ethynylene spacer. Polymer Chemistry, 2023, 14, 2510-2519.	3.9	2
787	A novel ROS-Related chemiluminescent semiconducting polymer nanoplatform for acute pancreatitis early diagnosis and severity assessment. Journal of Nanobiotechnology, 2023, 21, .	9.1	1
788	Poly(thiophene iminoborane): A Poly(thiophene vinylene) (PTV) Analogue with a Fully BNâ€Đoped Backbone. Macromolecular Rapid Communications, 2023, 44, .	3.9	4
789	Schottky Junction Nanozyme Based on Mn-Bridged Co-Phthalocyanines and Ti ₃ C ₂ T _{<i>x</i>} Nanosheets Boosts Integrative Type I and II Photosensitization for Multimodal Cancer Therapy. ACS Nano, 2023, 17, 11290-11308.	14.6	17
790	Photophysical and Photochemical Properties of Perylene–(Cyanine Dye) Dyad in the VIS–NIR Spectrum Region. Russian Journal of Physical Chemistry A, 2023, 97, 808-812.	0.6	0
791	Responsive nanoplatforms: Versatile design strategies for efficient cancer theranostics. Materials and Design, 2023, 232, 112076.	7.0	1
792	Hypsochromic Shift Donor–Acceptor NIR-II Dye for High-Efficiency Tumor Imaging. Journal of Medicinal Chemistry, 2023, 66, 7880-7893.	6.4	2
793	NIR-II Absorbing Conjugated Polymer Nanotheranostics for Thermal Initiated NO Enhanced Photothermal Therapy. Biosensors, 2023, 13, 642.	4.7	3
794	Polymeric STING Proâ€agonists for Tumorâ€Specific Sonodynamic Immunotherapy. Angewandte Chemie - International Edition, 2023, 62, .	13.8	13
795	Polymeric STING Proâ€agonists for Tumorâ€Specific Sonodynamic Immunotherapy. Angewandte Chemie, 2023, 135, .	2.0	1
796	Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chemical Society Reviews, 2023, 52, 4392-4442.	38.1	26

		ORI	
#	Article	IF	Citations
797	Brightness of fluorescent organic nanomaterials. Chemical Society Reviews, 2023, 52, 4525-4548.	38.1	24
798	Revealing the role of nitroxyl during hepatic ischemia-reperfusion injury with a NIR-II luminescent nanoprobe. Chemical Science, 2023, 14, 7743-7752.	7.4	2
799	Organic nanomaterials from self-assembly of BODIPY-benzothiadiazole conjugate for PDT/PTT synergistic therapy. Journal of Porphyrins and Phthalocyanines, 2023, 27, 852-860.	0.8	2
800	Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment. Chemical Society Reviews, 2023, 52, 4549-4566.	38.1	17
801	Advanced Optical Imaging Based on Metasurfaces. Advanced Optical Materials, 2024, 12, .	7.3	3
802	NIR-II Fluorescence Imaging for the Detection and Resection of Cancerous Foci and Lymph Nodes in Early-Stage Orthotopic and Advanced-Stage Metastatic Ovarian Cancer Models. ACS Applied Materials & Interfaces, 2023, 15, 32226-32239.	8.0	3
803	Tumor-microenvironment-responsive poly-prodrug encapsulated semiconducting polymer nanosystem for phototherapy-boosted chemotherapy. Materials Horizons, 2023, 10, 3014-3023.	12.2	5
804	Visualization of Phototherapy Evolution by Optical Imaging. Molecules, 2023, 28, 3992.	3.8	1
805	"Trojan Horse―Phototheranostics: Fineâ€Engineering NIRâ€II AlEgen Camouflaged by Cancer Cell Membrane for Homologousâ€Targeting Multimodal Imagingâ€Guided Phototherapy. Advanced Materials, 2023, 35, .	21.0	24
806	Ultrasmall Coinage Metal Nanoclusters as Promising Theranostic Probes for Biomedical Applications. Journal of the American Chemical Society, 2023, 145, 11879-11898.	13.7	26
807	BODIPY-based near-infrared semiconducting polymer dot for selective yellow laser-excited cell imaging. RSC Advances, 2023, 13, 15121-15125.	3.6	1
