CITATION REPORT List of articles citing

Metabolizable Semiconducting Polymer Nanoparticles for Second Near-Infrared Photoacoustic Imaging

DOI: 10.1002/adma.201808166 Advanced Materials, 2019, 31, e1808166.

Source: https://exaly.com/paper-pdf/72813601/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
261	Multifunctional Cancer Phototherapy Using Fluorophore-Functionalized Nanodiamond Supraparticles <i>ACS Applied Bio Materials</i> , 2019 , 2, 3693-3705	4.1	8
260	Surfactant-Stripped Micelles for NIR-II Photoacoustic Imaging through 12 cm of Breast Tissue and Whole Human Breasts. <i>Advanced Materials</i> , 2019 , 31, e1902279	24	60
259	Single NIR Laser-Activated Multifunctional Nanoparticles for Cascaded Photothermal and Oxygen-Independent Photodynamic Therapy. 2019 , 11, 68		33
258	Nitric Oxide-Activated "Dual-Key-One-Lock" Nanoprobe for in Vivo Molecular Imaging and High-Specificity Cancer Therapy. 2019 , 141, 13572-13581		76
257	PEGylated Tantalum Nanoparticles: A Metallic Photoacoustic Contrast Agent for Multiwavelength Imaging of Tumors. <i>Small</i> , 2019 , 15, e1903596	11	13
256	Single nanoparticles as versatile phototheranostics for tri-modal imaging-guided photothermal therapy. <i>Biomaterials Science</i> , 2019 , 7, 3609-3613	7.4	14
255	Activatable Small-Molecule Photoacoustic Probes that Cross the Blood-Brain Barrier for Visualization of Copper(II) in Mice with Alzheimer's Disease. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12415-12419	16.4	53
254	Activatable Small-Molecule Photoacoustic Probes that Cross the Blood B rain Barrier for Visualization of Copper(II) in Mice with Alzheimer's Disease. <i>Angewandte Chemie</i> , 2019 , 131, 12545-125	54 ³ 9 ⁶	3
253	Double Switch Biodegradable Porous Hollow Trinickel Monophosphide Nanospheres for Multimodal Imaging Guided Photothermal Therapy. 2019 , 19, 5093-5101		41
252	A champagne inspired dual chain-responsive thrombolytic drug release platform based on black phosphorus nanosheets for accelerated thrombolysis. 2019 , 4, 1277-1285		15
251	Recent Progress on Near-Infrared Photoacoustic Imaging: Imaging Modality and Organic Semiconducting Agents. 2019 , 11,		17
250	A Photolabile Semiconducting Polymer Nanotransducer for Near-Infrared Regulation of CRISPR/Cas9 Gene Editing. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18197-18201	16.4	76
249	Artificial Enzyme Catalyzed Cascade Reactions: Antitumor Immunotherapy Reinforced by NIR-II Light. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17425-17432	16.4	120
248	Second Near-Infrared Absorbing Agents for Photoacoustic Imaging and Photothermal Therapy. 2019 , 3, 1900553		110
247	Mo C-Derived Polyoxometalate for NIR-II Photoacoustic Imaging-Guided Chemodynamic/Photothermal Synergistic Therapy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18641-18646	16.4	153
246	Biodegradable Econjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. <i>ACS Nano</i> , 2019 , 13, 12901-12911	16.7	104
245	Mo2C-Derived Polyoxometalate for NIR-II Photoacoustic Imaging-Guided Chemodynamic/Photothermal Synergistic Therapy. <i>Angewandte Chemie</i> , 2019 , 131, 18814-18819	3.6	13

(2020-2019)

244	Rapid Biofilm Elimination on Bone Implants Using Near-Infrared-Activated Inorganic Semiconductor Heterostructures. 2019 , 8, e1900835		44
243	Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. <i>Advanced Materials</i> , 2019 , 31, e1904329	24	7 ²
242	A Photolabile Semiconducting Polymer Nanotransducer for Near-Infrared Regulation of CRISPR/Cas9 Gene Editing. <i>Angewandte Chemie</i> , 2019 , 131, 18365-18369	3.6	15
241	Artificial Enzyme Catalyzed Cascade Reactions: Antitumor Immunotherapy Reinforced by NIR-II Light. <i>Angewandte Chemie</i> , 2019 , 131, 17586-17593	3.6	16
240	Oxygen-Tolerant Hydrogen Peroxide Reduction Catalysts for Reliable Noninvasive Bioassays. <i>Small</i> , 2019 , 15, e1903320	11	4
239	Manipulating Nonradiative Decay Channel by Intermolecular Charge Transfer for Exceptionally Improved Photothermal Conversion. <i>ACS Nano</i> , 2019 , 13, 12006-12014	16.7	46
238	Silicon nanowires decorated with gold nanoparticles via in situ reduction for photoacoustic imaging-guided photothermal cancer therapy. 2019 , 7, 4393-4401		8
237	A Magneto-Optical Nanoplatform for Multimodality Imaging of Tumors in Mice. ACS Nano, 2019, 13, 775	50 <i>67</i> 75	5843
236	Conjugated-Polymer-Based Nanoparticles with Efficient NIR-II Fluorescent, Photoacoustic and Photothermal Performance. 2019 , 20, 2793-2799		23
235	Nanotransducers for Near-Infrared Photoregulation in Biomedicine. <i>Advanced Materials</i> , 2019 , 31, e190	1 <u>56</u> 07	93
234	Photoacoustic imaging and photothermal therapy in the second near-infrared window. 2019 , 43, 8835-8	8851	49
233	Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. <i>Angewandte Chemie</i> , 2019 , 131, 8245-8249	3.6	16
232	Redox-Activatable and Acid-Enhanced Nanotheranostics for Second Near-Infrared Photoacoustic Tomography and Combined Photothermal Tumor Therapy. <i>ACS Nano</i> , 2019 , 13, 5816-5825	16.7	108
231	Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8161-8165	16.4	133
230	A 1064 nm excitable semiconducting polymer nanoparticle for photoacoustic imaging of gliomas. 2019 , 11, 7754-7760		30
229	A full-spectrum-absorption from nickel sulphide nanoparticles for efficient NIR-II window photothermal therapy. 2019 , 11, 20161-20170		19
228	Optically Active Nanomaterials for Bioimaging and Targeted Therapy. 2019 , 7, 320		31
227	The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. <i>Bioconjugate Chemistry</i> , 2020 , 31, 260-275	6.3	39

226	Boosting H2O2-Guided Chemodynamic Therapy of Cancer by Enhancing Reaction Kinetics through Versatile Biomimetic Fenton Nanocatalysts and the Second Near-Infrared Light Irradiation. 2020 , 30, 1906128	109
225	An Ultrasound Activated Vesicle of Janus Au-MnO Nanoparticles for Promoted Tumor Penetration and Sono-Chemodynamic Therapy of Orthotopic Liver Cancer. <i>Angewandte Chemie</i> , 2020 , 132, 1699-1703.6	22
224	An Ultrasound Activated Vesicle of Janus Au-MnO Nanoparticles for Promoted Tumor Penetration and Sono-Chemodynamic Therapy of Orthotopic Liver Cancer. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1682-1688	- 147
223	NIR-II Dye-Based Multifunctional Telechelic Glycopolymers for NIR-IIa Fluorescence Imaging-Guided Stimuli-Responsive Chemo-Photothermal Combination Therapy. 2020 , 2, 174-183	35
222	Red fluorescent pyrazoline-BODIPY nanoparticles for ultrafast and long-term bioimaging. 2020 , 18, 707-714	14
221	Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. 2020 , 5, 100035	106
220	Core-Shell-Heterostructured Magnetic-Plasmonic Nanoassemblies with Highly Retained Magnetic-Plasmonic Activities for Ultrasensitive Bioanalysis in Complex Matrix. <i>Advanced Science</i> , 13.6 2020, 7, 1902433	16
219	Near-Infrared Fluorescence/Photoacoustic Agent with an Intensifying Optical Performance for Imaging-Guided Effective Photothermal Therapy. 2020 , 3, 2000170	10
218	Photoactivatable Protherapeutic Nanomedicine for Cancer. <i>Advanced Materials</i> , 2020 , 32, e2002661 24	103
217	Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. 2020 , 11, 10553-10570	26
216	Dual-targeted photothermal agents for enhanced cancer therapy. 2020 , 11, 8055-8072	31
215	Quantitative Photoacoustic Diagnosis and Precise Treatment of Inflammation In Vivo Using Activatable Theranostic Nanoprobe. 2020 , 30, 2001771	27
214	Photoacoustic imaging with fiber optic technology: A review. 2020 , 20, 100211	22
213	Active-Targeting NIR-II Phototheranostics in Multiple Tumor Models Using Platelet-Camouflaged Nanoprobes. <i>ACS Applied Materials & ACS Applied Materia</i>	8
212	Biomimetic Nanocomposites Cloaked with Bioorthogonally Labeled Glioblastoma Cell Membrane for Targeted Multimodal Imaging of Brain Tumors. 2020 , 30, 2004346	18
211	Stable Organic Photosensitizer Nanoparticles with Absorption Peak beyond 800 Nanometers and High Reactive Oxygen Species Yield for Multimodality Phototheranostics. <i>ACS Nano</i> , 2020 , 14, 9917-99286.7	48
210	Fluorescent Polymer Dot-Based Multicolor Stimulated Emission Depletion Nanoscopy with a Single Laser Beam Pair for Cellular Tracking. <i>Analytical Chemistry</i> , 2020 , 92, 12088-12096	16
209	Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. 2020 , 142, 15146-15156	76

(2020-2020)