808	Organic Afterglow Nanoparticles in Bioapplications. Chemistry - A European Journal, 2023, 29, .	3.3	6
809	Ultrasoundâ€Triggered Cascade Amplification of Nanotherapy. Advanced Materials, 2023, 35, .	21.0	6
810	Tetrazole Linkages as Photoactivated Fuels for Lightâ€Regulated Photothermal/Photocatalytic Propulsion of Versatile Polymer Nanoplatforms. Angewandte Chemie, 2023, 135, .	2.0	0
811	Tetrazole Linkages as Photoactivated Fuels for Lightâ€Regulated Photothermal/Photocatalytic Propulsion of Versatile Polymer Nanoplatforms. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
812	Transferrin-Conjugated Manganese Dioxide/Semiconducting Polymer Hybrid Nanoparticles for Targeted Dual-Model Imaging of Orthotopic Glioblastoma. ACS Applied Polymer Materials, 2023, 5, 4596-4603.	4.4	2
813	Organic Sonodynamic Materials for Combination Cancer Immunotherapy. Advanced Materials, 2023, 35,	21.0	14
814	Linear and macrocyclic oligo(<i>p</i> -phenylene iminoboranes) with ferrocenyl side groups – observation of selective, non-templated macrocyclization. Chemical Communications, 2023, 59, 8408-8411.	4.1	2

#	Article	IF	CITATIONS
815	Precise Planar-Twisted Molecular Engineering to Construct Semiconducting Polymers with Balanced Absorption and Quantum Yield for Efficient Phototheranostics. Research, 2023, 6, .	5.7	5
816	The Beneficial Role of Photobiomodulation in Neurodegenerative Diseases. Biomedicines, 2023, 11, 1828.	3.2	5
817	Conjugated Polymeric Materials in Biological Imaging and Cancer Therapy. Molecules, 2023, 28, 5091.	3.8	2
818	A near-infrared phototheranostic probe for in vivo hyaluronidase detection and activatable imaging-guided synergistic therapy of triple negative breast cancer. Chinese Journal of Analytical Chemistry, 2023, 51, 100300.	1.7	0
819	Albumin-Based Cyanine Crizotinib Conjugate Nanoparticles for NIR-II Imaging-Guided Synergistic Chemophototherapy. ACS Applied Materials & Interfaces, 2023, 15, 33890-33902.	8.0	4
820	When near-infrared fluorescence meets supramolecular coordination complexes: Challenges and opportunities of metallacycles/metallacages in precision biomedicine. Coordination Chemistry Reviews, 2023, 493, 215320.	18.8	8
821	New anilido-pyridine boron difluorides with high Stokes shift and intrinsic electrofluorochromism. Dyes and Pigments, 2023, 218, 111525.	3.7	0
822	A nonbenzenoid acepleiadylene derivative with small band gap for near-infrared organic phototransistors. Journal of Materials Chemistry C, 2023, 11, 10149-10153.	5.5	4
823	Supramolecular Biomaterials for Cancer Immunotherapy. Research, 2023, 6, .	5.7	6
824	Ï€-Conjugated Polymer Nanoparticles from Design, Synthesis to Biomedical Applications: Sensing, Imaging, and Therapy. Microorganisms, 2023, 11, 2006.	3.6	1
825	PEGylated bottom-up synthesized graphene nanoribbons loaded with camptothecin as potential drug carriers. Materials Today Chemistry, 2023, 33, 101668.	3.5	0
826	Carbonâ€Encapsulated Magnetite Nanodoughnut as a NIRâ€II Responsive Nanozyme for Synergistic Chemodynamic–Photothermal Therapy. Advanced Healthcare Materials, 2023, 12, .	7.6	2
827	Near-infrared light-activated ROS generation using semiconducting polymer nanocatalysts for photodynamic–chemodynamic therapy. Journal of Materials Chemistry B, 0, , .	5.8	0
828	NIR-II Nanoprobes: A Review of Components-Based Approaches to Next-Generation Bioimaging Probes. Bioengineering, 2023, 10, 954.	3.5	1
829	Structural Morphology Changes the Fate of Semiconducting Polymers in Afterglow Luminescence Imaging. Chemistry of Materials, 2023, 35, 6920-6931.	6.7	1