208	Tocilizumab-Conjugated Polymer Nanoparticles for NIR-II Photoacoustic-Imaging-Guided Therapy of Rheumatoid Arthritis. <i>Advanced Materials</i> , 2020 , 32, e2003399	4	40
207	NIR fluorescence for monitoring in vivo scaffold degradation along with stem cell tracking in bone tissue engineering. <i>Biomaterials</i> , 2020 , 258, 120267	5.6	17
206	Self-Assembled Organic Nanomaterials for Drug Delivery, Bioimaging, and Cancer Therapy. 2020 , 6, 4816-	-483	3 ₃₃
205	Recent Development in Near-Infrared Photothermal Therapy Based on Semiconducting Polymer Dots. 2020 , 2, 4195-4221		12
204	Full-spectrum responsive ZrO-based phototheranostic agent for NIR-II photoacoustic imaging-guided cancer phototherapy. <i>Biomaterials Science</i> , 2020 , 8, 6515-6525	·4	3
203	Organic NIR-II Photoacoustic Agent Utilizing Combined Two-Photon and Excited State Absorption at 1064 nm. <i>ACS Photonics</i> , 2020 , 7, 3161-3165	5.3	10
202	Recent Advances in Polymer-Based Photothermal Materials for Biological Applications. 2020 , 2, 4273-428	88	29
201	An Ester-Substituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIR-II Photoacoustic Performance for Monitoring of Tumor Growth. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23268-23276	6.4	40
200	An Ester-Substituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIR-II Photoacoustic Performance for Monitoring of Tumor Growth. <i>Angewandte Chemie</i> , 2020 , 132, 23468-234	1 6	6
199	Photoacoustic-immune therapy with a multi-purpose black phosphorus-based nanoparticle. 2020 , 13, 1-13		5
198	Polymer Dots for Precision Photothermal Therapy of Brain Tumors in the Second Near-Infrared Window: A Mini-Review. 2020 , 2, 4319-4330		5
197	Cu MoS Nanozyme with NIR-II Light Enhanced Catalytic Activity for Efficient Eradication of Multidrug-Resistant Bacteria. <i>Small</i> , 2020 , 16, e2001099	1	44
196	Recent Advances in Conjugated Polymer Nanoparticles for NIR-II Imaging and Therapy. 2020 , 2, 4241-425	7	22
195	Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. 2020 , 13, 3268-3277		16
194	Photothermal Conjugated Polymers and Their Biological Applications in Imaging and Therapy. 2020 , 2, 4222-4240		14
193	A Photoinduced Nonadiabatic Decay-Guided Molecular Motor Triggers Effective Photothermal Conversion for Cancer Therapy. <i>Angewandte Chemie</i> , 2020 , 132, 11394-11398	.6	9
192	Recent development of small-molecule organic fluorophores for multifunctional bioimaging in the second near-infrared window. 2020 , 225, 117338		19
191	Recent advances in synthesis and application of organic near-infrared fluorescence polymers. 2020 , 55, 9918-9947		13

190	Insights into the deep-tissue photothermal therapy in near-infrared II region based on tumor-targeted MoO2 nanoaggregates. 2020 , 63, 1085-1098		9
189	Fine-Tuning the Homometallic Interface of Au-on-Au Nanorods and Their Photothermal Therapy in the NIR-II Window. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14443-14448	16.4	48
188	Fine-Tuning the Homometallic Interface of Au-on-Au Nanorods and Their Photothermal Therapy in the NIR-II Window. <i>Angewandte Chemie</i> , 2020 , 132, 14551-14556	3.6	14
187	Self-assembled organic/metal ion nanohybrids for theranostics. 2020 , 1, e17		18
186	Tracking Osteoarthritis Progress through Cationic Nanoprobe-Enhanced Photoacoustic Imaging of Cartilage. 2020 , 109, 153-162		10
185	SWIR Photodetection and Visualization Realized by Incorporating an Organic SWIR Sensitive Bulk Heterojunction. <i>Advanced Science</i> , 2020 , 7, 2000444	13.6	33
184	Programmable NIR-II Photothermal-Enhanced Starvation-Primed Chemodynamic Therapy using Glucose Oxidase-Functionalized Ancient Pigment Nanosheets. <i>Small</i> , 2020 , 16, e2001518	11	83
183	Emerging combination strategies with phototherapy in cancer nanomedicine. 2020 , 49, 8065-8087		193
182	Biomimic FeS2 nanodrug with hypothermal photothermal effect by clinical approved NIR-II light for augmented chemodynamic therapy. <i>Chemical Engineering Journal</i> , 2020 , 400, 125933	14.7	27
181	New conjugated polymer nanoparticles with high photoluminescence quantum yields for far-red and near infrared fluorescence bioimaging. 2020 , 4, 2357-2369		16
180	Instantaneous In Vivo Imaging of Acute Myocardial Infarct by NIR-II Luminescent Nanodots. <i>Small</i> , 2020 , 16, e1907171	11	10
179	Mitochondria-Targeting Organic Nanoparticles for Enhanced Photodynamic/Photothermal Therapy. <i>ACS Applied Materials & District Material</i>	9.5	32
178	Photothermal Fenton Nanocatalysts for Synergetic Cancer Therapy in the Second Near-Infrared Window. <i>ACS Applied Materials & Acs Acc Applied Materials & Acs Acc Acc Acc Acc Acc Acc Acc Acc Acc</i>	9.5	40
177	Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration. 2020 , 17, 1028-1048		25
176	Tumor-targeted near-infrared fluorophore for fluorescence-guided phototherapy. 2020 , 56, 4180-4183		7
175	An Activatable Polymeric Reporter for Near-Infrared Fluorescent and Photoacoustic Imaging of Invasive Cancer. <i>Angewandte Chemie</i> , 2020 , 132, 7084-7089	3.6	22
174	Predicting the Loading Capability of mPEG-PDLLA to Hydrophobic Drugs Using Solubility Parameters 2020 , 38, 690-696		4
173	NIR-emitting semiconducting polymer nanoparticles for in vivo two-photon vascular imaging. Biomaterials Science, 2020, 8, 2666-2672	7.4	3

(2020-2020)

172	Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. 2020 , 10, 766-790		12
171	Fluoro-Photoacoustic Polymeric Renal Reporter for Real-Time Dual Imaging of Acute Kidney Injury. <i>Advanced Materials</i> , 2020 , 32, e1908530	24	62
170	Rational design of near-infrared platinum(II)-acetylide conjugated polymers for photoacoustic imaging-guided synergistic phototherapy under 808 nm irradiation. 2020 , 8, 7356-7364		10
169	Colloidal Porous AuAg Alloyed Nanoparticles for Enhanced Photoacoustic Imaging. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 32270-32277	9.5	11
168	Oxygen-Embedded Pentacene Based Near-Infrared Chemiluminescent Nanoprobe for Highly Selective and Sensitive Visualization of Peroxynitrite In Vivo. <i>Analytical Chemistry</i> , 2020 , 92, 4154-4163	7.8	15
167	Tumor microenvironment-activated NIR-II reagents for tumor imaging and therapy. 2020 , 8, 4738-4747		37
166	An Activatable Polymeric Reporter for Near-Infrared Fluorescent and Photoacoustic Imaging of Invasive Cancer. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7018-7023	16.4	58
165	Terminal modulation of asymmetrical DADIfuran-containing diketopyrrolopyrrole chromophores for intramolecular charge transfer properties. 2020 , 177, 108277		1
164	Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing. 2020 , 117, 2395-2405		77
163	Molecular engineering of DAD conjugated small molecule nanoparticles for high performance NIR-II photothermal therapy. 2020 , 7, 1379-1386		40
163 162			40
	NIR-II photothermal therapy. 2020 , 7, 1379-1386		
162	NIR-II photothermal therapy. 2020, 7, 1379-1386 Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. 2020, 12, 38	16.7	23
162 161	NIR-II photothermal therapy. 2020, 7, 1379-1386 Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. 2020, 12, 38 Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. 2020, 163-164, 40-64 Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence	16.7	23
162 161 160	NIR-II photothermal therapy. 2020, 7, 1379-1386 Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. 2020, 12, 38 Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. 2020, 163-164, 40-64 Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence. ACS Nano, 2020, 14, 2509-2521	16.7	23 43 112
162 161 160	Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. 2020, 12, 38 Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. 2020, 163-164, 40-64 Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence. ACS Nano, 2020, 14, 2509-2521 Recent advances in photoacoustic contrast agents for in vivo imaging. 2020, 12, e1618 Effects of naphthoxy side groups on functionalities of linear polyphosphazenes: Fluorescence, ion	16.7	23 43 112 48
162 161 160 159 158	Deep-Tissue Photothermal Therapy Using Laser Illumination at NIR-IIa Window. 2020, 12, 38 Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. 2020, 163-164, 40-64 Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence. ACS Nano, 2020, 14, 2509-2521 Recent advances in photoacoustic contrast agents for in vivo imaging. 2020, 12, e1618 Effects of naphthoxy side groups on functionalities of linear polyphosphazenes: Fluorescence, ion response and degradability. 2020, 191, 122251	16.7	23 43 112 48 3

154	Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Near-Infrared Photoacoustic Imaging and Photothermal Cancer Therapy. 2020 , 30, 1909673		54
153	Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance. 2020 , 241, 116344		11
152	Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. 2020 , 11, 1857		199
151	A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. 2020 , 12, 10265-10276		19
150	A Photoinduced Nonadiabatic Decay-Guided Molecular Motor Triggers Effective Photothermal Conversion for Cancer Therapy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11298-11302	16.4	40
149	Organic semiconducting nanomaterials-assisted phototheranostics in near-infrared-II biological window. 2021 , 2, 20200070		14
148	Photoacoustic imaging-guided chemo-photothermal combinational therapy based on emissive Pt(II) metallacycle-loaded biomimic melanin dots. <i>Science China Chemistry</i> , 2021 , 64, 134-142	7.9	4
147	Biologically modified nanoparticles as theranostic bionanomaterials. 2021 , 118, 100768		55
146	Activatable NIR-II Plasmonic Nanotheranostics for Efficient Photoacoustic Imaging and Photothermal Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2006532	24	48
145	Activatable Polymer Nanoenzymes for Photodynamic Immunometabolic Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2007247	24	99
144	Near-infrared-responsive functional nanomaterials: the first domino of combined tumor therapy. 2021 , 36, 100963		11
143	Recent Advances in Renal Clearable Inorganic Nanoparticles for Cancer Diagnosis. 2021 , 38, 2000270		6
142	Recent development of nanomedicine for the treatment of bacterial biofilm infections. 2021 , 2, 202000	065	15
141	Injectable muscle-adhesive antioxidant conductive photothermal bioactive nanomatrix for efficiently promoting full-thickness skeletal muscle regeneration. 2021 , 6, 1605-1617		11
140	Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics. 2021 , 54, 697-706		24
139	Coordination polymers nanoparticles for bioimaging. 2021 , 432, 213716		23
138	Second Near-Infrared Photothermal Semiconducting Polymer Nanoadjuvant for Enhanced Cancer Immunotherapy. <i>Advanced Materials</i> , 2021 , 33, e2003458	24	93
137	Synthesis, characterization, and biological applications of semiconducting polythiophene-based nanoparticles. 2021 , 2, 20200086		15