830	Light Controlled Nanobiohybrids for Modulating Chiral Alcohol Synthesis. Applied Biochemistry and Biotechnology, 0, , .	2.9	0
831	Organic Optoelectronic Materials: A Rising Star of Bioimaging and Phototherapy. Advanced Materials, 0, , .	21.0	7
832	Carbonic anhydrase inhibitor-decorated semiconducting oligomer nanoparticles for active-targeting NIR-II fluorescence tumor imaging. Nanotechnology, 2023, 34, 485101.	2.6	Ο

#	Article	IF	CITATIONS
833	Building in biologically appropriate multifunctionality in aqueous copper indium selenide-based quantum dots. Nanoscale, 2023, 15, 13603-13616.	5.6	1
834	Semiconducting Polymer Nanoporous Thin Films as a Tool to Regulate Intracellular ROS Balance in Endothelial Cells. ACS Applied Materials & Interfaces, 2023, 15, 35973-35985.	8.0	2
835	Mitochondria-Targeting Multimodal Phototheranostics Based on Triphenylphosphonium Cation Modified Amphiphilic Pillararenes and A–D–A Fused-Ring Photosensitizers. ACS Macro Letters, 2023, 12, 1365-1371.	4.8	1
836	Ag ⁺ -Adsorbing Semiconducting Polymer Nanosponge for Smart Local Treatment of Wound Infection. ACS Applied Bio Materials, 2023, 6, 4421-4429.	4.6	0
837	Thirty years of research on photoacoustic imaging in the field of cancer: A scientometric analysis of hotspots, bursts, and research trends. Environmental Science and Pollution Research, 2023, 30, 99399-99411.	5.3	0
838	An NIR Fluorescence Turnâ€on and MRl Bimodal Probe for Concurrent Realâ€time in vivo Sensing and Labeling of <i>β</i> â€Galactosidase. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
839	Self-Assembled Nano-PROTAC Enables Near-Infrared Photodynamic Proteolysis for Cancer Therapy. Journal of the American Chemical Society, 2023, 145, 16642-16649.	13.7	8
840	Dualâ€Programmable Semiconducting Polymer NanoPROTACs for Deepâ€Tissue Sonodynamicâ€Ferroptosis Activatable Immunotherapy. Small, 2024, 20, .	10.0	1
841	Ultralong aqueous organic room-temperature phosphorescent probes for in vivo time-resolved bioimaging. TrAC - Trends in Analytical Chemistry, 2023, 168, 117339.	11.4	1
842	有朲èšå•̂物ç,¹åŠç"Ÿç‰©å‰å┤应ç". Zhongguo Jiguang/Chinese Journal of Lasers, 2023, 50, 15074	40 1. 2	0
843	An Aggregationâ€Induced Emission Moleculeâ€Assembled Nanovaccine with Selfâ€Adjuvanted Function for Cancer Immunotherapy. Advanced Functional Materials, 2023, 33, .	14.9	0
844	Progress of cell membrane-derived biomimetic nanovesicles for cancer phototherapy. Biomaterials Science, 0, , .	5.4	0
845	Dyads and Triads of Boron Difluoride Formazanate and Boron Difluoride Dipyrromethene Dyes. Chemistry - A European Journal, 2023, 29, .	3.3	0
846	Poly(arylene iminoborane)s, Analogues of Poly(arylene vinylene) with a BNâ€Đoped Backbone: A Comprehensive Study. Chemistry - A European Journal, 2023, 29, .	3.3	2
847	The innovative design of a delivery and real-time tracer system for anti-encephalitis drugs that can penetrate the blood-brain barrier. Journal of Controlled Release, 2023, 363, 136-148.	9.9	1
848	An NIR Fluorescence Turnâ€on and MRl Bimodal Probe for Concurrent Realâ€ŧime in vivo Sensing and Labeling of <i>β</i> â€Galactosidase. Angewandte Chemie, 2023, 135, .	2.0	0
849	Recent advances in responsive lanthanide-doped luminescence nanoprobes in the near-infrared-II window. TrAC - Trends in Analytical Chemistry, 2023, 169, 117368.	11.4	0
850	Correlating Structure and Photophysical Properties in Thiazolo[5,4-d]thiazole Crystal Derivatives for Use in Solid-State Photonic and Fluorescence-Based Optical Devices. Materials Advances, 0, , .	5.4	0

#	Article	IF	CITATIONS
851	Wireless deep-brain neuromodulation using photovoltaics in the second near-infrared spectrum. , 2023, 1, 100113.		1
852	Near-infrared photosensitizers adaptive to tumor hypoxic microenvironment for synergistic photothermal-photodynamic and immunotherapy. Nano Today, 2023, 53, 102030.	11.9	3
854	Templated Droplet Evaporationâ€Based Supraparticles in Environmental Applications. Particle and Particle Systems Characterization, 0, , .	2.3	0
855	éžå±ä»·é"®æž"象é"ç−ç•¥ä¼~åŒ−åŠå⁻¼ä½"èšå•̂物纳米é¢−ç²'çš" NIR-IIå‰å£°/å‰çf性èf½ç"";	ġ⁰Ž é ₄8ĩæ∙^å.	‰è⁻Šç–-
856	Nanotechnology for brain tumor imaging and therapy based on π-conjugated materials: state-of-the-art advances and prospects. Frontiers in Chemistry, 0, 11, .	3.6	0
857	Nearâ€Infraredâ€Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy. Advanced Science, 2024, 11, .	11.2	0
858	Dual Activation of Calcium Channels Using Near-Infrared Responsive Conjugated Oligomer Nanoparticles for Precise Regulation of Blood Glucose Homeostasis. Nano Letters, 2023, 23, 10608-10616.	9.1	1
859	Recent advances and prospects in organic molecule-based phototheranostic agents for enhanced cancer phototherapy. Coordination Chemistry Reviews, 2024, 501, 215560.	18.8	4
860	End Group Engineering for Constructing Aâ^'Dâ^'A Fusedâ€Ring Photosensitizers with Balanced Phototheranostics Performance. Small, 0, , .	10.0	0
861	Toward Type I/II ROS Generation Photoimmunotherapy by Molecular Engineering of Semiconducting Perylene Diimide. Advanced Healthcare Materials, 0, , .	7.6	0
862	Recent progress in controlling the photoluminescence properties of single-walled carbon nanotubes by oxidation and alkylation. Chemical Communications, 2023, 59, 14497-14508.	4.1	0
863	Red blood cell membrane biomimetic nanoprobes for ratiometric imaging of reactive oxygen species level in atherosclerosis. Chemical Engineering Journal, 2024, 479, 147515.	12.7	2
864	Self-Assembled Homopolymeric Spherulites from Small Molecules in Solution. Journal of the American Chemical Society, 2023, 145, 25664-25672.	13.7	0
865	Molecular Engineering of Plasma Membrane and Mitochondria Dualâ€Targeted NIRâ€II AlE Photosensitizer Evoking Synergetic Pyroptosis and Apoptosis. Advanced Materials, 2024, 36, .	21.0	1
866	Application of Nanomaterials in the Medical Field: A Review. , 2023, , 355-405.		0
867	Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chemical Reviews, 2023, 123, 13966-14037.	47.7	1
869	Introducing Specific Iodine Ions in Perovskiteâ€Based Nanocomplex to Cater for Versatile Biomedical Imaging and Tumor Radiotherapy. Advanced Healthcare Materials, 2024, 13, .	7.6	1
870	Superoxide Anion-Mediated Afterglow Mechanism-Based Water-Soluble Zwitterion Dye Achieving Renal-Failure Mice Detection. Journal of the American Chemical Society, 2023, 145, 26736-26746.	13.7	2

щ	Article	IF	Citations
#	Flow cytometry: Aspects and application in plant and biological science. Journal of Biophotonics,		
871	2024, 17, .	2.3	1
872	Nanocatalytic theranostics with intracellular mutual promotion for ferroptosis and chemo-photothermal therapy. Journal of Colloid and Interface Science, 2024, 657, 619-631.	9.4	1
873	FRET-engineering of organic nanoparticles for photoacoustic imaging-guided photodynamic and augmented photothermal therapy. Sensors and Actuators B: Chemical, 2024, 401, 135091.	7.8	1