136	Near-Infrared-II Semiconducting Polymer Dots for Deep-tissue Fluorescence Imaging. 2021 , 16, 175-184	4	8
135	Advances in nanomedicines for diagnosis of central nervous system disorders. <i>Biomaterials</i> , 2021 , 269, 120492	15.6	14
134	A Compare Study on Electrical Properties of MS Diodes with and Without CoFe2O4-PVP Interlayer. 2021 , 31, 1668-1675		8
133	Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury. 2021 , 657, 271-300		О
132	Near-Infrared II Optical Imaging. 2021 , 397-420		
131	Cutting-edge advancements of nanomaterials for medi-translatable noninvasive theranostic modalities. 2021 , 2, 20200144		2
130	Self-assembled organic nanomedicine enables ultrastable photo-to-heat converting theranostics in the second near-infrared biowindow. 2021 , 12, 218		34
129	Cascade Drug-Release Strategy for Enhanced Anticancer Therapy. 2021 , 4, 26-53		14
128	Dithieno[3,2-:2',3'-]silole-based conjugated polymers for bioimaging in the short-wave infrared region 2021 , 11, 30798-30804		1
127	A Polymer Multicellular Nanoengager for Synergistic NIR-II Photothermal Immunotherapy. <i>Advanced Materials</i> , 2021 , 33, e2008061	24	48
126	Neural Stimulation In Vitro and In Vivo by Photoacoustic Nanotransducers. 2021 , 4, 654-674		6
125	Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. 2021 , 2, 100082		35
124	Reprogramming the Tumor Microenvironment through Second-Near-Infrared-Window Photothermal Genome Editing of PD-L1 Mediated by Supramolecular Gold Nanorods for Enhanced Cancer Immunotherapy. <i>Advanced Materials</i> , 2021 , 33, e2006003	24	42
123	Low-bandgap conjugated polymers with photocurrent response over 1000 nm. 2021 , 56, 8334-8357		1
122	Preparation of Yellow Fluorescent N,O-CDs and its Application in Detection of ClO. 2021 , 31, 659-666		3
121	Dye-Sensitized Downconversion Nanoprobes with Emission Beyond 1500 nm for Ratiometric Visualization of Cancer Redox State. 2021 , 31, 2009942		13
120	Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. 2021 , 12, 742		135
119	Renal-Clearable Ultrasmall Polypyrrole Nanoparticles with Size-Regulated Property for Second Near-Infrared Light-Mediated Photothermal Therapy. 2021 , 31, 2008362		25

118	Multi-scale optoacoustic molecular imaging of brain diseases. 2021 , 48, 4152-4170		18
117	Active Delivery of CRISPR System Using Targetable or Controllable Nanocarriers. Small, 2021, 17, e200522	2	8
116	A Multichannel Ca Nanomodulator for Multilevel Mitochondrial Destruction-Mediated Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2007426	ļ	54
115	Biodegradable Charge-Transfer Complexes for Glutathione Depletion Induced Ferroptosis and NIR-II Photoacoustic Imaging Guided Cancer Photothermal Therapy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8157-8163	5.4	59
114	Biodegradable Charge-Transfer Complexes for Glutathione Depletion Induced Ferroptosis and NIR-II Photoacoustic Imaging Guided Cancer Photothermal Therapy. <i>Angewandte Chemie</i> , 2021 , 133, 8238-8244	5	2
113	Photophysical and structural modulation of poly(3-hexylthiophene) nanoparticles via surfactant-polymer interaction. 2021 , 218, 123515		1
112	Gold Nanorod-Melanin Hybrids for Enhanced and Prolonged Photoacoustic Imaging in the Near-Infrared-II Window. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 14974-14984	5	15
111	Janus Nanoparticles: From Fabrication to (Bio)Applications. <i>ACS Nano</i> , 2021 , 15, 6147-6191	б.7	39
110	Development of Second Near-Infrared Photoacoustic Imaging Agents. 2021 , 3, 305-317		13
109	Multifunctional cascade nanocatalysts for NIR-II-synergized photonic hyperthermia-strengthened nanocatalytic therapy of epithelial and embryonal tumors. <i>Chemical Engineering Journal</i> , 2021 , 411, 12836	4 7	5
108	Construction of nanomaterials as contrast agents or probes for glioma imaging. 2021 , 19, 125		6
107	Biocompatible PLNP-GNR composite nanoplatforms for monitoring deep-tissue photothermal therapy process. 2021 , 562, 150189		O
106	Chlorophylls derivatives: Photophysical properties, assemblies, nanostructures and biomedical applications. 2021 , 45, 77-92		8
105	Smart Nanoparticles for Chemo-Based Combinational Therapy. 2021 , 13,		7
104	Recent advances in optical imaging of biomarkers in vivo. 2021 , 38, 101156		5
103	Highly Controlled Janus Organic-Inorganic Nanocomposite as a Versatile Photoacoustic Platform. Angewandte Chemie - International Edition, 2021 , 60, 17647-17653	5.4	7
102	Organic Semiconducting Macromolecular Dyes for NIR-II Photoacoustic Imaging and Photothermal Therapy. 2021 , 31, 2104650		14
101	Unlocking the power of optical imaging in the second biological window: Structuring near-infrared II materials from organic molecules to nanoparticles. 2021 , 13, e1734		3

(2021-2021)