874	Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. Journal of Controlled Release, 2024, 365, 773-800.	9.9	2
875	Chronological development of functional fluorophores for bio-imaging. Chemical Communications, 2024, 60, 501-521.	4.1	1
876	Structure and Properties Regulation of Organic Photosensitizers and Application in Photodiagnosis and Treatment ^{a~} . Acta Chimica Sinica, 2023, 81, 1642.	1.4	0
878	High ontrast Photoacoustic Imaging of Localized Cysteine in Orthotopic Breast Cancer Enabled by A Totally aged Methylene Blue Probe. Chemistry - A European Journal, 2024, 30, .	3.3	0
879	Glutathioneâ€triggered prodrugs: Design strategies, potential applications, and perspectives. Medicinal Research Reviews, 0, , .	10.5	0
880	Dual/Multi-Modal Image-Guided Diagnosis and Therapy Based on Luminogens with Aggregation-Induced Emission. Molecules, 2024, 29, 371.	3.8	0
881	Self-Assembled Activatable Probes to Monitor Interactive Dynamics of Intracellular Nitric Oxide and Hydrogen Sulfide. Analytical Chemistry, 2024, 96, 1259-1267.	6.5	1
882	The role of nanotechnology: Organic nanomaterials and the mechanism of cancer phototheranostics. , 2024, , 21-64.		0
883	Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers <i>In Vivo</i> . ACS Nano, 2024, 18, 3916-3968.	14.6	1
884	Harnessing visible light: enhancing TiO2 photocatalysis with photosensitizers for sustainable and efficient environmental solutions. Frontiers in Chemical Engineering, 0, 6, .	2.7	0
885	Charged aggregationâ€induced emission luminogens for bioimaging and phototherapy. Luminescence, 2024, 39, .	2.9	0
886	Aggregation-induced Emission Probe for Fluorescence/Photoacoustic Dual-modality Imaging and Photodynamic/Photothermal Treatment. Chemical Research in Chinese Universities, 2024, 40, 293-304.	2.6	0
887	Size Modulation of Conjugated Polymer Nanoparticles for Improved NIR-II Fluorescence Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2024, 16, 4420-4429.	8.0	0
888	A NIR-II Photoacoustic/NIR-IIa Fluorescent Probe for Targeted Imaging of Glioma under NIR-II Excitation. Journal of Medicinal Chemistry, 2024, 67, 1861-1871.	6.4	0
889	One Stone, Three Birds: Design and Synthesis of "All-in-One―Nanoscale Mn-Porphyrin Coordination Polymers for Magnetic Resonance Imaging-Guided Synergistic Photodynamic-Sonodynamic Therapy. Journal of Colloid and Interface Science, 2024, 660, 1021-1029.	9.4	0

#	Article	IF	CITATIONS
890	Current Advances in the Synthesis, Properties, and Biomedical Applications of Two-Dimensional Graphdiyne: A Review. ACS Applied Nano Materials, 2024, 7, 2461-2493.	5.0	0
892	An all-electron acceptor-based semiconducting polymer nanoprobe for in vivo high brightness NIR-II fluorescence imaging. Dyes and Pigments, 2024, 224, 111965.	3.7	0
893	NIR-II fluorescence imaging without intended excitation light. Chemical Science, 2024, 15, 3339-3348.	7.4	0
894	Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Advanced Healthcare Materials, 2024, 13, .	7.6	0
895	Benzobisthiadiazole-Based Small Molecular Near-Infrared-II Fluorophores: From Molecular Engineering to Nanophototheranostics. ACS Nano, 2024, 18, 4683-4703.	14.6	0
896	Phototunable and Photopatternable Polymer Semiconductors. Accounts of Chemical Research, O, , .	15.6	0
897	Organoâ€Pt ⁱⁱ Complexes for Potent Photodynamic Inactivation of Multiâ€Drug Resistant Bacteria and the Influence of Configuration. Advanced Science, 2024, 11, .	11.2	0