100	Highly Controlled Janus Organic-Inorganic Nanocomposite as a Versatile Photoacoustic Platform. <i>Angewandte Chemie</i> , 2021 , 133, 17788-17794	3.6	3
99	Metabolizable Near-Infrared-II Nanoprobes for Dynamic Imaging of Deep-Seated Tumor-Associated Macrophages in Pancreatic Cancer. <i>ACS Nano</i> , 2021 , 15, 10010-10024	16.7	8
98	Localized surface plasmon resonance properties and biomedical applications of copper selenide nanomaterials. 2021 , 20, 100402		19
97	A Photosensitive Polymeric Carrier with a Renewable Singlet Oxygen Reservoir Regulated by Two NIR Beams for Enhanced Antitumor Phototherapy. <i>Small</i> , 2021 , 17, e2101180	11	7
96	Light-Controlled Precise Delivery of NIR-Responsive Semiconducting Polymer Nanoparticles with Promoted Vascular Permeability. 2021 , 10, e2100569		6
95	Photochemical Synthesis of Nonplanar Small Molecules with Ultrafast Nonradiative Decay for Highly Efficient Phototheranostics. <i>Advanced Materials</i> , 2021 , 33, e2102799	24	2
94	Organic Semiconducting Luminophores for Near-Infrared Afterglow, Chemiluminescence, and Bioluminescence Imaging. 2106154		11
93	Remarkable Suppression of Vibrational Relaxation in Organic Semiconducting Polymers by Introducing a Weak Electron Donor for Improved NIR-II Phototheranostics. 2106575		8
92	NIR-II fluorescence imaging guided tumor-specific NIR-II photothermal therapy enhanced by starvation mediated thermal sensitization strategy. <i>Biomaterials</i> , 2021 , 275, 120935	15.6	16
91	Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. 2021 , 11, 2197-2219		9
90	Emerging biocompatible nanoplatforms for the potential application in diagnosis and therapy of deep tumors. 20200174		1
89	Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. 2021,		1
88	All-in-One Nanomedicine: Multifunctional Single-Component Nanoparticles for Cancer Theranostics. <i>Small</i> , 2021 , e2103072	11	9
87	Polymer-Based Therapeutic Nanoagents for Photothermal-Enhanced Combination Cancer Therapy. 210	0110	9
86	Multimodal Contrast Agents for Optoacoustic Brain Imaging in Small Animals. 2021, 9, 746815		1
85	Metabolizable pH/HO dual-responsive conductive polymer nanoparticles for safe and precise chemo-photothermal therapy. <i>Biomaterials</i> , 2021 , 277, 121115	15.6	1
84	Molecular Imaging-Guided Sonodynamic Therapy. <i>Bioconjugate Chemistry</i> , 2021 ,	6.3	3
83	Recent progress in near-infrared photoacoustic imaging. 2021 , 191, 113478		10

82	Intravital NIR-II three-dimensional photoacoustic imaging of biomineralized copper sulfide nanoprobes. 2021 , 9, 3005-3014		5
81	A multifunctional targeted nanoprobe with high NIR-II PAI/MRI performance for precise theranostics of orthotopic early-stage hepatocellular carcinoma. 2021 , 9, 8779-8792		5
80	Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Near-Infrared Construction. <i>Small</i> , 2021 , 17, e2004723	11	61
79	Nanoparticles as contrast agents for photoacoustic brain imaging. 2021 , 2, 4-19		13
78	Polymer nanomaterials in bioimaging. 2021 , 161-189		
77	Novel NIR-II semiconducting molecule incorporating sorafenib for imaging guided synergetic cancer phototherapy and anti-angiogenic therapy. 2021 , 9, 3235-3248		4
76	Bio-Conjugated Advanced Materials for Targeted Disease Theranostics. 2020 , 30, 1907906		29
75	Activatable NIR-II photoacoustic imaging and photochemical synergistic therapy of MRSA infections using miniature Au/Ag nanorods. <i>Biomaterials</i> , 2020 , 251, 120092	15.6	37
74	NIR-II Fluorescence Imaging Reveals Bone Marrow Retention of Small Polymer Nanoparticles. 2021 , 21, 798-805		14
73	Photoacoustic imaging in the second near-infrared window: a review. 2019 , 24, 1-20		77
72	Deep tissue photoacoustic imaging of nickel(II) dithiolene-containing polymeric nanoparticles in the second near-infrared window. 2020 , 10, 2509-2521		33
71	Nanoparticle-based Cell Trackers for Biomedical Applications. 2020 , 10, 1923-1947		40
70	Phthalocyanine-based photoacoustic contrast agents for imaging and theranostics. <i>Biomaterials Science</i> , 2021 , 9, 7811-7825	7.4	2
69	Semiconducting polymer nano-radiopharmaceutical for combined radio-photothermal therapy of pancreatic tumor. 2021 , 19, 337		4
68	Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. <i>Chemical Reviews</i> , 2021 ,	68.1	34
67	High-Specificity In Vivo Tumor Imaging Using Bioorthogonal NIR-IIb Nanoparticles. <i>Advanced Materials</i> , 2021 , e2102950	24	5
66	All-in-One Photoacoustic Theranostics Using Multi-Functional Nanoparticles. 2107624		1
65	Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging. <i>Small</i> , 2021 , 17, e210378	011	8

64	Self-assembled semiconducting polymer based hybrid nanoagents for synergistic tumor treatment. <i>Biomaterials</i> , 2021 , 279, 121188	15.6	2
63	Integrating the second near-infrared fluorescence imaging with clinical techniques for multimodal cancer imaging by neodymium-doped gadolinium tungstate nanoparticles. 2021 , 14, 2160		1
62	The Effect of Alkyl Chain Length on Well-Defined Fluoro-Arylated Polythiophenes for Temperature-Dependent Morphological Transitions. 2020 , 5, 33461-33469		
61	Ultrasound-propelled Janus Au NR-mSiO2 nanomotor for NIR-II photoacoustic imaging guided sonodynamic-gas therapy of large tumors. <i>Science China Chemistry</i> , 2021 , 64, 2218	7.9	7
60	The concept and examples of type-III photosensitizers for cancer photodynamic therapy. <i>CheM</i> , 2021 ,	16.2	10
59	Near-infrared-II light excitation thermosensitive liposomes for photoacoustic imaging-guided enhanced photothermal-chemo synergistic tumor therapy. <i>Biomaterials Science</i> , 2021 ,	7.4	O
58	NIR-II Fluorophore with Dithienylethene as an Electron Donor for Fluorescence/Photoacoustic Dual-Model Imaging and Photothermal Therapy. <i>ACS Applied Materials & Discounty and Photothermal Therapy.</i> ACS Applied Materials & Discounty and Photothermal Therapy. ACS Applied Materials & Discounty and	30 ⁹ 5 ⁵ 483	
57	Near-Infrared-II Bioimaging for Quantitative Analysis. Frontiers in Chemistry, 2021, 9, 763495	5	О
56	An electromagnetically actuated magneto-nanozyme synergistic therapy platform for destruction and eradication of biofilm. <i>Chemical Engineering Journal</i> , 2021 , 133971	14.7	1
55	Surfactant-Stripped Semiconducting Polymer Micelles for Tumor Theranostics and Deep Tissue Imaging in the NIR-II Window. <i>Small</i> , 2021 , e2104132	11	4
54	Zwitterion-Coated Ultrasmall MnO Nanoparticles Enable Highly Sensitive -Weighted Contrast-Enhanced Brain Imaging ACS Applied Materials & Interfaces, 2022,	9.5	2
53	NIR-II Functional Materials for Photoacoustic Theranostics <i>Bioconjugate Chemistry</i> , 2022 ,	6.3	9
52	Enhancing Penetration Ability of Semiconducting Polymer Nanoparticles for Sonodynamic Therapy of Large Solid Tumor <i>Advanced Science</i> , 2022 , e2104125	13.6	6
51	Reversibly Photoswitching Upconversion Nanoparticles for Super-sensitive Photoacoustic Molecular Imaging <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	3
50	Reversibly Photoswitching Upconversion Nanoparticles for Super-sensitive Photoacoustic Molecular Imaging. <i>Angewandte Chemie</i> ,	3.6	0
49	Benzobisthiadiazole and Its Derivative-Based Semiconducting Polymer Nanoparticles for Second Near-Infrared Photoacoustic Imaging <i>Frontiers in Chemistry</i> , 2022 , 10, 842712	5	1
48	Recent Trend of Ultrasound-Mediated Nanoparticle Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging and Treatment ACS Applied Materials & Delivery for Brain Imaging Applied & Delivery for Brain Imaging Applied & Delivery for Brain Imaging Applied & Delivery	9.5	3
47	Precise in Vivo Inflammation Imaging in the NIR-II Window Using 1065 nm Photoacoustic Probe for in Situ Visual Monitoring of Pathological Processes Related to Hepatitis <i>ACS Sensors</i> , 2022 ,	9.2	O

46	Glutathione-Depleting Organic Metal Adjuvants for Effective NIR-II Photothermal Immunotherapy <i>Advanced Materials</i> , 2022 , e2201706	24	8
45	Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications <i>Chemical Reviews</i> , 2022 ,	68.1	10
44	An Activatable Polymeric Nanoprobe for Fluorescence and Photoacoustic Imaging of Tumor-Associated Neutrophils in Cancer Immunotherapy <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	4
43	Activatable Near-Infrared Fluorescent Organic Nanoprobe for Hypochlorous Acid Detection in the Early Diagnosis of Rheumatoid Arthritis <i>Analytical Chemistry</i> , 2022 ,	7.8	1
42	An Activatable Polymeric Nanoprobe for Fluorescence and Photoacoustic Imaging of Tumor-Associated Neutrophils in Cancer Immunotherapy. <i>Angewandte Chemie</i> ,	3.6	1
41	A Self-Degradable Conjugated Polymer for Photodynamic Therapy with Reliable Postoperative Safety <i>Advanced Science</i> , 2021 , e2104101	13.6	7
40	A-DA'D-A Structured Organic Phototheranostics for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal and Photodynamic Synergistic Therapy ACS Applied Materials & Interfaces, 2022,	9.5	2
39	The future of early cancer detection <i>Nature Medicine</i> , 2022 , 28, 666-677	50.5	7
38	Semiconductor Polymer with Strong NIR-II Absorption for Photoacoustic Imaging and Photothermal Therapy ACS Applied Bio Materials, 2022,	4.1	О
37	Metallic Carbonitride MXene Based Photonic Hyperthermia for Tumor Therapy Small, 2022, e2200646	11	3
36	Nanosized Janus AuNR-Pt Motor for Enhancing NIR-II Photoacoustic Imaging of Deep Tumor and Pt Ion-Based Chemotherapy <i>ACS Nano</i> , 2022 ,	16.7	7
35	Supramolecular Assemblies for Cancer Diagnosis and Treatment. 2022 , 161-194		
34	Protein-Mimicking Nanoparticles in Biosystems Advanced Materials, 2022, e2201562	24	2
33	NIR-II-absorbing conjugated polymers based on tetra-fused isoindigo ribbons for photothermal conversion and photoacoustic imaging. <i>Cell Reports Physical Science</i> , 2022 , 100957	6.1	O
32	Synthesis of multi-branched Au nanocomposites with distinct plasmon resonance in NIR-II window and controlled CRISPR-Cas9 delivery for synergistic gene-photothermal therapy. <i>Biomaterials</i> , 2022 , 287, 121621	15.6	2
31	Biomedical Photoacoustic Imaging for Molecular Detection and Disease Diagnosis: Always-OnDand Illurn-OnDrobes. <i>Advanced Science</i> , 2202384	13.6	4
30	Recent Advances in Near-Infrared-II Fluorescence Imaging for Deep-Tissue Molecular Analysis and Cancer Diagnosis. <i>Small</i> , 2202035	11	4
29	Current Strategies of Photoacoustic Imaging Assisted Cancer Theragnostics toward Clinical Studies. <i>ACS Photonics</i> ,	6.3	O