898	Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chemical Society Reviews, 2024, 53, 2643-2692.	38.1	0
899	H ₂ O ₂ -triggered controllable carbon monoxide delivery for photothermally augmented gas therapy. Journal of Materials Chemistry B, 2024, 12, 2737-2745.	5.8	0
900	Tunable emission from H-type supramolecular polymers in optical nanocavities. Chemical Communications, 2024, 60, 2812-2815.	4.1	0
901	Singleâ€Component Photochemical Afterglow Nearâ€Infrared Luminescent Nanoâ€Photosensitizers: Bioimaging and Photodynamic Therapy. Advanced Healthcare Materials, 0, , .	7.6	0
902	Advancing nanotechnology for neoantigen-based cancer theranostics. Chemical Society Reviews, 2024, 53, 3224-3252.	38.1	0
903	Synchronously manipulating absorption and nonradiative transition of croconaine via donor engineering for efficient NIR-II photothermal theranostics. Sensors and Actuators B: Chemical, 2024, 408, 135535.	7.8	0
904	NIR-II emissive donor–acceptor–donor fluorophores for dual fluorescence bioimaging and photothermal therapy applications. Journal of Materials Chemistry C, 2024, 12, 4369-4383.	5.5	0
905	Recent advances in the design of organic photothermal agents for cancer treatment: A review. Coordination Chemistry Reviews, 2024, 506, 215719.	18.8	0
906	Positively Charged Donor–Acceptor Type Thieno[3,4- <i>b</i>]pyrazine-Based Conjugated Polymer for Near-Infrared Light Triggered Rapid and Efficient Photothermal Therapy of Sterilization. ACS Applied Polymer Materials, 2024, 6, 2933-2941.	4.4	0
907	Triggering Long Persistent Luminescence From Functionalizable Carbon Dotsâ€inâ€Carbon Nitrides Composites Via Production of Deepâ€Traps. Advanced Optical Materials, 0, , .	7.3	0
908	Functionalized-nanoparticles/silk fibroin coating with anti-adhesive and photothermal capabilities to prevent implant-associated infections. Chemical Engineering Journal, 2024, 486, 150147.	12.7	ο

#	Article	IF	CITATIONS
909	A biodegradable semiconducting polymer phototherapeutic agent for safe cancer phototherapy. Journal of Controlled Release, 2024, 368, 265-274.	9.9	0
910	Dual-enzyme decorated semiconducting polymer nanoagents for second near-infrared photoactivatable ferroptosis-immunotherapy. Materials Horizons, 0, , .	12.2	0
911	A novel dual-activatable ultrasensitive chemiluminescent probe for mercury (II) monitoring: From rational design to multiple application. Food Chemistry, 2024, 447, 138954.	8.2	0
912	Ionic-confining-assisted multiple-mode tunable light emitting of carbon nanodots. Chemical Engineering Journal, 2024, 486, 150196.	12.7	0
913	Catalytic imaging-guided cancer therapy using non-coordinated and coordinated nanozymes. Coordination Chemistry Reviews, 2024, 507, 215755.	18.8	0
914	Nanoassemblies of heptamethine cyanine dye-initiated poly(amino acid) enhance ROS generation for effective antitumour phototherapy. Nanoscale Horizons, 2024, 9, 731-741.	8.0	0
915	Easy but Efficient: Facile Approach to Molecule with Theoretically Justified Donor–Acceptor Structure for Effective Photothermal Conversion and Intravenous Photothermal Therapy. Advanced Science, 0, , .	11.2	0
916	Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Materials Today Bio, 2024, 26, 101028.	5.5	0
917	A novel pH-sensitive hemi-cyanine containing tetrahydropyridine ring near-infrared fluorescence probe with lysosome-targeting ability. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 314, 124162.	3.9	0