(2023-2022)

28	Contrast Agents for Photoacoustic Imaging: A Review Focusing on the Wavelength Range. 2022 , 12, 594	2
27	The sound of drug delivery: optoacoustic imaging in pharmacology. 2022, 114506	1
26	Surface Plasmon-Enhanced NIR-II Fluorescence in a Multilayer Nanoprobe for Through-Skull Mouse Brain Imaging.	3
25	Engineering of small molecular organic nanoparticles for mitochondria-targeted mild photothermal therapy of malignant breast cancers.	1
24	Recent advances in small molecule dye-based nanotheranostics for NIR-II photoacoustic imaging-guided cancer therapy. 10,	O
23	Surface Charge and Nanoparticle Chromophore Coupling to Achieve Fast Exciton Quenching and Efficient Charge Separation in Photoacoustic Imaging (PAI) and Photothermal therapy (PTT). 2200168	O
22	A Renal-Clearable PEGylated Semiconducting Oligomer for the NIR-II Fluorescence Imaging of Tumor.	O
21	Near-Infrared Optical Transducer for Dynamic Imaging of Cerebrospinal Fluid Glucose in Brain Tumor.	O
20	Intraperitoneal administration for sustained photoacoustic contrast agent imaging. 2022, 28, 100406	3
19	Study on the photodynamic performance of non-stoichiometric nano-tungsten oxide probe. 2022 , 17, 1125-1134	O
18	Near-infrared absorbing semiconducting polymer nanomedicines for cancer therapy.	O
17	New Degradable Semiconducting Polymers for Photoacoustic Imaging of ECarrageenan-Induced Arthritis Mouse Model. 2022 , 94, 14322-14330	O
16	Nanomaterials for NIR-II Photoacoustic Imaging. 2202208	2
15	Design and application of organic contrast agents for molecular imaging in the second near infrared (NIR-II) window. 2022 , 28, 100426	1
14	Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. 2023 , 23, 471-507	O
13	Semiconducting Polymer Nanoparticles in the Second Near-Infrared Region for Biomedical Imaging and Therapy. 2202052	1
12	Adjustable near-infrared fluorescence lifetime emission of biocompatible rare-earth-doped nanoparticles for in vivo multiplexing. 2022 , 100225	O
11	Semiconducting Polymer Dots for Point-of-Care Biosensing and In Vivo Bioimaging: A Concise Review. 2023 , 13, 137	1

10	A cyano-based electron-accepting building block to design n-type conjugated polymers with absorption wavelength of >1000 nm.	0
9	Vertically Extended Strong Acceptor Unit Boosting Near-Infrared Photothermal Conversion of Conjugated Polymers Toward Highly Efficient Solar-Driven Water Evaporation.	1
8	Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges.	2
7	Second Near-Infrared (NIR-II) Window for Imaging-Navigated Modulation of Brain Structure and Function. 2206044	O
6	NIR-II absorbing organic nanoagents for photoacoustic imaging and photothermal therapy.	O
5	Electrostatic Repulsion-Induced Highly Enhanced Dispersibility of Conductive Carbon Electrode with Shape Memory-Assisted Self-Healing Effect for Multi-Modal Sensing System.	O
4	A Cost-Effective Semiconducting Polymer with an Ether Chain-Substituted Bithiophene as the Donor Unit Enabling Effective NIR-II Photoacoustic Imaging.	0
3	Tracking tumor heterogeneity and progression with near-infrared II fluorophores. 2023, 3,	O
2	Efficient Near-Infrared Organic Photodetectors with Spectral Response up to 1600 nm for Accurate Alcohol Concentration Detection. 2023 , 15, 16918-16929	O
1	Organic Semiconducting Nanoparticles for Biosensor: A Review. 2023 , 13, 494	O